CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 243

_id 7ce5
authors Gal, Shahaf
year 1992
title Computers and Design Activities: Their Mediating Role in Engineering Education
source Sociomedia, ed. Edward Barret. MIT Press
summary Sociomedia: With all the new words used to describe electronic communication (multimedia, hypertext, cyberspace, etc.), do we need another one? Edward Barrett thinks we do; hence, he coins the term "sociomedia." It is meant to displace a computing economy in which technicity is hypostasized over sociality. Sociomedia, a compilation of twenty-five articles on the theory, design and practice of educational multimedia and hypermedia, attempts to re-value the communicational face of computing. Value, of course, is "ultimately a social construct." As such, it has everything to do with knowledge, power, education and technology. The projects discussed in this book represent the leading edge of electronic knowledge production in academia (not to mention major funding) and are determining the future of educational media. For these reasons, Sociomedia warrants close inspection. Barrett's introduction sets the tone. For him, designing computer media involves hardwiring a mechanism for the social construction of knowledge (1). He links computing to a process of social and communicative interactivity for constructing and desseminating knowledge. Through a mechanistic mapping of the university as hypercontext (a huge network that includes classrooms as well as services and offices), Barrett models intellectual work in such a way as to avoid "limiting definitions of human nature or human development." Education, then, can remain "where it should be--in the human domain (public and private) of sharing ideas and information through the medium of language." By leaving education in a virtual realm (where we can continue to disagree about its meaning and execution), it remains viral, mutating and contaminating in an intellectually healthy way. He concludes that his mechanistic model, by means of its reductionist approach, preserves value (7). This "value" is the social construction of knowledge. While I support the social orientation of Barrett's argument, discussions of value are related to power. I am not referring to the traditional teacher-student power structure that is supposedly dismantled through cooperative and constructivist learning strategies. The power to be reckoned with in the educational arena is foundational, that which (pre)determines value and the circulation of knowledge. "Since each of you reading this paragraph has a different perspective on the meaning of 'education' or 'learning,' and on the processes involved in 'getting an education,' think of the hybris in trying to capture education in a programmable function, in a displayable object, in a 'teaching machine'" (7). Actually, we must think about that hybris because it is, precisely, what informs teaching machines. Moreover, the basic epistemological premises that give rise to such productions are too often assumed. In the case of instructional design, the episteme of cognitive sciences are often taken for granted. It is ironic that many of the "postmodernists" who support electronic hypertextuality seem to have missed Jacques Derrida's and Michel Foucault's "deconstructions" of the epistemology underpinning cognitive sciences (if not of epistemology itself). Perhaps it is the glitz of the technology that blinds some users (qua developers) to the belief systems operating beneath the surface. Barrett is not guilty of reactionary thinking or politics; he is, in fact, quite in line with much American deconstructive and postmodern thinking. The problem arises in that he leaves open the definitions of "education," "learning" and "getting an education." One cannot engage in the production of new knowledge without orienting its design, production and dissemination, and without negotiating with others' orientations, especially where largescale funding is involved. Notions of human nature and development are structural, even infrastructural, whatever the medium of the teaching machine. Although he addresses some dynamics of power, money and politics when he talks about the recession and its effects on the conference, they are readily visible dynamics of power (3-4). Where does the critical factor of value determination, of power, of who gets what and why, get mapped onto a mechanistic model of learning institutions? Perhaps a mapping of contributors' institutions, of the funding sources for the projects showcased and for participation in the conference, and of the disciplines receiving funding for these sorts of projects would help visualize the configurations of power operative in the rising field of educational multimedia. Questions of power and money notwithstanding, Barrett's introduction sets the social and textual thematics for the collection of essays. His stress on interactivity, on communal knowledge production, on the society of texts, and on media producers and users is carried foward through the other essays, two of which I will discuss. Section I of the book, "Perspectives...," highlights the foundations, uses and possible consequences of multimedia and hypertextuality. The second essay in this section, "Is There a Class in This Text?," plays on the robust exchange surrounding Stanley Fish's book, Is There a Text in This Class?, which presents an attack on authority in reading. The author, John Slatin, has introduced electronic hypertextuality and interaction into his courses. His article maps the transformations in "the content and nature of work, and the workplace itself"-- which, in this case, is not industry but an English poetry class (25). Slatin discovered an increase of productive and cooperative learning in his electronically- mediated classroom. For him, creating knowledge in the electronic classroom involves interaction between students, instructors and course materials through the medium of interactive written discourse. These interactions lead to a new and persistent understanding of the course materials and of the participants' relation to the materials and to one another. The work of the course is to build relationships that, in my view, constitute not only the meaning of individual poems, but poetry itself. The class carries out its work in the continual and usually interactive production of text (31). While I applaud his strategies which dismantle traditional hierarchical structures in academia, the evidence does not convince me that the students know enough to ask important questions or to form a self-directing, learning community. Stanley Fish has not relinquished professing, though he, too, espouses the indeterminancy of the sign. By the fourth week of his course, Slatin's input is, by his own reckoning, reduced to 4% (39). In the transcript of the "controversial" Week 6 exchange on Gertrude Stein--the most disliked poet they were discussing at the time (40)--we see the blind leading the blind. One student parodies Stein for three lines and sums up his input with "I like it." Another, finds Stein's poetry "almost completey [sic] lacking in emotion or any artistic merit" (emphasis added). On what grounds has this student become an arbiter of "artistic merit"? Another student, after admitting being "lost" during the Wallace Steven discussion, talks of having more "respect for Stevens' work than Stein's" and adds that Stein's poetry lacks "conceptual significance[, s]omething which people of varied opinion can intelligently discuss without feeling like total dimwits...." This student has progressed from admitted incomprehension of Stevens' work to imposing her (groundless) respect for his work over Stein's. Then, she exposes her real dislike for Stein's poetry: that she (the student) missed the "conceptual significance" and hence cannot, being a person "of varied opinion," intelligently discuss it "without feeling like [a] total dimwit." Slatin's comment is frightening: "...by this point in the semester students have come to feel increasingly free to challenge the instructor" (41). The students that I have cited are neither thinking critically nor are their preconceptions challenged by student-governed interaction. Thanks to the class format, one student feels self-righteous in her ignorance, and empowered to censure. I believe strongly in student empowerment in the classroom, but only once students have accrued enough knowledge to make informed judgments. Admittedly, Slatin's essay presents only partial data (there are six hundred pages of course transcripts!); still, I wonder how much valuable knowledge and metaknowledge was gained by the students. I also question the extent to which authority and professorial dictature were addressed in this course format. The power structures that make it possible for a college to require such a course, and the choice of texts and pedagogy, were not "on the table." The traditional professorial position may have been displaced, but what took its place?--the authority of consensus with its unidentifiable strong arm, and the faceless reign of software design? Despite Slatin's claim that the students learned about the learning process, there is no evidence (in the article) that the students considered where their attitudes came from, how consensus operates in the construction of knowledge, how power is established and what relationship they have to bureaucratic insitutions. How do we, as teaching professionals, negotiate a balance between an enlightened despotism in education and student-created knowledge? Slatin, and other authors in this book, bring this fundamental question to the fore. There is no definitive answer because the factors involved are ultimately social, and hence, always shifting and reconfiguring. Slatin ends his article with the caveat that computerization can bring about greater estrangement between students, faculty and administration through greater regimentation and control. Of course, it can also "distribute authority and power more widely" (50). Power or authority without a specific face, however, is not necessarily good or just. Shahaf Gal's "Computers and Design Activities: Their Mediating Role in Engineering Education" is found in the second half of the volume, and does not allow for a theory/praxis dichotomy. Gal recounts a brief history of engineering education up to the introduction of Growltiger (GT), a computer-assisted learning aid for design. He demonstrates GT's potential to impact the learning of engineering design by tracking its use by four students in a bridge-building contest. What his text demonstrates clearly is that computers are "inscribing and imaging devices" that add another viewpoint to an on-going dialogue between student, teacher, earlier coursework, and other teaching/learning tools. The less proficient students made a serious error by relying too heavily on the technology, or treating it as a "blueprint provider." They "interacted with GT in a way that trusted the data to represent reality. They did not see their interaction with GT as a negotiation between two knowledge systems" (495). Students who were more thoroughly informed in engineering discourses knew to use the technology as one voice among others--they knew enough not simply to accept the input of the computer as authoritative. The less-advanced students learned a valuable lesson from the competition itself: the fact that their designs were not able to hold up under pressure (literally) brought the fact of their insufficient knowledge crashing down on them (and their bridges). They also had, post factum, several other designs to study, especially the winning one. Although competition and comparison are not good pedagogical strategies for everyone (in this case the competitors had volunteered), at some point what we think we know has to be challenged within the society of discourses to which it belongs. Students need critique in order to learn to push their learning into auto-critique. This is what is lacking in Slatin's discussion and in the writings of other avatars of constructivist, collaborative and computer-mediated pedagogies. Obviously there are differences between instrumental types of knowledge acquisition and discoursive knowledge accumulation. Indeed, I do not promote the teaching of reading, thinking and writing as "skills" per se (then again, Gal's teaching of design is quite discursive, if not dialogic). Nevertheless, the "soft" sciences might benefit from "bridge-building" competitions or the re-institution of some forms of agonia. Not everything agonistic is inhuman agony--the joy of confronting or creating a sound argument supported by defensible evidence, for example. Students need to know that soundbites are not sound arguments despite predictions that electronic writing will be aphoristic rather than periodic. Just because writing and learning can be conceived of hypertextually does not mean that rigor goes the way of the dinosaur. Rigor and hypertextuality are not mutually incompatible. Nor is rigorous thinking and hard intellectual work unpleasurable, although American anti-intellectualism, especially in the mass media, would make it so. At a time when the spurious dogmatics of a Rush Limbaugh and Holocaust revisionist historians circulate "aphoristically" in cyberspace, and at a time when knowledge is becoming increasingly textualized, the role of critical thinking in education will ultimately determine the value(s) of socially constructed knowledge. This volume affords the reader an opportunity to reconsider knowledge, power, and new communications technologies with respect to social dynamics and power relationships.
series other
last changed 2003/04/23 15:14

