CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 172

_id a5fc
authors Shinners, Neil, D’Cruz, Neville and Marriott, Andrew
year 1992
title Multi-Faceted Architectural Visualization
doi https://doi.org/10.52842/conf.acadia.1992.141
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 141-153
summary As well as learning traditional design techniques, students in architecture courses learn how to use powerful workstations with CAD systems, color scanners and laser printers and software for the rendering, compositing and animating of their designs.

They learn to use raytracing and radiosity rendering systems to provide visual realism, alpha-channel compositing systems to put a client in the picture (literally) or the design in situ, and keyframe animation systems to allow realistic walkthroughs.

Student Presentations are now based on videos, photographic slides, slide shows or real time animation. Images (as data files) are imported into full color publishing systems for final year thesis presentation.

The architectural graphics environment at Curtin University facilitates the integration of slide and video examples of raytraced and chroma-keyed images with computer aided design techniques for architectural student presentations.

series ACADIA
email
last changed 2022/06/07 07:56

_id ab4d
authors Huang, Tao-Kuang, Degelman, Larry O., and Larsen, Terry R.
year 1992
title A Visualization Model for Computerized Energy Evaluation During the Conceptual Design Stage (ENERGRAPH)
doi https://doi.org/10.52842/conf.acadia.1992.195
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 195-206
summary Energy performance is a crucial step toward responsible design. Currently there are many tools that can be applied to reach this goal with reasonable accuracy. Often times, however, major flaws are not discovered until the final stage of design when it is too late to change. Not only are existing simulation models complicated to apply at the conceptual design stage, but energy principles and their applications are also abstract and hard to visualize. Because of the lack of suitable tools to visualize energy analysis output, energy conservation concepts fail to be integrated into the building design. For these reasons, designers tend not to apply energy conservation concepts at the early design stage. However, since computer graphics is a new phase of visual communication in design process, the above problems might be solved properly through a computerized graphical interface in the conceptual design stage.

The research described in this paper is the result of exploring the concept of using computer graphics to support energy efficient building designs. It focuses on the visualization of building energy through a highly interactive graphical interface in the early design stage.

series ACADIA
email
last changed 2022/06/07 07:50

_id 56e9
authors Huang, Tao-Kuang
year 1992
title A Graphical Feedback Model for Computerized Energy Analysis during the Conceptual Design Stage
source Texas A&M University
summary During the last two decades, considerable effort has been placed on the development of building design analysis tools. Architects and designers have begun to take advantage of computers to generate and examine design alternatives. However, because it has been difficult to adapt computer technologies to the visual orientation of the building designer, the majority of computer applications have been limited to numerical analysis and office automation tasks. Only recently, because of advances in hardware and software techniques, computers have entered into a new phase in the development of architectural design. haveters are now able to interactively display graphics solutions to architectural related problems, which is fundamental to the design process. The majority of research programs in energy efficient design have sharpened people's understanding of energy principles and their application of those principles. Energy conservation concepts, however, have not been widely used. A major problem in the implementation of these principles is that energy principles their applications are abstract, hard to visualize and separated from the architectural design process. Furthermore, one aspect of energy analysis may contain thousands of pieces of numerical information which often leads to confusion on the part of designers. If these difficulties can be overcome, it would bring a great benefit to the advancement of energy conservation concepts. This research explores the concept of an integrated computer graphics program to support energy efficient design. It focuses on (1) the integration of energy efficiently and architectural design, and (2) the visualization of building energy use through graphical interfaces during the conceptual design stage. It involves (1) the discussion of frameworks of computer-aided architectural design and computer-aided energy efficient building design, and (2) the development of an integrated computer prototype program with a graphical interface that helps the designer create building layouts, analyze building energy interactively and receive visual feedbacks dynamically. The goal is to apply computer graphics as an aid to visualize the effects of energy related decisions and therefore permit the designer to visualize and understand energy conservation concepts in the conceptual phase of architectural design.
series thesis:PhD
last changed 2003/02/12 22:37

