CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 245

_id 9f8a
authors Davidow, William H.
year 1992
title The Virtual Corporation: Structuring and Revitalizing the Corporation for the 21St Century
source New York: Harper Collins Publishers
summary The great value of this timely, important book is that it provides an integrated picture of the customer-driven company of the future. We have begun to learn about lean production technology, stripped-down management, worker empowerment, flexible customized manufacturing, and other modern strategies, but Davidow and Malone show for the first time how these ideas are fitting together to create a new kind of corporation and a worldwide business revolution. Their research is fascinating. The authors provide illuminating case studies of American, Japanese, and European companies that have discovered the keys to improved competitiveness, redesigned their businesses and their business relationships, and made extraordinary gains. They also write bluntly and critically about a number of American corporations that are losing market share by clinging to outmoded thinking. Business success in the global marketplace of the future is going to depend upon corporations producing "virtual" products high in added value, rich in variety, and available instantly in response to customer needs. At the heart of this revolution will be fast new information technologies; increased emphasis on quality; accelerated product development; changing management practices, including new alignments between management and labor; and new linkages between company, supplier, and consumer, and between industry and government. The Virtual Corporation is an important cutting-edge book that offers a creative synthesis of the most influential ideas in modern business theory. It has already fired excitement and debate in industry, academia, and government, and it is essential reading for anyone involved in the leadership of America's business and the shaping of America's economic future.
series other
last changed 2003/04/23 15:14

_id cbed
authors Yakubu, G.S.
year 1994
title Maximising the Benefits of CAD Systems in Architectural Education
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 228
doi https://doi.org/10.52842/conf.ecaade.1994.x.u8n
summary The positive impact of Computer Aided Design (CAD) in professional architectural practice has been in focus in recent times but relatively little has been written on its significance in the education of the contemporary architect. It is common knowledge that the profession of architecture is currently undergoing enormous strains as it battles to keep abreast of trends and developments in a period of series of rapid advancement in science, technology and management (RIBA, 1992). Whilst attempts are being made to redress the shortcomings of the profession in the above context, the requirements for architectural education are yet to forge a coherent strategy for the implementation of CAD/IT in the curriculum of schools of architecture. In almost every other field, including engineering, medicine and the humanities, computing application to problem-solving and decision-making is seen as a way forward as we move into 21st century. Architectural education must integrate CAD/IT into the teaching of core modules that give the architect distinctive competence: studio design. That is one of the best ways of doing justice to the education of the architect of today and the future. Some approaches to the teaching of CAD in schools of architecture have been touched upon in the recent past. Building upon this background as well as an understanding of the nature of design teaching/learning, this paper examines ways of maximising the benefits of CAD systems in architectural education and of bringing computer aided designing into the studio not only to enhance design thinking and creativity but also to support interactive processes. In order to maximise or optimise any function, one approach is to use the hard systems methodology which utilises analytic, analogic and iconic models to show the effect of those factors which are significant for the purposes being considered. The other approach is to use the soft systems methodology in which the analysis encompasses the concept of a human activity system as a means of improving a situation. The use of soft systems methodology is considered more appropriate for dealing with the problem of design which is characterised by a flux of interacting events and ideas that unroll through time. The paper concludes that the main impediment to maximising the benefits of CAD systems in architectural education is not only the inappropriate definition of the objectives for the implementation of CAD education but also that the control subsystems are usually ill-structured and relatively poorly defined. Schools must attempt to define a coherent and consistent policy on the use of CAD systems as an integral part of studio design and evolve an in-house strategic and operational controls that enable the set objectives to be met. Furthermore, it is necessary to support the high level of productivity from CAD systems with a more efficient management system, especially in dealing with communication, data sharing via relational database, co-ordination and integration. Finally, the use of soft systems methodology is recommended as the way forward to optimising CAD systems in design education as it would provide continuous improvements while maintaining their productive value.

series eCAADe
last changed 2022/06/07 07:50

_id ascaad2022_043
id ascaad2022_043
authors Awan, Abeeha; Prokop, Simon; Vele, Jiri; Dounas, Theodor; Lombardi, Davide; Agkathidis, Asterios; Kurilla, Lukas
year 2022
title Qualitative Knowledge Graph for the Evaluation of Metaverse(s) - Is the Metaverse Hype or a Promising New Field for Architects?
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 99-116
summary With the advancement of augmented and virtual reality technologies both in scale as well as accessibility, the Metaverse (Stephenson, 1992, Hughes, 2022) has emerged as a new digital space with potential for the application of architectural creativity and design. With blockchain integration, the concept of the Metaverse shows promise in creating a “decentralised” space for design and creativity with rewards for its participants. As a platform that incorporates these technological components, does the Metaverse have utility for architectural design? Is there something truly novel in what the Metaverse brings to architectural computing, and architectural design? The paper constructs a qualitative knowledge graph that can be used for the evaluation of various kinds of Metaverses in and for architectural design. We use Design Science Research methods to develop the knowledge graph and its evaluative capacity, stemming from our experience with two Metaverses, Decentraland and Cryptovoxels. The paper concludes with a discussion of knowledge and practice gaps that are evident, framing the opportunities that architects might have in the future in terms of developing Metaverse(s).
series ASCAAD
email
last changed 2024/02/16 13:24