_id 91c4
authors Checkland, P.
year 1981
title Systems Thinking, Systems Practice
source John Wiley & Sons, Chichester
summary Whether by design, accident or merely synchronicity, Checkland appears to have developed a habit of writing seminal publications near the start of each decade which establish the basis and framework for systems methodology research for that decade."" Hamish Rennie, Journal of the Operational Research Society, 1992 Thirty years ago Peter Checkland set out to test whether the Systems Engineering (SE) approach, highly successful in technical problems, could be used by managers coping with the unfolding complexities of organizational life. The straightforward transfer of SE to the broader situations of management was not possible, but by insisting on a combination of systems thinking strongly linked to real-world practice Checkland and his collaborators developed an alternative approach - Soft Systems Methodology (SSM) - which enables managers of all kinds and at any level to deal with the subtleties and confusions of the situations they face. This work established the now accepted distinction between hard systems thinking, in which parts of the world are taken to be systems which can be engineered, and soft systems thinking in which the focus is on making sure the process of inquiry into real-world complexity is itself a system for learning. Systems Thinking, Systems Practice (1981) and Soft Systems Methodology in Action (1990) together with an earlier paper Towards a Systems-based Methodology for Real-World Problem Solving (1972) have long been recognized as classics in the field. Now Peter Checkland has looked back over the three decades of SSM development, brought the account of it up to date, and reflected on the whole evolutionary process which has produced a mature SSM. SSM: A 30-Year Retrospective, here included with Systems Thinking, Systems Practice closes a chapter on what is undoubtedly the most significant single research programme on the use of systems ideas in problem solving. Now retired from full-time university work, Peter Checkland continues his research as a Leverhulme Emeritus Fellow. "
series other
last changed 2003/04/23 15:14

_id caadria2004_k-1
id caadria2004_k-1
authors Kalay, Yehuda E.
year 2004
title CONTEXTUALIZATION AND EMBODIMENT IN CYBERSPACE
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 5-14
doi https://doi.org/10.52842/conf.caadria.2004.005
summary The introduction of VRML (Virtual Reality Markup Language) in 1994, and other similar web-enabled dynamic modeling software (such as SGI’s Open Inventor and WebSpace), have created a rush to develop on-line 3D virtual environments, with purposes ranging from art, to entertainment, to shopping, to culture and education. Some developers took their cues from the science fiction literature of Gibson (1984), Stephenson (1992), and others. Many were web-extensions to single-player video games. But most were created as a direct extension to our new-found ability to digitally model 3D spaces and to endow them with interactive control and pseudo-inhabitation. Surprisingly, this technologically-driven stampede paid little attention to the core principles of place-making and presence, derived from architecture and cognitive science, respectively: two principles that could and should inform the essence of the virtual place experience and help steer its development. Why are the principles of place-making and presence important for the development of virtual environments? Why not simply be content with our ability to create realistically-looking 3D worlds that we can visit remotely? What could we possibly learn about making these worlds better, had we understood the essence of place and presence? To answer these questions we cannot look at place-making (both physical and virtual) from a 3D space-making point of view alone, because places are not an end unto themselves. Rather, places must be considered a locus of contextualization and embodiment that ground human activities and give them meaning. In doing so, places acquire a meaning of their own, which facilitates, improves, and enriches many aspects of our lives. They provide us with a means to interpret the activities of others and to direct our own actions. Such meaning is comprised of the social and cultural conceptions and behaviors imprinted on the environment by the presence and activities of its inhabitants, who in turn, ‘read’ by them through their own corporeal embodiment of the same environment. This transactional relationship between the physical aspects of an environment, its social/cultural context, and our own embodiment of it, combine to create what is known as a sense of place: the psychological, physical, social, and cultural framework that helps us interpret the world around us, and directs our own behavior in it. In turn, it is our own (as well as others’) presence in that environment that gives it meaning, and shapes its social/cultural character. By understanding the essence of place-ness in general, and in cyberspace in particular, we can create virtual places that can better support Internet-based activities, and make them equal to, in some cases even better than their physical counterparts. One of the activities that stands to benefit most from understanding the concept of cyber-places is learning—an interpersonal activity that requires the co-presence of others (a teacher and/or fellow learners), who can point out the difference between what matters and what does not, and produce an emotional involvement that helps students learn. Thus, while many administrators and educators rush to develop webbased remote learning sites, to leverage the economic advantages of one-tomany learning modalities, these sites deprive learners of the contextualization and embodiment inherent in brick-and-mortar learning institutions, and which are needed to support the activity of learning. Can these qualities be achieved in virtual learning environments? If so, how? These are some of the questions this talk will try to answer by presenting a virtual place-making methodology and its experimental implementation, intended to create a sense of place through contextualization and embodiment in virtual learning environments.
series CAADRIA
type normal paper
last changed 2022/06/07 07:52

