CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 252

_id aa67
authors Pimentel K. and Teixeira K.
year 1993
title Virtual Reality through the New Looking Glass
source Windcrest, NY
summary The revised edition of a 22,000-copy bestseller, much-praised as an authoritative, easy-to-understand overview of virtual reality. VR allows people to experience computer-generated worlds. Since the publication of the first edition of this book, VR has gone more mainstream. This edition covers the latest in VR applications, developments at VR companies, and up-to-the-minute information on Pentium-based VR systems.
series other
last changed 2003/04/23 15:14

_id aa7f
authors Bollinger, Elizabeth and Hill, Pamela
year 1993
title Virtual Reality: Technology of the Future or Playground of the Cyberpunk?
doi https://doi.org/10.52842/conf.acadia.1993.121
source Education and Practice: The Critical Interface [ACADIA Conference Proceedings / ISBN 1-880250-02-0] Texas (Texas / USA) 1993, pp. 121-129
summary Jaron Lanier is a major spokesperson of our society's hottest new technology: VR or virtual reality. He expressed his faith in the VR movement in this quote which appears in The User's Guide to the New Edge published by Mondo 2000. In its most technical sense, VR has attracted the attention of politicians in Washington who wonder if yet another technology developed in the United States will find its application across the globe in Asia. In its most human element, an entire "cyberpunk movement" has appealed to young minds everywhere as a seemingly safe form of hallucination. As architecture students, educators, and practitioners around the world are becoming attracted to the possibilities of VR technology as an extension of 3D modeling, visualization, and animation, it is appropriate to consider an overview of virtual reality.

In virtual reality a user encounters a computersimulated environment through the use of a physical interface. The user can interact with the environment to the point of becoming a part of the experience, and the experience becomes reality. Natural and

instinctive body movements are translated by the interface into computer commands. The quest for perfection in this human-computer relationship seems to be the essence of virtual reality technology.

To begin to capture the essence of virtual reality without first-hand experience, it is helpful to understand two important terms: presence and immersion. The sense of presence can be defined as the degree to which the user feels a part of the actual environment. The more reality the experience provides, the more presence it has. Immersion can be defined as the degree of other simulation a virtual reality interface provides for the viewer. A highly immersive system might provide more than just visual stimuli; for example, it may additionally provide simulated sound and motion, and simultaneously prevent distractions from being present.

series ACADIA
email
last changed 2022/06/07 07:52

_id 2979
authors Henry, D. and Furness, T.A.
year 1993
title Spatial Perception in Virtual Environments: Evaluating an Architectural Application
source IEEE Virtual Reality Annual International Symposium, 1993, Seattle
summary Over the last several years, professionals from many different fields have come to the Human Interface Technology Laboratory (H.I.T.L) to discover and learn about virtual environments. In general, they are impressed by their experiences and express the tremendous potential the tool has in their respective fields. But the potentials are always projected far in the future, and the tool remains just a concept. This is justifiable because the quality of the visual experience is so much less than what people are used to seeing; high definition television, breathtaking special cinematographic effects and photorealistic computer renderings. Instead, the models in virtual environments are very simple looking; they are made of small spaces, filled with simple or abstract looking objects of little color distinctions as seen through displays of noticeably low resolution and at an update rate which leaves much to be desired. Clearly, for most applications, the requirements of precision have not been met yet with virtual interfaces as they exist today. However, there are a few domains where the relatively low level of the technology could be perfectly appropriate. In general, these are applications which require that the information be presented in symbolic or representational form. Having studied architecture, I knew that there are moments during the early part of the design process when conceptual decisions are made which require precisely the simple and representative nature available in existing virtual environments.
series journal paper
last changed 2003/04/23 15:14

_id 42ab
authors Dagit, Charles E.
year 1993
title Establishing Virtual Design Environments in Architectural Practice
source CAAD Futures ‘93 [Conference Proceedings / ISBN 0-444-89922-7] (Pittsburgh / USA), 1993, pp. 513-522
summary This paper attempts to specify the ideal computerized architectural design tool and outlines steps that are being taken to make this ideal a reality. Section 2 offers a user-centered assessment of the way technology is currently implemented in the design professions. Section 3 describes the state-of-the-art in high-end CAAD applications, including computer rendering, walk-through displays, and expert diagnostic sysWins. Section 4 details work in progress at Worldesign, Inc., a virtual worlds systems integration firm, which is developing Virtual Design Environment (VDE) systems.
keywords Computer-Aided Architectural Design (CAAD), Computer-Aided Engineering (CAE), Virtual Worlds Technology, Visualization, Computer Generated Environments, Computer Modeling, Virtual Reality, Information Systems, Information Design
series CAAD Futures
last changed 1999/04/07 12:03