_id 6d34
authors Kensek, Karen and Noble, Doug (Eds.)
year 1992
title Mission - Method - Madness [Conference Proceedings]
doi https://doi.org/10.52842/conf.acadia.1992
source ACADIA Conference Proceedings / ISBN 1-880250-01-2 ) 1992, 232 p.
summary The papers represent a wide variety of exploration into the uses of computers in architecture. We have tried to impose order onto the collection by organizing them into six sessions: Metaphor, Mission, Method, Modeling for Visualization, Modeling, and Generative Systems. As with any ordering system for such a diverse selection, some session papers are strongly related while others are loosely grouped. Madness, an additional session not in the proceedings, will include short presentations of work in progress. Regarding the individual papers, it is particularly exciting to see research being conducted that is founded on previous work done by others. It is also interesting to note that half of the papers have been submitted by teams of authors. Whether this represents "computer supported cooperative work" remains to be seen. Certainly the work in this book represents an interesting and wide variety of explorations into computer supported design in architecture.
series ACADIA
email
more http://www.acadia.org
last changed 2022/06/07 07:49

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 4704
authors Amirante, I., Rinaldi, S. and Muzzillo, F.
year 1992
title A Tutorial Experiment Concerning Dampness Diagnosis Supported by an Expert System
doi https://doi.org/10.52842/conf.ecaade.1992.159
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 159-172
summary (A) The teaching of Technology of Building Rehabilitation in Italian Universities - (B) Experimental course of technological rehabilitation with computer tools - (C) Synthesis of technological approach - (D) Dampness diagnostic process using the Expert System - (E) Primary consideration on tutorial experience - (F) Bibliography
series eCAADe
last changed 2022/06/07 07:54

_id ce98
authors Anderson, Lee
year 1992
title Virtual Graffiti Three-Dimensional Paint Tools for Conceptual Modeling in Upfront
doi https://doi.org/10.52842/conf.acadia.1992.127
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 127-133
summary This chapter describes several limitations present in current 3-D programs used for conceptual design and then introduces a new threedimensional paint tool, as implemented in a beta version of Alias Upfront, that attempts to deal with some of those limitations.
series ACADIA
last changed 2022/06/07 07:54

_id 4129
authors Fargas, Josep and Papazian, Pegor
year 1992
title Metaphors in Design: An Experiment with a Frame, Two Lines and Two Rectangles
doi https://doi.org/10.52842/conf.acadia.1992.013
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 13-22
summary The research we will discuss below originated from an attempt to examine the capacity of designers to evaluate an artifact, and to study the feasibility of replicating a designer's moves intended to make an artifact more expressive of a given quality. We will present the results of an interactive computer experiment, first developed at the MIT Design Research Seminar, which is meant to capture the subject’s actions in a simple design task as a series of successive "moves"'. We will propose that designers use metaphors in their interaction with design artifacts and we will argue that the concept of metaphors can lead to a powerful theory of design activity. Finally, we will show how such a theory can drive the project of building a design system.

When trying to understand how designers work, it is tempting to examine design products in order to come up with the principles or norms behind them. The problem with such an approach is that it may lead to a purely syntactical analysis of design artifacts, failing to capture the knowledge of the designer in an explicit way, and ignoring the interaction between the designer and the evolving design. We will present a theory about design activity based on the observation that knowledge is brought into play during a design task by a process of interpretation of the design document. By treating an evolving design in terms of the meanings and rules proper to a given way of seeing, a designer can reduce the complexity of a task by focusing on certain of its aspects, and can manipulate abstract elements in a meaningful way.