_id 065b
authors Beitia, S.S., Zulueta, A. and Barrallo, J.
year 1995
title The Virtual Cathedral - An Essay about CAAD, History and Structure
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 355-360
doi https://doi.org/10.52842/conf.ecaade.1995.355
summary The Old Cathedral of Santa Maria in Vitoria is the most representative building of the Gothic style in the Basque Country. Built during the XIV century, it has been closed to the cult in 1994 because of the high risk of collapse that presents its structure. This closure was originated by the structural analysis that was entrusted to the University of the Basque Country in 1992. The topographic works developed in the Cathedral to elaborate the planimetry of the temple revealed that many structural elements of great importance like arches, buttresses and flying buttresses were removed, modified or added along the history of Santa Maria. The first structural analysis made in the church suggested that the huge deformations showed in the resistant elements, specially the piers, were originated by interventions made in the past. A deep historical investigation allowed us to know how the Cathedral was built and the changes executed until our days. With this information, we started the elaboration of a virtual model of the Cathedral of Santa Maria. This model was introduced into a Finite Elements Method system to study the deformations suffered in the church during its construction in the XIV century, and the intervention made later in the XV, XVI and XX centuries. The efficiency of the virtual model simulating the geometry of the Cathedral along history allowed us to detect the cause of the structural damage, that was finally found in many unfortunate interventions along time.

series eCAADe
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_43.htm
last changed 2022/06/07 07:54

_id eabb
authors Boeykens, St. Geebelen, B. and Neuckermans, H.
year 2002
title Design phase transitions in object-oriented modeling of architecture
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 310-313
doi https://doi.org/10.52842/conf.ecaade.2002.310
summary The project IDEA+ aims to develop an “Integrated Design Environment for Architecture”. Its goal is providing a tool for the designer-architect that can be of assistance in the early-design phases. It should provide the possibility to perform tests (like heat or cost calculations) and simple simulations in the different (early) design phases, without the need for a fully detailed design or remodeling in a different application. The test for daylighting is already in development (Geebelen, to be published). The conceptual foundation for this design environment has been laid out in a scheme in which different design phases and scales are defined, together with appropriate tests at the different levels (Neuckermans, 1992). It is a translation of the “designerly” way of thinking of the architect (Cross, 1982). This conceptual model has been translated into a “Core Object Model” (Hendricx, 2000), which defines a structured object model to describe the necessary building model. These developments form the theoretical basis for the implementation of IDEA+ (both the data structure & prototype software), which is currently in progress. The research project addresses some issues, which are at the forefront of the architect’s interest while designing with CAAD. These are treated from the point of view of a practicing architect.
series eCAADe
email
last changed 2022/06/07 07:52