_id ddss9208
id ddss9208
authors Lucardie, G.L.
year 1993
title A functional approach to realizing decision support systems in technical regulation management for design and construction
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary Technical building standards defining the quality of buildings, building products, building materials and building processes aim to provide acceptable levels of safety, health, usefulness and energy consumption. However, the logical consistency between these goals and the set of regulations produced to achieve them is often hard to identify. Not only the large quantities of highly complex and frequently changing building regulations to be met, but also the variety of user demands and the steadily increasing technical information on (new) materials, products and buildings have produced a very complex set of knowledge and data that should be taken into account when handling technical building regulations. Integrating knowledge technology and database technology is an important step towards managing the complexity of technical regulations. Generally, two strategies can be followed to integrate knowledge and database technology. The main emphasis of the first strategy is on transferring data structures and processing techniques from one field of research to another. The second approach is concerned exclusively with the semantic structure of what is contained in the data-based or knowledge-based system. The aim of this paper is to show that the second or knowledge-level approach, in particular the theory of functional classifications, is more fundamental and more fruitful. It permits a goal-directed rationalized strategy towards analysis, use and application of regulations. Therefore, it enables the reconstruction of (deep) models of regulations, objects and of users accounting for the flexibility and dynamics that are responsible for the complexity of technical regulations. Finally, at the systems level, the theory supports an effective development of a new class of rational Decision Support Systems (DSS), which should reduce the complexity of technical regulations and restore the logical consistency between the goals of technical regulations and the technical regulations themselves.
series DDSS
last changed 2003/08/07 16:36

_id caadria2020_242
id caadria2020_242
authors Martin Iglesias, Rodrigo, Voto, Cristina and Agra, Rocío
year 2020
title Design in the Age of Dissident Cyborgs - Xenofuturism as caring-curing practices
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 233-240
doi https://doi.org/10.52842/conf.caadria.2020.2.233
summary This paper synthesizes several years of research in the field of the theory of architecture and design, and its subsequent undergraduate and graduate teaching. Specifically, it is a work that reflects on how architecture and design should face the three most important paradigmatic phenomena of our present and near future. Paradigms as things we think with, rather than as things we think about (Agamben, 2008), or in other words, it matters what ideas we use to think of other ideas (Strathern, 1992). These phenomena refer to environmental, technological and anthropological aspects, and the strategies to cope with them, involving alternate design thinking and practice in which futurabilities and futurizations depart from the displacement generated by post-utopian visions based on dissidence and subalternity.
keywords Chthulucene; Cyborg Design; Dissident Futures; Futurization; Xenofuturism
series CAADRIA
email
last changed 2022/06/07 07:59

_id b2f9
id b2f9
authors Bhzad Sidawi and Neveen Hamza
year 2012
title INTELLIGENT KNOWLEDGE-BASED REPOSITORY TO SUPPORT INFORMED DESIGN DECISION MAKING
source ITCON journal
summary Research highlights that architectural design is a social phenomenon that is underpinned by critical analysis of design precedents and the social interaction between designers including negotiation, collaboration and communication. CAAD systems are continuously developing as essential design tools in formulating and developing ideas. Researchers such as (Rosenman, Gero and Oxman 1992) have suggested suggest that knowledge based systems can be integrated with CAAD systems to provide design knowledge that would enable recalling design precedents that maybe linked to the design constraints. Currently CAAD systems are user centric being focused on architects rather than the end product. The systems provide limited assistance in the production of innovative design. Furthermore, the attention of the designers of knowledge based systems is providing a repository rather than a system that is capable to initiate innovation. Most of the CAAD systems have web communication tools that enable designers to communicate their design ideas with colleagues and partners in business. However, none of these systems have the capability to capture useful knowledge from the design negotiations. Students of the third to fifth year at College of Architecture, University of Dammam were surveyed and interviewed to find out how far design tools, communications and resources would impact the production of innovative design projects. The survey results show that knowledge extracted from design negotiations would impact the innovative design outcome. It highlights also that present design precedents are not very helpful and design negotiations between students, tutors and other students are not documented thus fully incorporated into the design scheme. The paper argues that the future CAAD systems should be capable to recognize innovative design precedents, and incorporate knowledge that is resulted from design negotiations. This would help students to gain a critical mass of knowledge that would underpin informed design decisions.
series journal paper
type normal paper
email
more http://www.itcon.org/cgi-bin/works/Show?2012_20
last changed 2012/09/19 13:41

_id 4857
authors Escola Tecnica Superior D'arquitectura de Barcelona (Ed.)
year 1992
title CAAD Instruction: The New Teaching of an Architect?
source eCAADe Conference Proceedings / Barcelona (Spain) 12-14 November 1992, 551 p.
doi https://doi.org/10.52842/conf.ecaade.1992
summary The involvement of computer graphic systems in the transmission of knowledge in the areas of urban planning and architectural design will bring a significant change to the didactic programs and methods of those schools which have decided to adopt these new instruments. Workshops of urban planning and architectural design will have to modify their structures, and teaching teams will have to revise their current programs. Some european schools and faculties of architecture have taken steps in this direction. Others are willing to join them.