series ACADIA
email
last changed 2022/06/07 07:55

_id 7ce5
authors Gal, Shahaf
year 1992
title Computers and Design Activities: Their Mediating Role in Engineering Education
source Sociomedia, ed. Edward Barret. MIT Press
summary Sociomedia: With all the new words used to describe electronic communication (multimedia, hypertext, cyberspace, etc.), do we need another one? Edward Barrett thinks we do; hence, he coins the term "sociomedia." It is meant to displace a computing economy in which technicity is hypostasized over sociality. Sociomedia, a compilation of twenty-five articles on the theory, design and practice of educational multimedia and hypermedia, attempts to re-value the communicational face of computing. Value, of course, is "ultimately a social construct." As such, it has everything to do with knowledge, power, education and technology. The projects discussed in this book represent the leading edge of electronic knowledge production in academia (not to mention major funding) and are determining the future of educational media. For these reasons, Sociomedia warrants close inspection. Barrett's introduction sets the tone. For him, designing computer media involves hardwiring a mechanism for the social construction of knowledge (1). He links computing to a process of social and communicative interactivity for constructing and desseminating knowledge. Through a mechanistic mapping of the university as hypercontext (a huge network that includes classrooms as well as services and offices), Barrett models intellectual work in such a way as to avoid "limiting definitions of human nature or human development." Education, then, can remain "where it should be--in the human domain (public and private) of sharing ideas and information through the medium of language." By leaving education in a virtual realm (where we can continue to disagree about its meaning and execution), it remains viral, mutating and contaminating in an intellectually healthy way. He concludes that his mechanistic model, by means of its reductionist approach, preserves value (7). This "value" is the social construction of knowledge. While I support the social orientation of Barrett's argument, discussions of value are related to power. I am not referring to the traditional teacher-student power structure that is supposedly dismantled through cooperative and constructivist learning strategies. The power to be reckoned with in the educational arena is foundational, that which (pre)determines value and the circulation of knowledge. "Since each of you reading this paragraph has a different perspective on the meaning of 'education' or 'learning,' and on the processes involved in 'getting an education,' think of the hybris in trying to capture education in a programmable function, in a displayable object, in a 'teaching machine'" (7). Actually, we must think about that hybris because it is, precisely, what informs teaching machines. Moreover, the basic epistemological premises that give rise to such productions are too often assumed. In the case of instructional design, the episteme of cognitive sciences are often taken for granted. It is ironic that many of the "postmodernists" who support electronic hypertextuality seem to have missed Jacques Derrida's and Michel Foucault's "deconstructions" of the epistemology underpinning cognitive sciences (if not of epistemology itself). Perhaps it is the glitz of the technology that blinds some users (qua developers) to the belief systems operating beneath the surface. Barrett is not guilty of reactionary thinking or politics; he is, in fact, quite in line with much American deconstructive and postmodern thinking. The problem arises in that he leaves open the definitions of "education," "learning" and "getting an education." One cannot engage in the production of new knowledge without orienting its design, production and dissemination, and without negotiating with others' orientations, especially where largescale funding is involved. Notions of human nature and development are structural, even infrastructural, whatever the medium of the teaching machine. Although he addresses some dynamics of power, money and politics when he talks about the recession and its effects on the conference, they are readily visible dynamics of power (3-4). Where does the critical factor of value determination, of power, of who gets what and why, get mapped onto a mechanistic model of learning institutions? Perhaps a mapping of contributors' institutions, of the funding sources for the projects showcased and for participation in the conference, and of the disciplines receiving funding for these sorts of projects would help visualize the configurations of power operative in the rising field of educational multimedia. Questions of power and money notwithstanding, Barrett's introduction sets the social and textual thematics for the collection of essays. His stress on interactivity, on communal knowledge production, on the society of texts, and on media producers and users is carried foward through the other essays, two of which I will discuss. Section I of the book, "Perspectives...," highlights the foundations, uses and possible consequences of multimedia and hypertextuality. The second essay in this section, "Is There a Class in This Text?," plays on the robust exchange surrounding Stanley Fish's book, Is There a Text in This Class?, which presents an attack on authority in reading. The author, John Slatin, has introduced electronic hypertextuality and interaction into his courses. His article maps the transformations in "the content and nature of work, and the workplace itself"-- which, in this case, is not industry but an English poetry class (25). Slatin discovered an increase of productive and cooperative learning in his electronically- mediated classroom. For him, creating knowledge in the electronic classroom involves interaction between students, instructors and course materials through the medium of interactive written discourse. These interactions lead to a new and persistent understanding of the course materials and of the participants' relation to the materials and to one another. The work of the course is to build relationships that, in my view, constitute not only the meaning of individual poems, but poetry itself. The class carries out its work in the continual and usually interactive production of text (31). While I applaud his strategies which dismantle traditional hierarchical structures in academia, the evidence does not convince me that the students know enough to ask important questions or to form a self-directing, learning community. Stanley Fish has not relinquished professing, though he, too, espouses the indeterminancy of the sign. By the fourth week of his course, Slatin's input is, by his own reckoning, reduced to 4% (39). In the transcript of the "controversial" Week 