_id ecaade2022_368
id ecaade2022_368
authors Das, Avishek, Brunsgaard, Camilla and Madsen, Claus Brondgaard
year 2022
title Understanding the AR-VR Based Architectural Design Workflow among Selected Danish Architecture Practices
doi https://doi.org/10.52842/conf.ecaade.2022.1.381
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 381–388
summary Virtual reality (VR) and augmented reality (AR) have been proposed to be additional architectural design mediums for at least 25 years (Dagit, 1993). Despite rapid technical and technological development, it has not been adopted into architectural design practices as compared to academia and research. Surveys from the American Institute of Architects (AIA) and Royal Institutes of British Architects (RIBA) demonstrate the state of architectural practices; 72% of architects and 65% of architects respectively are not using any kind of virtual, augmented, or mixed reality in their practices(RIBA and Microsoft, 2018; Hampson, 2020). In this paper, the authors investigate the state of practices, issues, challenges, and opportunities of the utilization of virtual, augmented, and mixed realities in six architectural practices in the Danish context. Three of the practices are large architectural practices, one medium-sized practice specializing in institutional, healthcare and cultural architecture, and one firm designing private family houses, kindergartens, daycares and places for people with disability and, one experimental design studio. All these practices have used VR/AR in their projects to various degrees. In recent years Danish architectural practices have been involved in various VR/AR-based exhibitions, demonstrations, and tool developments to promote the usage of the same in design practice. Through a set of qualitative interviews with personnel from key architectural practices, the authors would like to demonstrate the present state of practices. The investigation explores the usage of VR and AR in Danish architecture practices by identifying challenges and opportunities regarding skill levels, architectural typology, use cases, toolchains, and workflow and shows similarities and differences between traditional and VR-based design processes. The main findings show how VR/AR-based visualization helps architects to perceive spatiality and also ushers creativity through immersion and overlays.
keywords Virtual Reality, Augmented Reality, Architectural Design Practice, Denmark
series eCAADe
email
last changed 2024/04/22 07:10

_id ee51
authors Glanville, Ranulph
year 1993
title Exploring and Illustrating
doi https://doi.org/10.52842/conf.ecaade.1993.x.l5o
source [eCAADe Conference Proceedings] Eindhoven (The Netherlands) 11-13 November 1993
summary CAD, in its usually available forms, is wonderful at illustrating proposed architectural objects. But, as I argued last year at the Barcelona meeting, it is not so good at helping us extend the richness and development of architectural ideas—at the "back of envelope" and other developmental Ievels—indeed, it is (for pragmatic reasons—and others) actually restrictive of change, what-if, suck-it-and-see, etc. I shall describe a work environment, which we have been developing since last year in Portsmouth, in which computing is used by students to assist the generation, testing and extension of ideas: in which exploring takes precedence over illustrating. The central notion of this environment involves the extension and manipulation, through co-operative sharing of a joint "resource base" of computer stored images (recognising origination rather than ownership), and (parts of) which may be copied and transformed by group members as they seek to develop, enrich and extend their ideas. Transformations may be intentional, but some occur through the limits of our computational medium such as compression losses, file formats, colour depth and resolution and are welcomed as a contribution made by the computing medium used. Images are located through a developing, shared filing system, picture search and history trace. The environment relies on a small suite of computers wile a powerful machine acting as a fileserver and undertaking central, computationally-intensive tasks. For this environment, we have chosen software carefully, and the choice will be described. We have also developed a small, but crucial program that traces developments in the shared resource base—in what is, in effect, our own, operational CyberSpace (as distinct from a Virtual Reality). Through these mechanisms, we believe we are able to evade the limitation set by Ross Ashby's "Law of Requisite Variety", thus expanding the creativity-base of participating designers (students). There are no "scientific results", but we believe the reasoning behind, and the activity and exploration of our environment is valuable in itself, and may be of interest to collegues.