_id 7ce5
authors Gal, Shahaf
year 1992
title Computers and Design Activities: Their Mediating Role in Engineering Education
source Sociomedia, ed. Edward Barret. MIT Press
summary Sociomedia: With all the new words used to describe electronic communication (multimedia, hypertext, cyberspace, etc.), do we need another one? Edward Barrett thinks we do; hence, he coins the term "sociomedia." It is meant to displace a computing economy in which technicity is hypostasized over sociality. Sociomedia, a compilation of twenty-five articles on the theory, design and practice of educational multimedia and hypermedia, attempts to re-value the communicational face of computing. Value, of course, is "ultimately a social construct." As such, it has everything to do with knowledge, power, education and technology. The projects discussed in this book represent the leading edge of electronic knowledge production in academia (not to mention major funding) and are determining the future of educational media. For these reasons, Sociomedia warrants close inspection. Barrett's introduction sets the tone. For him, designing computer media involves hardwiring a mechanism for the social construction of knowledge (1). He links computing to a process of social and communicative interactivity for constructing and desseminating knowledge. Through a mechanistic mapping of the university as hypercontext (a huge network that includes classrooms as well as services and offices), Barrett models intellectual work in such a way as to avoid "limiting definitions of human nature or human development." Education, then, can remain "where it should be--in the human domain (public and private) of sharing ideas and information through the medium of language." By leaving education in a virtual realm (where we can continue to disagree about its meaning and execution), it remains viral, mutating and contaminating in an intellectually healthy way. He concludes that his mechanistic model, by means of its reductionist approach, preserves value (7). This "value" is the social construction of knowledge. While I support the social orientation of Barrett's argument, discussions of value are related to power. I am not referring to the traditional teacher-student power structure that is supposedly dismantled through cooperative and constructivist learning strategies. The power to be reckoned with in the educational arena is foundational, that which (pre)determines value and the circulation of knowledge. "Since each of you reading this paragraph has a different perspective on the meaning of 'education' or 'learning,' and on the processes involved in 'getting an education,' think of the hybris in trying to capture education in a programmable function, in a displayable object, in a 'teaching machine'" (7). Actually, we must think about that hybris because it is, precisely, what informs teaching machines. Moreover, the basic epistemological premises that give rise to such productions are too often assumed. In the case of instructional design, the episteme of cognitive sciences are often taken for granted. It is ironic that many of the "postmodernists" who support electronic hypertextuality seem to have missed Jacques Derrida's and Michel Foucault's "deconstructions" of the epistemology underpinning cognitive sciences (if not of epistemology itself). Perhaps it is the glitz of the technology that blinds some users (qua developers) to the belief systems operating beneath the surface. Barrett is not guilty of reactionary thinking or politics; he is, in fact, quite in line with much American deconstructive and postmodern thinking. The problem arises in that he leaves open the definitions of "education," "learning" and "getting an education." One cannot engage in the production of new knowledge without orienting its design, production and dissemination, and without negotiating with others' orientations, especially where largescale funding is involved. Notions of human nature and development are structural, even infrastructural, whatever the medium of the teaching machine. Although he addresses some dynamics of power, money and politics when he talks about the recession and its effects on the conference, they are readily visible dynamics of power (3-4). Where does the critical factor of value determination, of power, of who gets what and why, get mapped onto a mechanistic model of learning institutions? Perhaps a mapping of contributors' institutions, of the funding sources for the projects showcased and for participation in the conference, and of the disciplines receiving funding for these sorts of projects would help visualize the configurations of power operative in the rising field of educational multimedia. Questions of power and money notwithstanding, Barrett's introduction sets the social and textual thematics for the collection of essays. His stress on interactivity, on communal knowledge production, on the society of texts, and on media producers and users is carried foward through the other essays, two of which I will discuss. Section I of the book, "Perspectives...," highlights the foundations, uses and possible consequences of multimedia and hypertextuality. The second essay in this section, "Is There a Class in This Text?," plays on the robust exchange surrounding Stanley Fish's book, Is There a Text in This Class?, which presents an attack on authority in reading. The author, John Slatin, has introduced electronic hypertextuality and interaction into his courses. His article maps the transformations in "the content and nature of work, and the workplace itself"-- which, in this case, is not industry but an English poetry class (25). Slatin discovered an increase of productive and cooperative learning in his electronically- mediated classroom. For him, creating knowledge in the electronic classroom involves interaction between students, instructors and course materials through the medium of interactive written discourse. These interactions lead to a new and persistent understanding of the course materials and of the participants' relation to the materials and to one another. The work of the course is to build relationships that, in my view, constitute not only the meaning of individual poems, but poetry itself. The class carries out its work in the continual and usually interactive production of text (31). While I applaud his strategies which dismantle traditional hierarchical structures in academia, the evidence does not convince me that the students know enough to ask important questions or to form a self-directing, learning community. Stanley Fish has not relinquished professing, though he, too, espouses the indeterminancy of the sign. By the fourth week of his course, Slatin's input is, by his own reckoning, reduced to 4% (39). In the transcript of the "controversial" Week 6 exchange on Gertrude Stein--the most disliked poet they were discussing at the time (40)--we see the blind leading the blind. One student parodies Stein for three lines and sums up his input with "I like it." Another, finds Stein's poetry "almost completey [sic] lacking in emotion or any artistic merit" (emphasis added). On what grounds has this student become an arbiter of "artistic merit"? Another student, after admitting being "lost" during the Wallace Steven discussion, talks of having more "respect for Stevens' work than Stein's" and adds that Stein's poetry lacks "conceptual significance[, s]omething which people of varied opinion can intelligently discuss without feeling like total dimwits...." This student has progressed from admitted incomprehension of Stevens' work to imposing her (groundless) respect for his work over Stein's. Then, she exposes her real dislike for Stein's poetry: that she (the student) missed the "conceptual significance" and hence cannot, being a person "of varied opinion," intelligently discuss it "without feeling like [a] total dimwit." Slatin's comment is frightening: "...by this point in the semester students have come to feel increasingly free to challenge the instructor" (41). The students that I have cited are neither thinking critically nor are their preconceptions challenged by student-governed interaction. Thanks to the class format, one student feels self-righteous in her ignorance, and empowered to censure. I believe strongly in student empowerment in the classroom, but only once students have accrued enough knowledge to make informed judgments. Admittedly, Slatin's essay presents only partial data (there are six hundred pages of course transcripts!); still, I wonder how much valuable knowledge and metaknowledge was gained by the students. I also question the extent to which authority and professorial dictature were addressed in this course format. The power structures that make it possible for a college to require such a course, and the choice of texts and pedagogy, were not "on the table." The traditional professorial position may have been displaced, but what took its place?--the authority of consensus with its unidentifiable strong arm, and the faceless reign of software design? Despite Slatin's claim that the students learned about the learning process, there is no evidence (in the article) that the students considered where their attitudes came from, how consensus operates in the construction of knowledge, how power is established and what relationship they have to bureaucratic insitutions. How do we, as teaching professionals, negotiate a balance between an enlightened despotism in education and student-created knowledge? Slatin, and other authors in this book, bring this fundamental question to the fore. There is no definitive answer because the factors involved are ultimately social, and hence, always shifting and reconfiguring. Slatin ends his article with the caveat that computerization can bring about greater estrangement between students, faculty and administration through greater regimentation and control. Of course, it can also "distribute authority and power more widely" (50). Power or authority without a specific face, however, is not necessarily good or just. Shahaf Gal's "Computers and Design Activities: Their Mediating Role in Engineering Education" is found in the second half of the volume, and does not allow for a theory/praxis dichotomy. Gal recounts a brief history of engineering education up to the introduction of Growltiger (GT), a computer-assisted learning aid for design. He demonstrates GT's potential to impact the learning of engineering design by tracking its use by four students in a bridge-building contest. What his text demonstrates clearly is that computers are "inscribing and imaging devices" that add another viewpoint to an on-going dialogue between student, teacher, earlier coursework, and other teaching/learning tools. The less proficient students made a serious error by relying too heavily on the technology, or treating it as a "blueprint provider." They "interacted with GT in a way that trusted the data to represent reality. They did not see their interaction with GT as a negotiation between two knowledge systems" (495). Students who were more thoroughly informed in engineering discourses knew to use the technology as one voice among others--they knew enough not simply to accept the input of the computer as authoritative. The less-advanced students learned a valuable lesson from the competition itself: the fact that their designs were not able to hold up under pressure (literally) brought the fact of their insufficient knowledge crashing down on them (and their bridges). They also had, post factum, several other designs to study, especially the winning one. Although competition and comparison are not good pedagogical strategies for everyone (in this case the competitors had volunteered), at some point what we think we know has to be challenged within the society of discourses to which it belongs. Students need critique in order to learn to push their learning into auto-critique. This is what is lacking in Slatin's discussion and in the writings of other avatars of constructivist, collaborative and computer-mediated pedagogies. Obviously there are differences between instrumental types of knowledge acquisition and discoursive knowledge accumulation. Indeed, I do not promote the teaching of reading, thinking and writing as "skills" per se (then again, Gal's teaching of design is quite discursive, if not dialogic). Nevertheless, the "soft" sciences might benefit from "bridge-building" competitions or the re-institution of some forms of agonia. Not everything agonistic is inhuman agony--the joy of confronting or creating a sound argument supported by defensible evidence, for example. Students need to know that soundbites are not sound arguments despite predictions that electronic writing will be aphoristic rather than periodic. Just because writing and learning can be conceived of hypertextually does not mean that rigor goes the way of the dinosaur. Rigor and hypertextuality are not mutually incompatible. Nor is rigorous thinking and hard intellectual work unpleasurable, although American anti-intellectualism, especially in the mass media, would make it so. At a time when the spurious dogmatics of a Rush Limbaugh and Holocaust revisionist historians circulate "aphoristically" in cyberspace, and at a time when knowledge is becoming increasingly textualized, the role of critical thinking in education will ultimately determine the value(s) of socially constructed knowledge. This volume affords the reader an opportunity to reconsider knowledge, power, and new communications technologies with respect to social dynamics and power relationships.
series other
last changed 2003/04/23 15:14