6 exchange on Gertrude Stein--the most disliked poet they were discussing at the time (40)--we see the blind leading the blind. One student parodies Stein for three lines and sums up his input with "I like it." Another, finds Stein's poetry "almost completey [sic] lacking in emotion or any artistic merit" (emphasis added). On what grounds has this student become an arbiter of "artistic merit"? Another student, after admitting being "lost" during the Wallace Steven discussion, talks of having more "respect for Stevens' work than Stein's" and adds that Stein's poetry lacks "conceptual significance[, s]omething which people of varied opinion can intelligently discuss without feeling like total dimwits...." This student has progressed from admitted incomprehension of Stevens' work to imposing her (groundless) respect for his work over Stein's. Then, she exposes her real dislike for Stein's poetry: that she (the student) missed the "conceptual significance" and hence cannot, being a person "of varied opinion," intelligently discuss it "without feeling like [a] total dimwit." Slatin's comment is frightening: "...by this point in the semester students have come to feel increasingly free to challenge the instructor" (41). The students that I have cited are neither thinking critically nor are their preconceptions challenged by student-governed interaction. Thanks to the class format, one student feels self-righteous in her ignorance, and empowered to censure. I believe strongly in student empowerment in the classroom, but only once students have accrued enough knowledge to make informed judgments. Admittedly, Slatin's essay presents only partial data (there are six hundred pages of course transcripts!); still, I wonder how much valuable knowledge and metaknowledge was gained by the students. I also question the extent to which authority and professorial dictature were addressed in this course format. The power structures that make it possible for a college to require such a course, and the choice of texts and pedagogy, were not "on the table." The traditional professorial position may have been displaced, but what took its place?--the authority of consensus with its unidentifiable strong arm, and the faceless reign of software design? Despite Slatin's claim that the students learned about the learning process, there is no evidence (in the article) that the students considered where their attitudes came from, how consensus operates in the construction of knowledge, how power is established and what relationship they have to bureaucratic insitutions. How do we, as teaching professionals, negotiate a balance between an enlightened despotism in education and student-created knowledge? Slatin, and other authors in this book, bring this fundamental question to the fore. There is no definitive answer because the factors involved are ultimately social, and hence, always shifting and reconfiguring. Slatin ends his article with the caveat that computerization can bring about greater estrangement between students, faculty and administration through greater regimentation and control. Of course, it can also "distribute authority and power more widely" (50). Power or authority without a specific face, however, is not necessarily good or just. Shahaf Gal's "Computers and Design Activities: Their Mediating Role in Engineering Education" is found in the second half of the volume, and does not allow for a theory/praxis dichotomy. Gal recounts a brief history of engineering education up to the introduction of Growltiger (GT), a computer-assisted learning aid for design. He demonstrates GT's potential to impact the learning of engineering design by tracking its use by four students in a bridge-building contest. What his text demonstrates clearly is that computers are "inscribing and imaging devices" that add another viewpoint to an on-going dialogue between student, teacher, earlier coursework, and other teaching/learning tools. The less proficient students made a serious error by relying too heavily on the technology, or treating it as a "blueprint provider." They "interacted with GT in a way that trusted the data to represent reality. They did not see their interaction with GT as a negotiation between two knowledge systems" (495). Students who were more thoroughly informed in engineering discourses knew to use the technology as one voice among others--they knew enough not simply to accept the input of the computer as authoritative. The less-advanced students learned a valuable lesson from the competition itself: the fact that their designs were not able to hold up under pressure (literally) brought the fact of their insufficient knowledge crashing down on them (and their bridges). They also had, post factum, several other designs to study, especially the winning one. Although competition and comparison are not good pedagogical strategies for everyone (in this case the competitors had volunteered), at some point what we think we know has to be challenged within the society of discourses to which it belongs. Students need critique in order to learn to push their learning into auto-critique. This is what is lacking in Slatin's discussion and in the writings of other avatars of constructivist, collaborative and computer-mediated pedagogies. Obviously there are differences between instrumental types of knowledge acquisition and discoursive knowledge accumulation. Indeed, I do not promote the teaching of reading, thinking and writing as "skills" per se (then again, Gal's teaching of design is quite discursive, if not dialogic). Nevertheless, the "soft" sciences might benefit from "bridge-building" competitions or the re-institution of some forms of agonia. Not everything agonistic is inhuman agony--the joy of confronting or creating a sound argument supported by defensible evidence, for example. Students need to know that soundbites are not sound arguments despite predictions that electronic writing will be aphoristic rather than periodic. Just because writing and learning can be conceived of hypertextually does not mean that rigor goes the way of the dinosaur. Rigor and hypertextuality are not mutually incompatible. Nor is rigorous thinking and hard intellectual work unpleasurable, although American anti-intellectualism, especially in the mass media, would make it so. At a time when the spurious dogmatics of a Rush Limbaugh and Holocaust revisionist historians circulate "aphoristically" in cyberspace, and at a time when knowledge is becoming increasingly textualized, the role of critical thinking in education will ultimately determine the value(s) of socially constructed knowledge. This volume affords the reader an opportunity to reconsider knowledge, power, and new communications technologies with respect to social dynamics and power relationships.
series other
last changed 2003/04/23 15:14