series eCAADe
last changed 2022/06/07 07:50

_id fda4
authors Jalkanen, Janne
year 2000
title Building a spatially immersive display - HUTCAVE
source Helsinki University of Technology, Espoo, Finland
summary A spatially immersive display is a display that surrounds the user, thus removing or alleviating many disadvantages the common virtual reality systems, such as head-mounted displays have. The most common example of these spatially immersive displays is the CAVE, "CAVE Automatic Virtual Environment", first built at University of Illinois, in 1993. It combines a large field-of-view with high-resolution images and a high frame refresh rate. In this work, the current Virtual Reality (VR) and Virtual Environment (VE) systems are examined, and then the CAVE construction is presented. Principles of stereo vision are explained and current methods of obtaining both autostereoscopic and stereopsis-based vision are reviewed. Aspects of different projection methods, screens, mirrors, projectors, tracking equipment, and computing systems are examined. Also, recent work in CAVE audio, so far neglected in research, is presented. Some of the mathematics is also explained, since in most CAVE-systems some sort of optical folding is necessary. Two cases of CAVE construction are presented, both at the Helsinki University of Technology. The first is a single-wall installation built as a temporary system, and the second is a four-sided CAVE at a new location, superseding the temporary installation. Finally the conclusions are presented, both from the process management point of view, and from the technical point of view, examining the good and bad points of the chosen solutions.
series thesis:MSc
last changed 2003/02/12 22:37

_id cc90
authors Kolarevic, Branko
year 1998
title CAD@HKU
doi https://doi.org/10.52842/conf.acadia.1998.016
source ACADIA Quarterly, vol. 17, no. 4, pp. 16-17
summary Since 1993, we have experimented with Virtual Design Studios (VDS) as an on-going research project that investigates the combination of current computer-aided design (CAD), computer networks (Internet), and computer supported collaborative work (CSCW) techniques to bring together studentsat geographically distributed locations to work in a virtual atelier. In 1993 the theme of the first joint VDS project was in-fill housing for the traditional Chinese walled village of Kat Hing Wai in the New Territories north of Hong Kong, and our partners included MIT and Harvard in Boston (USA), UBC in Vancouver (Canada), and Washington University in St. Louis (USA). In 1994 we were joined by Cornell (USA) and Escola Tecnica Superior d’Arquitectura de Barcelona (Spain) to re-design Li Long housing in Shanghai, and 1995 added the Warsaw Institute of Technology (Poland) for the ACSA/Dupont competition to design a Center for Cultural and Religious Studies in Japan. The 1996 topic was an international competition to design a monument located in Hong Kong to commemorate the return of Hong Kong to Chinese sovereignty in 1997. Communication was via e-mail, the WorldWide Web with limited attempts at VRML, and network video. Several teaching and research experiments conducted through these projects have demonstrated the viability and potential of using electronic, telecommunications, and videoconferencing technologies in collaborative design processes. Results of these VDS have been presented at conferences worldwide, explained in journal papers and published in Virtual Design Studio, edited by J. Wojtowicz, published by HKU Press.
series ACADIA
email
last changed 2022/06/07 07:51