_id cc68
authors García, Agustín Pérez
year 1992
title Learning Structural Design - Computers and Virtual Laboratories
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 525-534
doi https://doi.org/10.52842/conf.ecaade.1992.525
summary This paper shows how the spreading use of computers can improve the quality of education, specially in the field of architecture. An Innovative Teaching Project oriented to the discipline Structural Design of Buildings has been implemented at the School of Architecture of Valencia. The main objective of this project is the transformation of the computer room into a virtual laboratory for simulating the behaviour of structural typologies using mathematical models of them. An environment, specially oriented to Structural Design, has been integrated in a Computer Aided Design platform to teach how design the Structure of Buildings.
series eCAADe
last changed 2022/06/07 07:51

_id 6cfd
authors Harfmann, Anton C. and Majkowski, Bruce R.
year 1992
title Component-Based Spatial Reasoning
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 103-111
doi https://doi.org/10.52842/conf.acadia.1992.103
summary The design process and ordering of individual components through which architecture is realized relies on the use of abstract "models" to represent a proposed design. The emergence and use of these abstract "models" for building representation has a long history and tradition in the field of architecture. Models have been made and continue to be made for the patron, occasionally the public, and as a guide for the builders. Models have also been described as a means to reflect on the design and to allow the design to be in dialogue with the creator.

The term "model" in the above paragraph has been used in various ways and in this context is defined as any representation through which design intent is expressed. This includes accurate/ rational or abstract drawings (2- dimensional and 3-dimensional), physical models (realistic and abstract) and computer models (solid, void and virtual reality). The various models that fall within the categories above have been derived from the need to "view" the proposed design in various ways in order to support intuitive reasoning about the proposal and for evaluation purposes. For example, a 2-dimensional drawing of a floor plan is well suited to support reasoning about spatial relationships and circulation patterns while scaled 3-dimensional models facilitate reasoning about overall form, volume, light, massing etc. However, the common denominator of all architectural design projects (if the intent is to construct them in actual scale, physical form) are the discrete building elements from which the design will be constructed. It is proposed that a single computational model representing individual components supports all of the above "models" and facilitates "viewing"' the design according to the frame of reference of the viewer.

Furthermore, it is the position of the authors that all reasoning stems from this rudimentary level of modeling individual components.