This process is only delayed by the scarcity of material resources, and by the slowness with which a sufficient number of teachers are adopting these methods.

ECAADE has set out to analyze the state of this issue during its next conference, and it will be discussed from various points of view. From this confrontation of ideas will come, surely, the guidelines for progress in the years to come.

The different sessions will be grouped together following these four themes:

(A.) Multimedia and Course Work / State of the art of the synthesis of graphical and textual information favored by new available multimedia computer programs. Their repercussions on academic programs. (B.) The New Design Studio / Physical characteristics, data concentration and accessibility of a computerized studio can be better approached in a computerized workshop. (C.) How to manage the new education system / Problems and possibilities raised, from the practical and organizational points of view, of architectural education by the introduction of computers in the classrooms. (D.) CAAI. Formal versus informal structure / How will the traditional teaching structure be affected by the incidence of these new systems in which the access to knowledge and information can be obtained in a random way and guided by personal and subjective criteria.

series eCAADe
email
last changed 2022/06/07 07:49

_id 4129
authors Fargas, Josep and Papazian, Pegor
year 1992
title Metaphors in Design: An Experiment with a Frame, Two Lines and Two Rectangles
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 13-22
doi https://doi.org/10.52842/conf.acadia.1992.013
summary The research we will discuss below originated from an attempt to examine the capacity of designers to evaluate an artifact, and to study the feasibility of replicating a designer's moves intended to make an artifact more expressive of a given quality. We will present the results of an interactive computer experiment, first developed at the MIT Design Research Seminar, which is meant to capture the subject’s actions in a simple design task as a series of successive "moves"'. We will propose that designers use metaphors in their interaction with design artifacts and we will argue that the concept of metaphors can lead to a powerful theory of design activity. Finally, we will show how such a theory can drive the project of building a design system.

When trying to understand how designers work, it is tempting to examine design products in order to come up with the principles or norms behind them. The problem with such an approach is that it may lead to a purely syntactical analysis of design artifacts, failing to capture the knowledge of the designer in an explicit way, and ignoring the interaction between the designer and the evolving design. We will present a theory about design activity based on the observation that knowledge is brought into play during a design task by a process of interpretation of the design document. By treating an evolving design in terms of the meanings and rules proper to a given way of seeing, a designer can reduce the complexity of a task by focusing on certain of its aspects, and can manipulate abstract elements in a meaningful way.

series ACADIA
email
last changed 2022/06/07 07:55

_id 4b2a
id 4b2a
authors Jabi, Wassim
year 2004
title A FRAMEWORK FOR COMPUTER-SUPPORTED COLLABORATION IN ARCHITECTURAL DESIGN
source University of Michigan
summary The development of appropriate research frameworks and guidelines for the construction of software aids in the area of architectural design can lead to a better understanding of designing and computer support for designing (Gero and Maher 1997). The field of research and development in computer-supported collaborative architectural design reflects that of the early period in the development of the field of computersupported cooperative work (CSCW). In the early 1990s, the field of CSCW relied on unsystematic attempts to generate software that increases the productivity of people working together (Robinson 1992). Furthermore, a shift is taking place by which researchers in the field of architecture are increasingly becoming consumers of rather than innovators of technology (Gero and Maher . In particular, the field of architecture is rapidly becoming dependent on commercial software implementations that are slow to respond to new research or to user demands. Additionally, these commercial systems force a particular view of the domain they serve and as such might hinder rather than help its development. The aim of this dissertation is to provide information to architects and others to help them build their own tools or, at a minimum, be critical of commercial solutions.
series thesis:PhD
type normal paper
email
last changed 2004/10/24 22:35

_id 8b12
authors Manning, Peter and Mattar, Samir
year 1992
title A Preliminary to Development of Expert Systems for Total Design of Entire Buildings
source New York: John Wiley & Sons, 1992. pp. 215-237 : tables. includes bibliography
summary This paper has two primary objectives. The first is to represent the practicability of making the design of entire buildings a conscious, craftsman-like, activity conducted in the clear, without the mystery that tends, because of designers' usual 'black box' methods, to surround it. To this end, a design strategy and some tactics for resolving decisions at critical stages in the design process, which the authors have described elsewhere, are recapitulated to show how total design of buildings can be pursued in a generic manner. This done, the way is opened for the second objective: to make the large and important field of work that is building design amenable to computerization. The form that pursuit of this second objective is taking is being influenced greatly by growing interest in expert systems, which for everyday professional building design appears a more useful development than previous CAD emphases on drafting and graphics. Application of the authors' design methods to a series of expert systems for the total design of entire buildings is therefore indicated. For such a vast project--the formulation of bases for design assistance and expert systems that can be integrated and used as a generic method for the total design of entire buildings, so that the results are more certain and successful than the outcome of the generality of present-day building design--the most that can be attempted within the limits of a single paper is a set of examples of some of the stages in the process. Nevertheless, since the design method described begins at the 'large end' of the process, where the most consequential decisions are made, it is hoped that the major thrusts and the essential CAD activities will be evident. All design is substantially iterative, and provided that the major iterations are intelligible, there should be no need for this demonstration to labor over the lesser ones
keywords evaluation, integration, architecture, building, expert systems, design methods, design process
series CADline
last changed 2003/06/02 13:58