_id 6df3
authors Gross, Mark D. and Zimring, Craig
year 1992
title Predicting Wayfinding Behavior in Buildings : A Schema-Based Approach
source New York: John Wiley & Sons, 1992. pp. 367-377 : ill. includes bibliography
summary Postoccupancy evaluations of large buildings often reveal significant wayfinding problems caused by poor floor-plan layout. Predicting wayfinding problems early in the design process could avoid costly remodeling and make better buildings. However, we lack formal, predictive models of human wayfinding behavior. Computational models of wayfinding in buildings have addressed constructing a topological and geometric representations of the plan layout incrementally during exploration. The authors propose to combine this with a schema model of building memory. It is argued that people orient themselves and wayfind in new buildings using schemas, or generic expectations about building layout. In this paper the authors give their preliminary thoughts toward developing a computational model of wayfinding based on this approach
keywords wayfinding, evaluation, applications, architecture, floor plans, layout, building, prediction
series CADline
email
last changed 2002/09/05 15:02

_id 88ca
authors Kane, Andy and Szalapaj, Peter
year 1992
title Teaching Design By Analysis of Precedents
doi https://doi.org/10.52842/conf.ecaade.1992.477
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 477-496
summary Designers, using their intuitive understanding of the decomposition of particular design objects, whether in terms of structural, functional, or some other analytical framework, should be able to interact with computational environments such that the understanding they achieve in turn invokes changes or transformations to the spatial properties of design proposals. Decompositions and transformations of design precedents can be a very useful method of enabling design students to develop analytical strategies. The benefit of an analytical approach is that it can lead to a structured understanding of design precedents. This in turn allows students to develop their own insights and ideas which are central to the activity of designing. The creation of a 3-D library of user-defined models of precedents in a computational environment permits an under-exploited method of undertaking analysis, since by modelling design precedents through the construction of 3-D Computer-Aided Architectural Design (CAAD) models, and then analytically decomposing them in terms of relevant features, significant insights into the nature of designs can be achieved. Using CAAD systems in this way, therefore, runs counter to the more common approach of detailed modelling, rendering and animation; which produces realistic pictures that do not reflect the design thinking that went into their production. The significance of the analytical approach to design teaching is that it encourages students to represent design ideas, but not necessarily the final form of design objects. The analytical approach therefore, allows students to depict features and execute tasks that are meaningful with respect to design students' own knowledge of particular domains. Such computational interaction can also be useful in helping students explore the consequences of proposed actions in actual design contexts.
series eCAADe
last changed 2022/06/07 07:52