The concept of component representation has been derived from the fact that a "real" building (made from individual components such as nuts, bolts and bar joists) can be "viewed" differently according to the frame of reference of the viewer. Each individual has the ability to infer and abstract from the assemblies of components a variety of different "models" ranging from a visceral, experiential understanding to a very technical, physical understanding. The component concept has already proven to be a valuable tool for reasoning about assemblies, interferences between components, tracing of load path and numerous other component related applications. In order to validate the component-based modeling concept this effort will focus on the development of spatial understanding from the component-based model. The discussions will, therefore, center about the representation of individual components and the development of spatial models and spatial reasoning from the component model. In order to frame the argument that spatial modeling and reasoning can be derived from the component representation, a review of the component-based modeling concept will precede the discussions of spatial issues.

series ACADIA
email
last changed 2022/06/07 07:49

_id 32eb
authors Henry, Daniel
year 1992
title Spatial Perception in Virtual Environments : Evaluating an Architectural Application
source University of Washington
summary Over the last several years, professionals from many different fields have come to the Human Interface Technology Laboratory (H.I.T.L) to discover and learn about virtual environments. In general, they are impressed by their experiences and express the tremendous potential the tool has in their respective fields. But the potentials are always projected far in the future, and the tool remains just a concept. This is justifiable because the quality of the visual experience is so much less than what people are used to seeing; high definition television, breathtaking special cinematographic effects and photorealistic computer renderings. Instead, the models in virtual environments are very simple looking; they are made of small spaces, filled with simple or abstract looking objects of little color distinctions as seen through displays of noticeably low resolution and at an update rate which leaves much to be desired. Clearly, for most applications, the requirements of precision have not been met yet with virtual interfaces as they exist today. However, there are a few domains where the relatively low level of the technology could be perfectly appropriate. In general, these are applications which require that the information be presented in symbolic or representational form. Having studied architecture, I knew that there are moments during the early part of the design process when conceptual decisions are made which require precisely the simple and representative nature available in existing virtual environments. This was a marvelous discovery for me because I had found a viable use for virtual environments which could be immediately beneficial to architecture, my shared area of interest. It would be further beneficial to architecture in that the virtual interface equipment I would be evaluating at the H.I.T.L. happens to be relatively less expensive and more practical than other configurations such as the "Walkthrough" at the University of North Carolina. The set-up at the H.I.T.L. could be easily introduced into architectural firms because it takes up very little physical room (150 square feet) and it does not require expensive and space taking hardware devices (such as the treadmill device for simulating walking). Now that the potential for using virtual environments in this architectural application is clear, it becomes important to verify that this tool succeeds in accurately representing space as intended. The purpose of this study is to verify that the perception of spaces is the same, in both simulated and real environment. It is hoped that the findings of this study will guide and accelerate the process by which the technology makes its way into the field of architecture.
keywords Space Perception; Space (Architecture); Computer Simulation
series thesis:MSc
last changed 2003/02/12 22:37

_id 130d
authors Hoinkes, R. and Mitchell, R.
year 1994
title Playing with Time - Continuous Temporal Mapping Strategies for Interactive Environments
source 6th Canadian GIS Conference, (Ottawa Natura Resources Canada), pp. 318-329
summary The growing acceptance of GIS technology has had far- reaching effects on many fields of research. The recent developments in the area of dynamic and temporal GIS open new possibilities within the realm of historical research where temporal relationship analysis is as important as spatial relationship analysis. While topological structures have had wide use in spatial GIS and have been the subject of most temporal GIS endeavours, the different demands of many of these temporally- oriented analytic processes questions the choice of the topological direction. In the fall of 1992 the Montreal Research Group (MRG) of the Canadian Centre for Architecture mounted an exhibition dealing with the development of the built environment in 18th- century Montreal. To aid in presenting the interpretive messages of their data, the MRG worked with the Centre for Landscape Research (CLR) to incorporate the interactive capabilities of the CLR's PolyTRIM research software with the MRG's data base to produce a research tool as well as a public- access interactive display. The interactive capabilities stemming from a real- time object- oriented structure provided an excellent environment for both researchers and the public to investigate the nature of temporal changes in such aspects as landuse, ethnicity, and fortifications of the 18th century city. This paper describes the need for interactive real- time GIS in such temporal analysis projects and the underlying need for object- oriented vs. topologically structured data access strategies to support them.
series other
last changed 2003/04/23 15:14

_id cf2009_poster_09
id cf2009_poster_09
authors Hsu, Yin-Cheng
year 2009
title Lego Free-Form? Towards a Modularized Free-Form Construction
source T. Tidafi and T. Dorta (eds) Joining Languages Cultures and Visions: CAADFutures 2009 CD-Rom
summary Design Media is the tool designers use for concept realization (Schon and Wiggins, 1992; Liu, 1996). Design thinking of designers is deeply effected by the media they tend to use (Zevi, 1981; Liu, 1996; Lim, 2003). Historically, architecture is influenced by the design media that were available within that era (Liu, 1996; Porter and Neale, 2000; Smith, 2004). From the 2D plans first used in ancient egypt, to the 3D physical models that came about during the Renaissance period, architecture reflects the media used for design. When breakthroughs in CAD/CAM technologies were brought to the world in the twentieth century, new possibilities opened up for architects.
keywords CAD/CAM free-form construction, modularization
series CAAD Futures
type poster
last changed 2009/07/08 22:12