_id cf2011_p093
id cf2011_p093
authors Nguyen, Thi Lan Truc; Tan Beng Kiang
year 2011
title Understanding Shared Space for Informal Interaction among Geographically Distributed Teams
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 41-54.
summary In a design project, much creative work is done in teams, thus requires spaces for collaborative works such as conference rooms, project rooms and chill-out areas. These spaces are designed to provide an atmosphere conducive to discussion and communication ranging from formal meetings to informal communication. According to Kraut et al (E.Kraut et al., 1990), informal communication is an important factor for the success of collaboration and is defined as “conversations take place at the time, with the participants, and about the topics at hand. It often occurs spontaneously by chance and in face-to-face manner. As shown in many research, much of good and creative ideas originate from impromptu meeting rather than in a formal meeting (Grajewski, 1993, A.Isaacs et al., 1997). Therefore, the places for informal communication are taken into account in workplace design and scattered throughout the building in order to stimulate face-to-face interaction, especially serendipitous communication among different groups across disciplines such as engineering, technology, design and so forth. Nowadays, team members of a project are not confined to people working in one location but are spread widely with geographically distributed collaborations. Being separated by long physical distance, informal interaction by chance is impossible since people are not co-located. In order to maintain the benefit of informal interaction in collaborative works, research endeavor has developed a variety ways to shorten the physical distance and bring people together in one shared space. Technologies to support informal interaction at a distance include video-based technologies, virtual reality technologies, location-based technologies and ubiquitous technologies. These technologies facilitate people to stay aware of other’s availability in distributed environment and to socialize and interact in a multi-users virtual environment. Each type of applications supports informal interaction through the employed technology characteristics. One of the conditions for promoting frequent and impromptu face-to-face communication is being co-located in one space in which the spatial settings play as catalyst to increase the likelihood for frequent encounter. Therefore, this paper analyses the degree to which sense of shared space is supported by these technical approaches. This analysis helps to identify the trade-off features of each shared space technology and its current problems. A taxonomy of shared space is introduced based on three types of shared space technologies for supporting informal interaction. These types are named as shared physical environments, collaborative virtual environments and mixed reality environments and are ordered increasingly towards the reality of sense of shared space. Based on the problem learnt from other technical approaches and the nature of informal interaction, this paper proposes physical-virtual shared space for supporting intended and opportunistic informal interaction. The shared space will be created by augmenting a 3D collaborative virtual environment (CVE) with real world scene at the virtual world side; and blending the CVE scene to the physical settings at the real world side. Given this, the two spaces are merged into one global structure. With augmented view of the real world, geographically distributed co-workers who populate the 3D CVE are facilitated to encounter and interact with their real world counterparts in a meaningful and natural manner.
keywords shared space, collaborative virtual environment, informal interaction, intended interaction, opportunistic interaction
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 1d5a
authors Schnabel, M.A., Kvan, T., Kruijff, E. and Donath, D.
year 2001
title The First Virtual Environment Design Studio
doi https://doi.org/10.52842/conf.ecaade.2001.394
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 394-400
summary Since 1993 schools of architecture all over the world conduct in various forms of Virtual Design Studio (VDS). They have become an established part of teaching design within the digital realm. They vary in task and structure, are purely text-based or include various forms of interactive, synchronous or asynchronous collaboration. However, ‘virtual’ always refers to the method of communication and exchange of design and ideas. Students have never designed within immersive virtuality. This paper describes the first successful attempt to conduct a Joint Design Studio, which uses Virtual Environment (VE) as tool of design and communication between the remote partners. This first VeDS focused on how architectural students make use of this particular different approach to design within immersive three-dimensional VEs. For example, the students created 3D-immersive design proposals, explored dependencies to textual description of initial intentions and communicated between local and remote team-partners in immersive VE as well as textbased communication-channels. The paper subsequently describes the VeDS, its set-up, realization and outcome. We discuss frameworks and factors influencing how architectural students communicate their proposals in immersive VeDS, and how this new approach of design studio enables new forms of design expressions.
keywords Immersive Virtual Reality, Collaborative Design, Joint Design Studio, Preliminary Design
series eCAADe
email
last changed 2022/06/07 07:57

_id 291d
id 291d
authors Van Bakergem, Davis W. and Obata, Gen
year 1993
title MAKING THE PROBLEM VISIBLE: PROJECT SPECIFIC INFORMATION IN COLLABORATIVE DESIGN
source CAAD Futures ‘93 [Conference Proceedings / ISBN 0-444-89922-7] (Pittsburgh / USA), 1993, pp. 471-480
summary This paper describes our current work in the development of an interactive, collaborative design space. It attempts to anticipate a future in which complex design Problems are undertaken by an interdisciplinary, collaborative group of contributors working within an electronic, networked environment. These networked working groups are made possible by the expanded use of high-speed digital networks and are expected to continue to grow within the design profession Using the design of an academic building as a case study, several new tools and techniques were used to develop an information place superimposed over the three-dimensional digital model of the site and proposed building. These tools allow the user to create a collection of data including site documentation and analysis; propose interventions; and access the data through three-dimensional icons in the modeL Several new techniques related to collecting and accessing information within the collaborative space are discussed.
keywords Collaboration, Hypermedia, Information Visualizer, Virtual Workspace, Image Collections
series CAAD Futures
type normal paper
last changed 2004/04/10 06:43