_id caadria2024_365
id caadria2024_365
authors Lahtinen, Aaro, Gardner, Nicole, Ramos Jaime, Cristina and Yu, Kuai
year 2024
title Visualising Sydney's Urban Green: A Web Interface for Monitoring Vegetation Coverage between 1992 and 2022 using Google Earth Engine
doi https://doi.org/10.52842/conf.caadria.2024.2.515
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 515–524
summary With continued population growth and urban expansion, the severity of environmental concerns within cities is likely to increase without proper urban ecosystem monitoring and management. Despite this, limited efforts have been made to effectively communicate the ecological value of urban vegetation to Architecture, Engineering and Construction (AEC) professionals concerned with mitigating these effects and improving urban liveability. In response, this research project proposes a novel framework for identifying and conveying historical changes to vegetation coverage within the Greater Sydney area between 1992 and 2022. The cloud-based geo-spatial analysis platform, Google Earth Engine (GEE), was used to construct an accurate land cover classification of Landsat imagery, allowing the magnitude, spatial configuration, and period of vegetation loss to be promptly identified. The outcomes of this analysis are represented through an intuitive web platform that facilitates a thorough understanding of the complex relationships between anthropogenic activities and vegetation coverage. A key finding indicated that recent developments in the Blacktown area had directly contributed to heightened land surface temperature, suggesting a reformed approach to urban planning is required to address climatic concerns appropriately. The developed web interface provides a unique method for AEC professionals to assess the effectiveness of past planning strategies, encouraging a multi-disciplinary approach to urban ecosystem management.
keywords Urban Vegetation, Web Interface, Landsat Imagery, Land Cover Classification, Google Earth Engine
series CAADRIA
email
last changed 2024/11/17 22:05

_id e8f0
authors Mackey, David L.
year 1992
title Mission Possible: Computer Aided Design for Everyone
doi https://doi.org/10.52842/conf.acadia.1992.065
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 65-73
summary A pragmatic model for the building of an electronic architectural design curriculum which will offer students and faculty the opportunity to fully integrate information age technologies into the educational experience is becoming increasingly desirable.

The majority of architectural programs teach technology topics through content specific courses which appear as an educational sequence within the curriculum. These technology topics have traditionally included structural design, environmental systems, and construction materials and methods. Likewise, that course model has been broadly applied to the teaching of computer aided design, which is identified as a technology topic. Computer technology has resulted in a proliferation of courses which similarly introduce the student to computer graphic and design systems through a traditional course structure.

Inevitably, competition for priority arises within the curriculum, introducing the potential risk that otherwise valuable courses and/or course content will be replaced by the "'newer" technology, and providing fertile ground for faculty and administrative resistance to computerization as traditional courses are pushed aside or seem threatened.

An alternative view is that computer technology is not a "topic", but rather the medium for creating a design (and studio) environment for informed decision making.... deciding what it is we should build. Such a viewpoint urges the development of a curricular structure, through which the impact of computer technology may be understood as that medium for design decision making, as the initial step in addressing the current and future needs of architectural education.

One example of such a program currently in place at the College of Architecture and Planning, Ball State University takes an approach which overlays, like a transparent tissue, the computer aided design content (or a computer emphasis) onto the primary curriculum.

With the exception of a general introductory course at the freshman level, computer instruction and content issues may be addressed effectively within existing studio courses. The level of operational and conceptual proficiency achieved by the student, within an electronic design studio, makes the electronic design environment selfsustaining and maintainable across the entire curriculum. The ability to broadly apply computer aided design to the educational experience can be independent of the availability of many specialized computer aided design faculty.

series ACADIA
last changed 2022/06/07 07:59

_id caadria2020_242
id caadria2020_242
authors Martin Iglesias, Rodrigo, Voto, Cristina and Agra, Rocío
year 2020
title Design in the Age of Dissident Cyborgs - Xenofuturism as caring-curing practices
doi https://doi.org/10.52842/conf.caadria.2020.2.233
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 233-240
summary This paper synthesizes several years of research in the field of the theory of architecture and design, and its subsequent undergraduate and graduate teaching. Specifically, it is a work that reflects on how architecture and design should face the three most important paradigmatic phenomena of our present and near future. Paradigms as things we think with, rather than as things we think about (Agamben, 2008), or in other words, it matters what ideas we use to think of other ideas (Strathern, 1992). These phenomena refer to environmental, technological and anthropological aspects, and the strategies to cope with them, involving alternate design thinking and practice in which futurabilities and futurizations depart from the displacement generated by post-utopian visions based on dissidence and subalternity.
keywords Chthulucene; Cyborg Design; Dissident Futures; Futurization; Xenofuturism
series CAADRIA
email
last changed 2022/06/07 07:59