_id caadria2004_k-1
id caadria2004_k-1
authors Kalay, Yehuda E.
year 2004
title CONTEXTUALIZATION AND EMBODIMENT IN CYBERSPACE
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 5-14
doi https://doi.org/10.52842/conf.caadria.2004.005
summary The introduction of VRML (Virtual Reality Markup Language) in 1994, and other similar web-enabled dynamic modeling software (such as SGI’s Open Inventor and WebSpace), have created a rush to develop on-line 3D virtual environments, with purposes ranging from art, to entertainment, to shopping, to culture and education. Some developers took their cues from the science fiction literature of Gibson (1984), Stephenson (1992), and others. Many were web-extensions to single-player video games. But most were created as a direct extension to our new-found ability to digitally model 3D spaces and to endow them with interactive control and pseudo-inhabitation. Surprisingly, this technologically-driven stampede paid little attention to the core principles of place-making and presence, derived from architecture and cognitive science, respectively: two principles that could and should inform the essence of the virtual place experience and help steer its development. Why are the principles of place-making and presence important for the development of virtual environments? Why not simply be content with our ability to create realistically-looking 3D worlds that we can visit remotely? What could we possibly learn about making these worlds better, had we understood the essence of place and presence? To answer these questions we cannot look at place-making (both physical and virtual) from a 3D space-making point of view alone, because places are not an end unto themselves. Rather, places must be considered a locus of contextualization and embodiment that ground human activities and give them meaning. In doing so, places acquire a meaning of their own, which facilitates, improves, and enriches many aspects of our lives. They provide us with a means to interpret the activities of others and to direct our own actions. Such meaning is comprised of the social and cultural conceptions and behaviors imprinted on the environment by the presence and activities of its inhabitants, who in turn, ‘read’ by them through their own corporeal embodiment of the same environment. This transactional relationship between the physical aspects of an environment, its social/cultural context, and our own embodiment of it, combine to create what is known as a sense of place: the psychological, physical, social, and cultural framework that helps us interpret the world around us, and directs our own behavior in it. In turn, it is our own (as well as others’) presence in that environment that gives it meaning, and shapes its social/cultural character. By understanding the essence of place-ness in general, and in cyberspace in particular, we can create virtual places that can better support Internet-based activities, and make them equal to, in some cases even better than their physical counterparts. One of the activities that stands to benefit most from understanding the concept of cyber-places is learning—an interpersonal activity that requires the co-presence of others (a teacher and/or fellow learners), who can point out the difference between what matters and what does not, and produce an emotional involvement that helps students learn. Thus, while many administrators and educators rush to develop webbased remote learning sites, to leverage the economic advantages of one-tomany learning modalities, these sites deprive learners of the contextualization and embodiment inherent in brick-and-mortar learning institutions, and which are needed to support the activity of learning. Can these qualities be achieved in virtual learning environments? If so, how? These are some of the questions this talk will try to answer by presenting a virtual place-making methodology and its experimental implementation, intended to create a sense of place through contextualization and embodiment in virtual learning environments.
series CAADRIA
type normal paper
last changed 2022/06/07 07:52

_id d5b3
authors Knight, Michael and Brown, Andre
year 1999
title Working in Virtual Environments through appropriate Physical Interfaces
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 431-436
doi https://doi.org/10.52842/conf.ecaade.1999.431
summary The work described here is aimed at contributing towards the debate and development relating to the construction of interfaces to explore buildings and their environs through virtual worlds. We describe a particular hardware and software configuration which is derived by the use of low cost games software to create the Virtual Environment. The Physical Interface responds to the work of other researchers, in this area, in particular Shaw (1994) and Vasquez de Velasco & Trigo (1997). Virtual Evironments might have the potential to be "a magical window into other worlds, from molecules to minds" (Rheingold, 1992), but what is the nature of that window? Currently it is often a translucent opening which gives a hazy and distorted (disembodied) view. And many versions of such openings are relatively expensive. We consider ways towards clearing the haze without too much expense, adapting techniques proposed by developers of low cost virtual reality systems (Hollands, 1995) for use in an architectural setting.
keywords Virtual Environments, Games Software
series eCAADe
email
last changed 2022/06/07 07:51

_id 8996
authors Ng, Edward
year 1992
title Towards the 4th Dimension
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 91-100
doi https://doi.org/10.52842/conf.ecaade.1992.091
summary Fifteenth century Europeans 'knew' that the sky was made of closed concentric crystal spheres, rotating around a central earth and carrying the stars and planets. That 'knowledge' structured everything they did and thought, because it told them the truth. Then Galileo's telescope changed the truth. As a result, a hundred years later everybody 'knew' that the universe was open and infinite, working like a giant clock. Architecture, music, literature, science, economics, art, politics - everything - changed, mirroring the new view created by the change in the knowledge. The medium by which perceptive intuition and the rigorous discipline of shaping became compatible was technology. Technelogos, the art of knowing how to make, fell naturally and historically into the realm of perceptive fundamentals... For the artist it verified scientifically what he had perceived emotionally; for the engineer it added the vast field of perceptive responses to the narrow limits of the laboratory experiment.

series eCAADe
last changed 2022/06/07 07:58

_id 427b
authors Ozel, Filiz
year 1993
title A Computerized Fire Safety Evaluation System for Business Occupancies
source CAAD Futures ‘93 [Conference Proceedings / ISBN 0-444-89922-7] (Pittsburgh / USA), 1993, pp. 241-251
summary The development of computer-based code compliance checking programs has been the focus of many studies. While some of these investigated the procedural aspects of building codes, others focused more on their rule base. On the other hand, due to the complexity of the codes, the process of identifying which sections apply to a given problem, and in which order to access them requires a meta-knowledge structuring system. National Fire Protection Association (NFPA) 101M, Alternative Approaches to Life Safety (1992) provides a framework through which code sections can be systematically accessed by means of a set of checklists. The study presented here primarily focuses on the development of a computer based fire safety code checking system called ARCHCode/Business for business occupancies following the guidelines and the methodology described in Chapter 7 of NFPA 101M.
keywords Fire Safety Expert System, Business Occupancies, CAD Interface
series CAAD Futures
last changed 1999/04/07 12:03