_id 850a
authors Wexelblat, A. (Ed.)
year 1993
title Virtual Reality - Applications and Explorations
source Academic Press Professional
summary Virtual and Artificial Reality have become in the last few years one of the major new hype words. Subsequently there has been a plethora of glossy books and droll conference proceedings describing various systems and hardware implementation problems. As has always been discovered in computer science the major effort is in designing and building the software applications. Alan's aim has been to ignore the hardware side and concentrate on the far larger and almost impossible problem of what to do with it. This book is a collection of ten essays trying to look slightly into the future and define actual uses for Virtual Reality kits rather than showing off expensive hardware. This has resulted in a series of topics, each defines a different interface problem between the user and machine which may have some solution by using Virtual Reality. Even though the topics vary, at times drastically, Alan has managed to use editorial selection very well intertwining them into a reasonably coherent whole. The scope is too large for any single book to cover in any detail and as is inevitable important topics for example military and medicine have been excluded. Topics chosen range from traditional computer information database visualisation to planetary exploration to the Virtual Reality version of the music video and literacy in cyberspace.
series other
last changed 2003/04/23 15:14

_id avocaad_2001_16
id avocaad_2001_16
authors Yu-Ying Chang, Yu-Tung Liu, Chien-Hui Wong
year 2001
title Some Phenomena of Spatial Characteristics of Cyberspace
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary "Space," which has long been an important concept in architecture (Bloomer & Moore, 1977; Mitchell, 1995, 1999), has attracted interest of researchers from various academic disciplines in recent years (Agnew, 1993; Benko & Strohmayer, 1996; Chang, 1999; Foucault, 1982; Gould, 1998). Researchers from disciplines such as anthropology, geography, sociology, philosophy, and linguistics regard it as the basis of the discussion of various theories in social sciences and humanities (Chen, 1999). On the other hand, since the invention of Internet, Internet users have been experiencing a new and magic "world." According to the definitions in traditional architecture theories, "space" is generated whenever people define a finite void by some physical elements (Zevi, 1985). However, although Internet is a virtual, immense, invisible and intangible world, navigating in it, we can still sense the very presence of ourselves and others in a wonderland. This sense could be testified by our naming of Internet as Cyberspace -- an exotic kind of space. Therefore, as people nowadays rely more and more on the Internet in their daily life, and as more and more architectural scholars and designers begin to invest their efforts in the design of virtual places online (e.g., Maher, 1999; Li & Maher, 2000), we cannot help but ask whether there are indeed sensible spaces in Internet. And if yes, these spaces exist in terms of what forms and created by what ways?To join the current interdisciplinary discussion on the issue of space, and to obtain new definition as well as insightful understanding of "space", this study explores the spatial phenomena in Internet. We hope that our findings would ultimately be also useful for contemporary architectural designers and scholars in their designs in the real world.As a preliminary exploration, the main objective of this study is to discover the elements involved in the creation/construction of Internet spaces and to examine the relationship between human participants and Internet spaces. In addition, this study also attempts to investigate whether participants from different academic disciplines define or experience Internet spaces in different ways, and to find what spatial elements of Internet they emphasize the most.In order to achieve a more comprehensive understanding of the spatial phenomena in Internet and to overcome the subjectivity of the members of the research team, the research design of this study was divided into two stages. At the first stage, we conducted literature review to study existing theories of space (which are based on observations and investigations of the physical world). At the second stage of this study, we recruited 8 Internet regular users to approach this topic from different point of views, and to see whether people with different academic training would define and experience Internet spaces differently.The results of this study reveal that the relationship between human participants and Internet spaces is different from that between human participants and physical spaces. In the physical world, physical elements of space must be established first; it then begins to be regarded as a place after interaction between/among human participants or interaction between human participants and the physical environment. In contrast, in Internet, a sense of place is first created through human interactions (or activities), Internet participants then begin to sense the existence of a space. Therefore, it seems that, among the many spatial elements of Internet we found, "interaction/reciprocity" Ñ either between/among human participants or between human participants and the computer interface Ð seems to be the most crucial element.In addition, another interesting result of this study is that verbal (linguistic) elements could provoke a sense of space in a degree higher than 2D visual representation and no less than 3D visual simulations. Nevertheless, verbal and 3D visual elements seem to work in different ways in terms of cognitive behaviors: Verbal elements provoke visual imagery and other sensory perceptions by "imagining" and then excite personal experiences of space; visual elements, on the other hand, provoke and excite visual experiences of space directly by "mapping".Finally, it was found that participants with different academic training did experience and define space differently. For example, when experiencing and analyzing Internet spaces, architecture designers, the creators of the physical world, emphasize the design of circulation and orientation, while participants with linguistics training focus more on subtle language usage. Visual designers tend to analyze the graphical elements of virtual spaces based on traditional painting theories; industrial designers, on the other hand, tend to treat these spaces as industrial products, emphasizing concept of user-center and the control of the computer interface.The findings of this study seem to add new information to our understanding of virtual space. It would be interesting for future studies to investigate how this information influences architectural designers in their real-world practices in this digital age. In addition, to obtain a fuller picture of Internet space, further research is needed to study the same issue by examining more Internet participants who have no formal linguistics and graphical training.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ee23
authors Bille, Pia
year 1994
title A Study of Color
doi https://doi.org/10.52842/conf.ecaade.1994.185
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 185-190
summary Color courses are traditionally based on exercises carried out with either water color or colored paper. Use of the computer as a tool for teaching color theory and analyzing color in architecture was the topic of a course given at the School of Architecture and Planning at the State University of New York at Buffalo, USA where I was an exchange faculty in the academic year 1993/94. The course was structured into 3 topics: color theory, color perception and application of color.
series eCAADe
email
last changed 2022/06/07 07:52