_id 6208
authors Abou-Jaoude, Georges
year 1992
title To Master a Tool
source Proceedings of the 4rd European Full-Scale Modelling Conference / Lausanne (Switzerland) 9-12 September 1992, Part B, p. 15
summary The tool here is the computer or to be precise, a unit that includes the computer, the peripherals and the software needed to fulfill a task. These tools are getting very sophisticated and user interfaces extremly friendly, therefore it is very easy to become the slave of such electronic tools and reach self satisfaction with strait forward results and attractive images. In order to master and not to become slaves of sophisticated tools, a very solid knowledge of related fields or domains of application becomes necessary. In the case of this seminar, full scale modelling, is a way to understand the relation between a mental model and it's full-scale modelling, it is a way of communicating what is in a designers mind. Computers and design programs can have the same goal, rather than chosing one method or the other let us try to say how important it is today to complement designing with computer with other means and media such as full scale modelling, and what computer modelling and simulation can bring to full scale modelling or other means.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
more http://info.tuwien.ac.at/efa
last changed 2003/08/25 10:12

_id 6ea4
authors Eastman, C.M.
year 1992
title A Data Model Analysis of Modularity and Extensibility in Building Databases
source Building and Environment, Vol 27, No: 2, pp. 135-148
summary This paper uses data modeling techniques to define how database schemas for an intelligent integrated architectural CAD system can be made extensible. It reviews the product data modeling language EDM, then applies it to define a part of an architectural data model. Extensions are then investigated, regarding how users could integrate various design-specific packages into a uniquely configured system. Both, extension by substituting one technology for another and by adding a new evaluation application, are considered. Data modeling allows specification of a CAD database and identification of the kind of modularization that will work and what problems may arise.''
series journal paper
email
last changed 2003/04/23 15:14

_id e8f0
authors Mackey, David L.
year 1992
title Mission Possible: Computer Aided Design for Everyone
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 65-73
doi https://doi.org/10.52842/conf.acadia.1992.065
summary A pragmatic model for the building of an electronic architectural design curriculum which will offer students and faculty the opportunity to fully integrate information age technologies into the educational experience is becoming increasingly desirable.

The majority of architectural programs teach technology topics through content specific courses which appear as an educational sequence within the curriculum. These technology topics have traditionally included structural design, environmental systems, and construction materials and methods. Likewise, that course model has been broadly applied to the teaching of computer aided design, which is identified as a technology topic. Computer technology has resulted in a proliferation of courses which similarly introduce the student to computer graphic and design systems through a traditional course structure.

Inevitably, competition for priority arises within the curriculum, introducing the potential risk that otherwise valuable courses and/or course content will be replaced by the "'newer" technology, and providing fertile ground for faculty and administrative resistance to computerization as traditional courses are pushed aside or seem threatened.

An alternative view is that computer technology is not a "topic", but rather the medium for creating a design (and studio) environment for informed decision making.... deciding what it is we should build. Such a viewpoint urges the development of a curricular structure, through which the impact of computer technology may be understood as that medium for design decision making, as the initial step in addressing the current and future needs of architectural education.

One example of such a program currently in place at the College of Architecture and Planning, Ball State University takes an approach which overlays, like a transparent tissue, the computer aided design content (or a computer emphasis) onto the primary curriculum.

With the exception of a general introductory course at the freshman level, computer instruction and content issues may be addressed effectively within existing studio courses. The level of operational and conceptual proficiency achieved by the student, within an electronic design studio, makes the electronic design environment selfsustaining and maintainable across the entire curriculum. The ability to broadly apply computer aided design to the educational experience can be independent of the availability of many specialized computer aided design faculty.

series ACADIA
last changed 2022/06/07 07:59

_id 6f8a
authors Pittioni, Gernot
year 1992
title Concepts of CAAD-Instruction
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 363-376
doi https://doi.org/10.52842/conf.ecaade.1992.363
summary Today we can look back on several years of data processing support in architecture. When computer aided architectural design - CAAD - entered the field there was a lot of utter confusion in the beginning, a lot more than usually in other more technical application-fields of CAD. The architect is a very special CAD-user, as he is a very special member of all those other very analytical and scientific faculties around. There is a lot of tradition involved, tradition that has got its roots far back in medieval and classic periods and is rich of art and creativity and intuition. Mostly lots more of this than scientific analysis, exact research, and similar stuff. We could spot a large number of architects who would have been horrified when they are confronted with the analytic research of the very basic problem as how architects are designing - the methods, the procedures and the ways of thinking. And there CAAD was entering the architects' studios. No question that this caused a lot of trouble. CAD in architecture is a very provoking subject as the new tool is going to gain ground against the tradition of centuries of handmade architectural designs and drawings. And there we don't even touch the future aspects of the computer's architectural design support - what about the imminent threat of computer support in the holy domain of architectural creativity and intuition. What about the uneasy idea of CAAD in connection with artificial intelligence? The problem of CAAD-education has been largely neglected through a number of years. If there existed a certain horror looking at the mere idea of CAD-support in architecture, horror became to outrage, when university education was discussed. In our days we can stay a good deal more relaxed, when we speak of CAAD education - we not only got used to it, we are convinced, that the whole subject is of high importance.