_id ebb2
authors Proctor, George
year 2000
title Reflections on the VDS, Pedagogy, Methods
source ACADIA Quarterly, vol. 19, no. 1, pp. 15-16
doi https://doi.org/10.52842/conf.acadia.2000.015.2
summary After having conducted a Digital Media based design studio at Cal Poly for six years, we have developed a body of experience I feel is worth sharing. When the idea of conducting a studio with the exclusive use of digital tools was implemented at our college, it was still somewhat novel, and only 2 short years after the first VDS- Virtual Design Studio (UBC, UHK et.al.-1993). When we began, most of what we explored required a suspension of disbelief on the part of both the students and faculty reviewers of studio work. In a few short years the notions we examined have become ubiquitous in academic architectural discourse and are expanding into common use in practice. (For background, the digital media component of our curriculum owes much to my time at Harvard GSD [MAUD 1989-91] and the texts of: McCullough/Mitchell 1990, 1994; McCullough 1998; Mitchell 1990,1992,1996; Tufte 1990; Turkel 1995; and Wojtowicz 1993; and others.)
series ACADIA
email
last changed 2022/06/07 08:00

_id 1992
authors Russell, Peter
year 2002
title Using Higher Level Programming in Interdisciplinary teams as a means of training for Concurrent Engineering
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 14-19
doi https://doi.org/10.52842/conf.ecaade.2002.014
summary The paper explains a didactical method for training students that has been run three times to date. The premise of the course is to combine students from different faculties into interdisciplinary teams. These teams then have a complex problem to resolve within an extremely short time span. In light of recent works from Joy and Kurzweil, the theme Robotics was chosen as an exercise that is timely, interesting and related, but not central to the studies of the various faculties. In groups of 3 to 5, students from faculties of architecture, computer science and mechanical engineering are entrusted to design, build and program a robot which must successfully execute a prescribed set of actions in a competitive atmosphere. The entire course lasts ten days and culminates with the competitive evaluation. The robots must navigate a labyrinth, communicate with on another and be able to cover longer distances with some speed. In order to simplify the resources available to the students, the Lego Mindstorms Robotic syshed backgrounds instaed of synthetic ones. The combination of digitally produced (scanned) sperical images together with the use of HDR open a wide range of new implementation in the field of architecture, especially in combining synthetic elements in existing buildings, e.g. new interior elements in an existing historical museum).ural presentations in the medium of computer animation. These new forms of expression of design thoughts and ideas go beyond mere model making, and move more towards scenemaking and storytelling. The latter represents new methods of expression within computational environments for architects and designers.its boundaries. The project was conducted using the pedagogical framework of the netzentwurf.de; a relatively well established Internet based communication platform. This means that the studio was organised in the „traditional“ structure consisting of an initial 3 day workshop, a face to face midterm review, and a collective final review, held 3,5 months later in the Museum of Communication in Frankfurt am Main, Germany. In teams of 3 (with each student from a different university and a tutor located at a fourth) the students worked over the Internet to produce collaborative design solutions. The groups ended up with designs that spanned a range of solutions between real and virtual architecture. Examples of the student’s work (which is all available online) as well as their working methods are described. It must be said that the energy invested in the studio by the organisers of the virtual campus (as well as the students who took part) was considerably higher than in normal design studios and the paper seeks to look critically at the effort in relation to the outcomes achieved. The range and depth of the student’s work was surprising to many in the project, especially considering the initial hurdles (both social and technological) that had to overcome. The self-referential nature of the theme, the method and the working environment encouraged the students to take a more philosg and programming a winning robot. These differences became apparent early in the sessions and each group had to find ways to communicate their ideas and to collectively develop them by building on the strengths of each team member.
series eCAADe
type normal paper
email
last changed 2022/06/07 07:56

_id 5a7c
authors Schneiderman, B.
year 1992
title Designing the User Interface. Strategies for Effective Human-Computer Interaction
source Reading, Mass. etc, Addison-Wesley
summary Ben Shneiderman again provides a complete, current, and authoritative introduction to user-interface design. Students will learn practical techniques and guidelines needed to develop good systems designs - systems with interfaces the typical user can understand, predict, and control. This third edition features new chapters on the World Wide Web, information visualization, and computer-supported cooperative work. It contains expanded and earlier coverage of development methodologies, evaluation techniques, and user-interface building tools. The author provides provocative discussion of speech input/output, natural-language interaction, anthropomorphic design, virtual environments, and intelligent (software) agents.
series other
last changed 2003/04/23 15:14

_id 831d
authors Seebohm, Thomas
year 1992
title Discoursing on Urban History Through Structured Typologies
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 157-175
doi https://doi.org/10.52842/conf.acadia.1992.157
summary How can urban history be studied with the aid of three-dimensional computer modeling? One way is to model known cities at various times in history, using historical records as sources of data. While such studies greatly enhance the understanding of the form and structure of specific cities at specific points in time, it is questionable whether such studies actually provide a true understanding of history. It can be argued that they do not because such studies only show a record of one of many possible courses of action at various moments in time. To gain a true understanding of urban history one has to place oneself back in historical time to consider all of the possible courses of action which were open in the light of the then current situation of the city, to act upon a possible course of action and to view the consequences in the physical form of the city. Only such an understanding of urban history can transcend the memory of the actual and hence the behavior of the possible. Moreover, only such an understanding can overcome the limitations of historical relativism, which contends that historical fact is of value only in historical context, with the realization, due to Benedetto Croce and echoed by Rudolf Bultmann, that the horizon of "'deeper understanding" lies in "'the actuality of decision"' (Seebohm and van Pelt 1990).