_id b665
authors Burdea G. and Coiffet, G.
year 1993
title Virtual Reality Technology
source Wiley Interscience
summary This in-depth review of current virtual reality technology and its applications provides a detailed analysis of the engineering, scientific and functional aspects of virtual reality systems and the fundamentals of VR modeling and programming. It also contains an exhaustive list of present and future VR applications in a number of diverse fields. Virtual Reality Technology is the first book to include a full chapter on force and tactile feedback and to discuss newer interface tools such as 3-D probes and cyberscopes. Supplemented with 23 color plates and more than 200 drawings and tables which illustrate the concepts described.
series other
last changed 2003/04/23 15:14

_id 6737
authors Casaus, A., Fargas, J. and Papuzian, P.
year 1993
title Hybrid Design Environments - A Research Program on Creative Collaboration and Communication
doi https://doi.org/10.52842/conf.ecaade.1993.x.a8h
source [eCAADe Conference Proceedings] Eindhoven (The Netherlands) 11-13 November 1993
summary This paper gives an overview of a research program initiated in the Architectural Design Department of the Escola Tècnica Superior d'Arquitectura de Barcelona on issues of communication and collaboration in computer aided design. The work is centered around emerging design situations which can be attributed directly to the incorporation of new technologies in education and practice. One of these is the "design triangle" composed of a traditional designer, a CAD workstation and a computer literate collaborator acting as the design medium. Another is the "virtual workshop" consisting of design collaboration involving large-scale distributed communications networks. The research program stresses three common characteristics of these situations which it aims to study in parallel in the setting of an design workshop. The first of these is the characteristic of distance, both physical and conceptual, which separates, on the one hand, the traditional designer from the CAD document and, on the other, the participants of a distributed workshop from each other and each others' thinking. The second, is the typically hybrid nature of such situations where computer technology interacts with more traditional techniques and alternative media are combined both at the level of production and in channels and modes of communication. And finally, the third and most significant for the methodology of the research program, is the fact that both the design triangle and the virtual workshop make explicit aspects of design activity, interaction and intentions which remain hidden or are only implicit in traditional designing.

series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2014_153
id ecaade2014_153
authors David Morton
year 2014
title Augmented Reality in architectural studio learning:How Augmented Reality can be used as an exploratory tool in the design learning journey
doi https://doi.org/10.52842/conf.ecaade.2014.1.343
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 343-356
summary The boundaries of augmented reality in the academic field are now being explored at an ever increasing level. In this paper we present the initial findings of an educational project focusing on the use of augmented reality in the design process of an architectural student. The study seeks to evaluate the use of AR as a tool in the design stages, allowing effective exploration of spatial qualities of design projects undertaken in the studio. The learning process is guided by the exploration and detection of a design idea in both form and function, with the virtual environment providing a dynamic environment (Mantovani, 2001). This is further reflected in the constructivist theory where the learning processes use conceptual models, which are used to create incremental stages that become the platform to attain the next [Winn, 1993]. The additional benefit of augmented reality within the learning journey is the ability of the students to visually explore the architectural forms they are creating in greater depth.
wos WOS:000361384700034
keywords Augmented reality; pedagogy; learning journey; exploration
series eCAADe
email
last changed 2022/06/07 07:55