keywords Concepts of Education
series eCAADe
email
last changed 2022/06/07 08:00

_id 0ca0
authors Späti, Jürg and Van Zutphen, R.H.M.
year 1992
title Form And Performance in Design Education (Basic Architectural Unit 5)
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 535-542
doi https://doi.org/10.52842/conf.ecaade.1992.535
summary There are some fundamental issues in todays architectural education which seem important yet very hard to achieve. One of this issues is the interdependence between design and technology. There is one group in architectural education which beliefs that the question of how to conceive (arch.) and how to construct (arch.) are interdependent. Consequently in this line of thinking the design concept requires verification on a technological level. The second issue which has often been debated is performance. Related to it is a line of thinking which is not satisfied with the formal issues of design - and how it looks, but wants to carry design to point where you also know - what it does and with it how much it costs. Cost-consciousness is the final issue addressed. We all know that there are limits to what a school can do or what a school can be. And, there is an essential difference between practise and education. Yet at the same time the argument is that only consciousness is required thus leading to the basic understanding that form performance and costs are interrelated and interdependent issues in architectural design.

series eCAADe
email
last changed 2022/06/07 07:56

_id avocaad_2001_17
id avocaad_2001_17
authors Ying-Hsiu Huang, Yu-Tung Liu, Cheng-Yuan Lin, Yi-Ting Cheng, Yu-Chen Chiu
year 2001
title The comparison of animation, virtual reality, and scenario scripting in design process
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Design media is a fundamental tool, which can incubate concrete ideas from ambiguous concepts. Evolved from freehand sketches, physical models to computerized drafting, modeling (Dave, 2000), animations (Woo, et al., 1999), and virtual reality (Chiu, 1999; Klercker, 1999; Emdanat, 1999), different media are used to communicate to designers or users with different conceptual levels¡@during the design process. Extensively employed in design process, physical models help designers in managing forms and spaces more precisely and more freely (Millon, 1994; Liu, 1996).Computerized drafting, models, animations, and VR have gradually replaced conventional media, freehand sketches and physical models. Diversely used in the design process, computerized media allow designers to handle more divergent levels of space than conventional media do. The rapid emergence of computers in design process has ushered in efforts to the visual impact of this media, particularly (Rahman, 1992). He also emphasized the use of computerized media: modeling and animations. Moreover, based on Rahman's study, Bai and Liu (1998) applied a new design media¡Xvirtual reality, to the design process. In doing so, they proposed an evaluation process to examine the visual impact of this new media in the design process. That same investigation pointed towards the facilitative role of the computerized media in enhancing topical comprehension, concept realization, and development of ideas.Computer technology fosters the growth of emerging media. A new computerized media, scenario scripting (Sasada, 2000; Jozen, 2000), markedly enhances computer animations and, in doing so, positively impacts design processes. For the three latest media, i.e., computerized animation, virtual reality, and scenario scripting, the following question arises: What role does visual impact play in different design phases of these media. Moreover, what is the origin of such an impact? Furthermore, what are the similarities and variances of computing techniques, principles of interaction, and practical applications among these computerized media?This study investigates the similarities and variances among computing techniques, interacting principles, and their applications in the above three media. Different computerized media in the design process are also adopted to explore related phenomenon by using these three media in two projects. First, a renewal planning project of the old district of Hsinchu City is inspected, in which animations and scenario scripting are used. Second, the renewal project is compared with a progressive design project for the Hsinchu Digital Museum, as designed by Peter Eisenman. Finally, similarity and variance among these computerized media are discussed.This study also examines the visual impact of these three computerized media in the design process. In computerized animation, although other designers can realize the spatial concept in design, users cannot fully comprehend the concept. On the other hand, other media such as virtual reality and scenario scripting enable users to more directly comprehend what the designer's presentation.Future studies should more closely examine how these three media impact the design process. This study not only provides further insight into the fundamental characteristics of the three computerized media discussed herein, but also enables designers to adopt different media in the design stages. Both designers and users can more fully understand design-related concepts.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 2325
authors Chilton, John C.
year 1992
title Computer Aided Structural Design in Architectural Instruction
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 443-450
doi https://doi.org/10.52842/conf.ecaade.1992.443
summary In schools of architecture there is a tendency to associate the use of computers solely with the production of graphic images as part of the architectural design process. However, if the architecture is to work as a building it is also essential that technical aspects of the design are adequately investigated. One of the problem areas for most architectural students is structural design and they are often reluctant to use hand calculations to determine sizes of structural elements within their projects. In recent years, much of the drudgery of hand calculation has been removed from the engineer by the use of computers, and this has, hopefully, allowed a more thorough investigation of conceptual ideas and alternatives. The same benefit is now becoming available to architectural students. This is in the form of structural analysis and design programs that can be used, even by those having a limited knowledge of structural engineering, to assess the stability of designs and obtain approximate sizes for individual structural elements. The paper discusses how the use of such programs is taught, within the School of Architecture at Nottingham. Examples will be given of how they can assist students in the architectural design process. In particular, the application of GLULAM, a program for estimating sizes of laminated timber elements and SAND, a structural analysis and design package, will be described.
series eCAADe
last changed 2022/06/07 07:55