One cannot conduct such studies on real cities except, perhaps, as a point of departure at some specific point in time to provide an initial layout for a city knowing that future forms derived by the studies will diverge from that recorded in history. An entirely imaginary city is therefore chosen. Although the components of this city at the level of individual buildings are taken from known cities in history, this choice does not preclude alternative forms of the city. To some degree, building types are invariants and, as argued in the Appendix, so are the urban typologies into which they may be grouped. In this imaginary city students of urban history play the role of citizens or groups of citizens. As they defend their interests and make concessions, while interacting with each other in their respective roles, they determine the nature of the city as it evolves through the major periods of Western urban history in the form of threedimensional computer models.

My colleague R.J. van Pelt and I presented this approach to the study of urban history previously at ACADIA (Seebohm and van Pelt 1990). Yet we did not pay sufficient attention to the manner in which such urban models should be structured and how the efforts of the participants should be coordinated. In the following sections I therefore review what the requirements are for three-dimensional modeling to support studies in urban history as outlined both from the viewpoint of file structure of the models and other viewpoints which have bearing on this structure. Three alternative software schemes of progressively increasing complexity are then discussed with regard to their ability to satisfy these requirements. This comparative study of software alternatives and their corresponding file structures justifies the present choice of structure in relation to the simpler and better known generic alternatives which do not have the necessary flexibility for structuring the urban model. Such flexibility means, of course, that in the first instance the modeling software is more timeconsuming to learn than a simple point and click package in accord with the now established axiom that ease of learning software tools is inversely related to the functional power of the tools. (Smith 1987).

series ACADIA
email
last changed 2022/06/07 07:56

_id avocaad_2001_19
id avocaad_2001_19
authors Shen-Kai Tang, Yu-Tung Liu, Yu-Sheng Chung, Chi-Seng Chung
year 2001
title The visual harmony between new and old materials in the restoration of historical architecture: A study of computer simulation
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the research of historical architecture restoration, scholars respectively focus on the field of architectural context and architectural archeology (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000) or on architecture construction and the procedure of restoration (Shi, 1988, 1989; Chiu, 1990). How to choose materials and cope with their durability becomes an important issue in the restoration of historical architecture (Dasser, 1990; Wang, 1998).In the related research of the usage and durability of materials, some scholars deem that, instead of continuing the traditional ways that last for hundreds of years (that is to replace new materials with old ones), it might be better to keep the original materials (Dasser, 1990). However, unavoidably, some of the originals are much worn. Thus we have to first establish the standard of eliminating components, and secondly to replace identical or similar materials with the old components (Lee, 1990). After accomplishing the restoration, we often unexpectedly find out that the renewed historical building is too new that the sense of history is eliminated (Dasser, 1990; Fu, 1997). Actually this is the important factor that determines the accomplishment of restoration. In the past, some scholars find out that the contrast and conflict between new and old materials are contributed to the different time of manufacture and different coating, such as antiseptic, pattern, etc., which result in the discrepancy of the sense of visual perception (Lee, 1990; Fu, 1997; Dasser, 1990).In recent years, a number of researches and practice of computer technology have been done in the field of architectural design. We are able to proceed design communication more exactly by the application of some systematic softwares, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and so on (Lawson, 1995; Liu, 1996). The application of computer technology to the research of the preservation of historical architecture is comparatively late. Continually some researchers explore the procedure of restoration by computer simulation technology (Potier, 2000), or establish digital database of the investigation of historical architecture (Sasada, 2000; Wang, 1998). How to choose materials by the technology of computer simulation influences the sense of visual perception. Liu (2000) has a more complete result on visual impact analysis and assessment (VIAA) about the research of urban design projection. The main subjects of this research paper focuses on whether the technology of computer simulation can extenuate the conflict between new and old materials that imposed on visual perception.The objective of this paper is to propose a standard method of visual harmony effects for materials in historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example).There are five steps in this research: 1.Categorize the materials of historical architecture and establish the information in digital database. 2.Get new materials of historical architecture and establish the information in digital database. 3.According to the mixing amount of new and old materials, determinate their proportion of the building; mixing new and old materials in a certain way. 4.Assign the mixed materials to the computer model and proceed the simulation of lighting. 5.Make experts and the citizens to evaluate the accomplished computer model in order to propose the expected standard method.According to the experiment mentioned above, we first address a procedure of material simulation of the historical architecture restoration and then offer some suggestions of how to mix new and old materials.By this procedure of simulation, we offer a better view to control the restoration of historical architecture. And, the discrepancy and discordance by new and old materials can be released. Moreover, we thus avoid to reconstructing ¡§too new¡¨ historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 12HOMELOGIN (you are user _anon_32254 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002