_id 8b38
authors Do, Ellen Yi-Luen and Gross, Mark D.
year 1998
title The Sundance Lab- "Design Systems of the Future"
doi https://doi.org/10.52842/conf.acadia.1998.008
source ACADIA Quarterly, vol. 17, no. 4, pp. 8-10
summary The last thirty years have seen the development of powerful new tools for architects and planners: CAD, 3D modeling, digital imaging, geographic information systems, and real time animated walkthroughs. That’s just the beginning. Based on our experience with CAD tools, analysis of design practice, and an understanding of computer hardware and software, we’re out to invent the next generation of tools. We think architects should be shakers and makers, not just consumers, of computer aided design. We started the Sundance Lab (for Computing in Design and Planning) in 1993 with a few people and machines. We’ve grown to more than a dozen people (mostly undergraduate students) and a diverse interdisciplinary array of projects. We’ve worked with architects and planners, anthropologists, civil engineers, geographers, computer scientists, and electrical engineers. Our work is about the built environment: its physical form and various information involved in making and inhabiting places. We cover a wide range of topics – from design information management to virtual space, from sketch recognition to design rationale capture, to communication between designer and computer. All start from the position that design is a knowledge based and information rich activity. Explicit representations of design information (knowledge, rationale, and rules) enables us to engage in more intelligent dialogues about design. The following describes some of our projects under various rubrics.
series ACADIA
email
last changed 2022/06/07 07:55

_id 6718
authors Frost, M. and Amor, R.
year 1993
title The application of Radiance to daylighting simulation
source Building Simulation'93, Conference proceedings
summary The RADIANCE lighting simulation system was used to evaluate the daylighting inside two major buildings being constructed and refitted in New Zealand. This paper describes the utility and useability of such a simulation system for large projects of this nature. The ability to create many virtual snapshots of design alternatives and compare them both visually and numerically is explored, as are the problems Architects will find with describing a model to a simulation system of such complexity.
series other
last changed 2003/04/23 15:14

_id 49f3
authors Glanville, Ranulph
year 1993
title Looking into Endoscopy - The Limitations of Evaluation in Architectural Design
source Endoscopy as a Tool in Architecture [Proceedings of the 1st European Architectural Endoscopy Association Conference / ISBN 951-722-069-3] Tampere (Finland), 25-28 August 1993, pp. 185-193
summary The means available to architects in their age-old task of creating (most usually, though not necessarily) buildings that do not yet exist (ie. virtual realities), can be seen as falling into two groups. Those that help us develop architectural ideas (exploring), and those that help us evaluate or test them (illustrating). In the former category, we have, for instance, the ”drawing on the back of the envelope”, the discursive brainstorm, and the design ”conversation with ourselves via paper and pencil” (the drawing strikes back). In the latter, we may include physical model building, careful (projective) drawing (including drawings that are instructions for making), mathematical and design science modelling and calculating, visualising techniques such as the rendered perspective, most CAD (computer aided design) work and architectural endoscopy. These techniques may be thought of in two ways, as Bosselman reported: the explanation (eg. the organisational plan) and the experience (eg the ”photo-realistic” perspective). Attached to these we have rules for success, such as those of ”style” (in the broad sense of the personal style that allows us to assume that we have answers to problems that have yet to appear). It should be clear even from the list above that there are many more techniques and technologies for evaluation (illustration) than for exploration (design): such is the mystery of design. It is the primary purpose of this paper to invite those involved in providing the enormous effort that has gone into making such techniques for illustration — evaluation — to consider how their efforts help with that other, and crucial, area — that of exploring: and to redress some of the balance of that effort towards exploration. For it occurs to me (as a teacher of architecture), that evaluation does not provide a course for action — it merely helps us determine what may be wrong (according to some criteria with which we choose not to argue). And, no matter how right or wrong a design may be, knowing that it is wrong doesn’t help us either modify it, or find a better initial idea. It only tells us we are not right — always assuming the evaluative model is correct; perhaps.
keywords Architectural Endoscopy
series EAEA
more http://info.tuwien.ac.at/eaea/
last changed 2005/09/09 10:43

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 12HOMELOGIN (you are user _anon_418165 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002