_id 68c8
authors Flemming, U., Coyne, R. and Fenves, S. (et al.)
year 1994
title SEED: A Software Environment to Support the Early Phases in Building Design
source Proceeding of IKM '94, Weimar, Germany, pp. 5-10
summary The SEED project intends to develop a software environment that supports the early phases in building design (Flemming et al., 1993). The goal is to provide support, in principle, for the preliminary design of buildings in all aspects that can gain from computer support. This includes using the computer not only for analysis and evaluation, but also more actively for the generation of designs, or more accurately, for the rapid generation of design representations. A major motivation for the development of SEED is to bring the results of two multi-generational research efforts focusing on `generative' design systems closer to practice: 1. LOOS/ABLOOS, a generative system for the synthesis of layouts of rectangles (Flemming et al., 1988; Flemming, 1989; Coyne and Flemming, 1990; Coyne, 1991); 2. GENESIS, a rule-based system that supports the generation of assemblies of 3-dimensional solids (Heisserman, 1991; Heisserman and Woodbury, 1993). The rapid generation of design representations can take advantage of special opportunities when it deals with a recurring building type, that is, a building type dealt with frequently by the users of the system. Design firms - from housing manufacturers to government agencies - accumulate considerable experience with recurring building types. But current CAD systems capture this experience and support its reuse only marginally. SEED intends to provide systematic support for the storing and retrieval of past solutions and their adaptation to similar problem situations. This motivation aligns aspects of SEED closely with current work in Artificial Intelligence that focuses on case-based design (see, for example, Kolodner, 1991; Domeshek and Kolodner, 1992; Hua et al., 1992).
series other
email
last changed 2003/04/23 15:14

_id ddss9214
id ddss9214
authors Friedman, A.
year 1993
title A decision-making process for choice of a flexible internal partition option in multi-unit housing using decision theory techniques
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary Recent demographic changes have increased the heterogeneity of user groups in the North American housing market. Smaller households (e.g. elderly, single parent) have non-traditional spatial requirements that cannot be accommodated within the conventional house layout. This has created renewed interest in Demountable/Flexible internal partition systems. However, the process by which designers decide which project or user groups are most suited for the use of these systems is quite often complex, non-linear, uncertain and dynamic, since the decisions involve natural processes and human values that are apparently random. The anonymity of users when mass housing projects are conceptualized, and the uncertainty as to the alternative to be selected by the user, given his/her constantly changing needs, are some contributing factors to this effect. Decision Theory techniques, not commonly used by architects, can facilitate the decision-making process through a systematic evaluation of alternatives by means of quantitative methods in order to reduce uncertainty in probabilistic events or in cases when data is insufficient. The author used Decision Theory in the selection of flexible partition systems. The study involved a multi-unit, privately initiated housing project in Montreal, Canada, where real site conditions and costs were used. In this paper, the author outlines the fundamentals of Decision Theory and demonstrates the use of Expected Monetary Value and Weighted Objective Analysis methods and their outcomes in the design of a Montreal housing project. The study showed that Decision Theory can be used as an effective tool in housing design once the designer knows how to collect basic data.
series DDSS
last changed 2003/08/07 16:36

_id 7e68
authors Holland, J.
year 1992
title Genetic Algorithms
source Scientific America, July 1992
summary Living organisms are consummate problem solvers. They exhibit a versatility that puts the best computer programs to shame. This observation is especially galling for computer scientists, who may spend months or years of intellectual effort on an algorithm, whereas organisms come by their abilities through the apparently undirected mechanism of evolution and natural selection. Pragmatic researchers see evolution's remarkable power as something to be emulated rather than envied. Natural selection eliminates one of the greatest hurdles in software design: specifying in advance all the features of a problem and the actions a program should take to deal with them. By harnessing the mechanisms of evolution, researchers may be able to "breed" programs that solve problems even when no person can fully understand their structure. Indeed, these so-called genetic algorithms have already demonstrated the ability to made breakthroughs in the design of such complex systems as jet engines. Genetic algorithms make it possible to explore a far greater range of potential solutions to a problem than do conventional programs. Furthermore, as researchers probe the natural selection of programs under controlled an well-understood conditions, the practical results they achieve may yield some insight into the details of how life and intelligence evolve in the natural world.
series journal paper
last changed 2003/04/23 15:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 12HOMELOGIN (you are user _anon_965090 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002