_id bdbb
authors Pugh, D.
year 1992
title Designing solid objects using interactive sketch interpretation
source Computer Graphics (1992 Symposium on Interactive 3D Graphics), 25(2):117-126, Mar. 1992
summary Before the introduction of Computer Aided Design and solid modeling systems, designers had developed a set of techniques for designing solid objects by sketching their ideas on pencil and paper and refining them into workable designs. Unfortunately, these techniques are different from those for designing objects using a solid modeler. Not only does this waste avast reserve of talent and experience (people typically start drawing from the moment they can hold a crayon), but it also has a more fundamental problem: designers can use their intuition more effectively when sketching than they can when using a solid modeler. Viking is a solid modeling system whose user-interface is based on interactive sketch interpretation. Interactive sketch interpretation lets the designer create a line-drawing of a de- sired object while Viking generates a three-dimensional ob- ject description. This description is consistent with both the designer's line-drawing, and a set of geometric constraints either derived from the line-drawing or placed by the de- signer. Viking's object descriptions are fully compatible with the object descriptions used by traditional solid modelers. As a result, interactive sketch interpretation can be used with traditional solid modeling techniques, combining the advan- tages of both sketching and solid modeling.
series journal paper
last changed 2003/04/23 15:50

_id c93a
authors Saggio, Antonino
year 1992
title Object Based Modeling and Concept-Testing: A Framework for Studio Teaching
doi https://doi.org/10.52842/conf.acadia.1992.049
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 49-63
summary This chapter concludes with a proposal for a studio structure that incorporates computers as a creative stimulus in the design process. Three related experiences support this hypothesis: the role played in concrete designs by an Object Based Modeling environment, teaching with Computer Aided Architectural Design and OBM in the realm of documentation and analysis of architecture, previous applications of the Concept-Testing methodology in design studios. Examples from these three areas provide the framework for mutual support between OBM and a C-T approach for studio teaching. The central sections of the chapter focus on the analysis of these experiences, while the last section provides a 15 week, semester based, studio structure that incorporates OBM in the overall calendar and in key assignments.

series ACADIA
email
last changed 2022/06/07 07:56

_id 831d
authors Seebohm, Thomas
year 1992
title Discoursing on Urban History Through Structured Typologies
doi https://doi.org/10.52842/conf.acadia.1992.157
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 157-175
summary How can urban history be studied with the aid of three-dimensional computer modeling? One way is to model known cities at various times in history, using historical records as sources of data. While such studies greatly enhance the understanding of the form and structure of specific cities at specific points in time, it is questionable whether such studies actually provide a true understanding of history. It can be argued that they do not because such studies only show a record of one of many possible courses of action at various moments in time. To gain a true understanding of urban history one has to place oneself back in historical time to consider all of the possible courses of action which were open in the light of the then current situation of the city, to act upon a possible course of action and to view the consequences in the physical form of the city. Only such an understanding of urban history can transcend the memory of the actual and hence the behavior of the possible. Moreover, only such an understanding can overcome the limitations of historical relativism, which contends that historical fact is of value only in historical context, with the realization, due to Benedetto Croce and echoed by Rudolf Bultmann, that the horizon of "'deeper understanding" lies in "'the actuality of decision"' (Seebohm and van Pelt 1990).

One cannot conduct such studies on real cities except, perhaps, as a point of departure at some specific point in time to provide an initial layout for a city knowing that future forms derived by the studies will diverge from that recorded in history. An entirely imaginary city is therefore chosen. Although the components of this city at the level of individual buildings are taken from known cities in history, this choice does not preclude alternative forms of the city. To some degree, building types are invariants and, as argued in the Appendix, so are the urban typologies into which they may be grouped. In this imaginary city students of urban history play the role of citizens or groups of citizens. As they defend their interests and make concessions, while interacting with each other in their respective roles, they determine the nature of the city as it evolves through the major periods of Western urban history in the form of threedimensional computer models.

My colleague R.J. van Pelt and I presented this approach to the study of urban history previously at ACADIA (Seebohm and van Pelt 1990). Yet we did not pay sufficient attention to the manner in which such urban models should be structured and how the efforts of the participants should be coordinated. In the following sections I therefore review what the requirements are for three-dimensional modeling to support studies in urban history as outlined both from the viewpoint of file structure of the models and other viewpoints which have bearing on this structure. Three alternative software schemes of progressively increasing complexity are then discussed with regard to their ability to satisfy these requirements. This comparative study of software alternatives and their corresponding file structures justifies the present choice of structure in relation to the simpler and better known generic alternatives which do not have the necessary flexibility for structuring the urban model. Such flexibility means, of course, that in the first instance the modeling software is more timeconsuming to learn than a simple point and click package in accord with the now established axiom that ease of learning software tools is inversely related to the functional power of the tools. (Smith 1987).

series ACADIA
email
last changed 2022/06/07 07:56

_id 0ff4
authors Woodbury, R.F., Radford, A.D., Taplin, P.N. and Coppins, S.A.
year 1992
title Tartan Worlds: A Generative Symbol Grammar System
doi https://doi.org/10.52842/conf.acadia.1992.211
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 211-220
summary Tartan Worlds is a highly interactive, generative symbol grammar system that generates designs as two dimensional configurations of symbols on tartan grids. It operates with multiple graphical rule sets on multiple design worlds. Designers can operate directly on rules and worlds. In this chapter we will introduce the system Tartan Worlds as implemented on the Apple Macintosh.
series ACADIA
email
last changed 2022/06/07 07:57

_id a3f5
authors Zandi-Nia, Abolfazl
year 1992
title Topgene: An artificial Intelligence Approach to a Design Process
source Delft University of Technology
summary This work deals with two architectural design (AD) problems at the topological level and in presence of the social norms community, privacy, circulation-cost, and intervening opportunity. The first problem concerns generating a design with respect to a set of above mentioned norms, and the second problem requires evaluation of existing designs with respect to the same set of norms. Both problems are based on the structural-behavioral relationship in buildings. This work has challenged above problems in the following senses: (1) A working system, called TOPGENE (The TOpological Pattern GENErator) has been developed. (2) Both problems may be vague and may lack enough information in their statement. For example, an AD in the presence of the social norms requires the degrees of interactions between the location pairs in the building. This information is not always implicitly available, and must be explicated from the design data. (3) An AD problem at topological level is intractable with no fast and efficient algorithm for its solution. To reduce the search efforts in the process of design generation, TOPGENE uses a heuristic hill climbing strategy that takes advantage of domain specific rules of thumbs to choose a path in the search space of a design. (4) TOPGENE uses the Q-analysis method for explication of hidden information, also hierarchical clustering of location-pairs with respect to their flow generation potential as a prerequisite information for the heuristic reasoning process. (5) To deal with a design of a building at topological level TOPGENE takes advantage of existing graph algorithms such as path-finding and planarity testing during its reasoning process. This work also presents a new efficient algorithm for keeping track of distances in a growing graph. (6) This work also presents a neural net implementation of a special case of the design generation problem. This approach is based on the Hopfield model of neural networks. The result of this approach has been used test TOPGENE approach in generating designs. A comparison of these two approaches shows that the neural network provides mathematically more optimal designs, while TOPGENE produces more realistic designs. These two systems may be integrated to create a hybrid system.
series thesis:PhD
last changed 2003/02/12 22:37

_id 8540
authors Peitgen, H.-O., Jurgens, H. and Saupe, D.
year 1992
title Fractals for the Classroom :Part 2: Complex Systems and Mandelbrot Set.
source Springer-Verlag, New York
summary This second volume of strategic classroom activities is designed to develop, through a hands-on approach, a deeper mathematical understanding and greater appreciation of fractals and chaos. The concepts presented include iteration, chaos, and the Mandelbrot set.
series other
last changed 2003/04/23 15:14

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_619449 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002