CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 360

_id 6b67
authors Terzidis, Constantinos A. and Vakalö, Emmanuel-George
year 1994
title Computer-aided Extraction of Morphological Information from Architectural Drawings
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 77-86
doi https://doi.org/10.52842/conf.acadia.1994.077
summary The objective of the research reported in this paper is to design, implement, and test a computerbased system which allows its user to: (1) extract automatically the geometric, topological, and spatial structures of an architectural plan, (2) extract morphological information, such as axes of symmetry, hierarchical structure, proportions, and modularity from architectural plans, and (3) compare morphological information of classes of architectural plans. Computer vision and pattern recognition techniques are used.

series ACADIA
last changed 2022/06/07 07:58

_id df9b
authors Terzidis, Constantinos A. 
year 1994
title Computer-aided extraction of morphological information from architectural drawings
source University of Michigan
summary Along with the popularization of Computer-Aided Design (CAD), it has been becoming increasingly necessary and desirable for a computer to recognize engineering drawings and diagrams. Methods exist for inputting and recognizing such engineering drawings and diagrams. This is primarily because they are drawn to conform to specific standards. In contrast, architectural drawings are not prepared in accordance to existing standards. Hence, the problem of reading, recognizing, and extracting morphological information from them automatically remains unsolved. It is this problem that this study focuses on. The research undertaken by this author has three distinct but interrelated objectives. The first objective is to design, implement, and test a computer-based framework which allows its user to extract automatically the geometric and/or architectural structures of a two-dimensional plan. The second objective entails designing, implementing, and testing a computer-based framework which may be employed to compare the geometric and/or architectural structures of individual plans or classes of such plans. The third objective is to integrate the two aforementioned frameworks. Computer vision techniques are used to investigate, analyze, and compare plans of buildings from a morphological standpoint. Such techniques can contribute toward detecting differences or similarities between individual plans. Their ability to search for, combine, and compare morphological information is both parsimonious and effective. Predicated on the assumption that designers derive knowledge from past solutions to form-making problems, this study focuses on the methods by which the morphological information which is contained in building plans can be extracted automatically and entered in a knowledge base. Conceptually, this is part of a larger project which entails investigating how knowledge can be incorporated in a CAD system in a manner which aids and supports the form-making process. Conceivably, the approach of this work is, wholly or partially, applicable to the problem of extracting useful information from graphic representations used in a variety of disciplines (e.g., engineering).
series thesis:PhD
email
last changed 2003/02/12 22:37

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id a743
authors Laing, L. and Kraria, H.
year 1994
title CAD as an Interface for Integrated Collaborative Design
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 235
doi https://doi.org/10.52842/conf.ecaade.1994.x.w5h
summary In the traditional approach to building design, the designer (usually the architect) produces a design (often quite detailed)in blueprint before handing this to the next member of the design team (engineer) to superimpose the structure, services etc. Often this proves so impractical that the initial proposal has to be referred back to the architect for revision, and the process repeated - and this cycle may be repeated many times. Such routines arise in building design because designers find collaboration among themselves difficult to control, the task of design integration ultimately falling upon the construction manager or the contractor. This is the most common cause of problems arising during the execution of the project on site, causing a delays in the construction process, and building failures which might only be detected after occupancy. As a test-bed for addressing this problem, a system of coordinated files is proposed for use by design-students (with a working knowledge of AutoCAD) during a design project. The aim is to related data (CAD information) across all students working on the same project but developing different aspects. Participating students will be drawn from a range of design specialisms. Each member accessing the same information while developing different aspects (e.g. structure, services, and cost modelling). This goes beyond the conventional use of 'XREF' (cross-referenced drawings) and involves each member accessing and working with the same dataset - e.g. using different layers, co-ordination is easier and the data better integrated - there is thereby a reduction of the amount of repetition as the need to redraw information is eliminated. References or an initial data-set is set up by the tutor and available for reference at any stage of design project. The technological aspects to support collaborative work (and in particular the interaction process in design) is the main thrust of the undergraduate degree in Building Design Engineering at the University of Strathclyde.

series eCAADe
email
last changed 2022/06/07 07:50

_id ddss9413
id ddss9413
authors Branki, Cherif
year 1994
title Communicative Acts in Cooperative Architectural Design Environments
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary The purpose of this paper is to present a scheme, that can be used to support the communication process in cooperative design. Computational aids for design have largely been for a designerworking by himself/herself. These aids have also been supplemented by the widespread use of artificial intelligence approaches. However, design is so complex, and very rarely acted upon by a single designer but many more working towards the same aim. This involves a new paradigm in which designers need to cooperate with each other using a computational medium. A protocol analysis in cooperative design has been carried out and technological support has been proposed.Cooperative design becomes an important paradigm for the next generation of intelligent computer aided design systems. It will be conducted in many forms among several designers and willrequire the support of advanced communication facilities beyond the "passive" transmission of data and messages. Technological advances in communication networks have opened up new ways for cooperative design interaction across several processes of cooperation among designers, designers and computer aided design systems, computer aided design systems and knowledge based systems, and knowledge based systems themselves. In cooperative design environments, aunit of communication among designers is the transfer of a message from one designer (a sender) to another (a receiver). The aim of such communication is to provide the receiver with some information or to have the receiver take certain actions. Inspired by the speech act theory, a branch of the philosophy of language and linguistics, such a unit is called a communicative act. By analogy to architectural design, a communicative act is a performing act in designers communication.
series DDSS
email
last changed 2003/08/07 16:36

_id ddss9421
id ddss9421
authors Daru, Roel and Adams, Wim
year 1994
title Matchmaker: An Instrument for Matching Demand for and Supply of Buildings and Revealing Specific Discrepancies
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary To match supply and demand of buildings, various approaches are possible. While artificial intelligenceis favoured by some, we think that a less 'heavy' approach can be more cost and time efficient. The casewe have chosen to exemplify our approach concerns architectural heritage. To match supply and demandwhile at the same time respecting the constraints imposed by cultural heritage, it is necessary to bringthem together and to effectuate feasibility studies in the shortest possible time. The feasibility study shouldbe served by tools allowing the various partners to communicate on the level of the match between them, translated in terms of spatial organisation and building constraints. In the past years, our designmorphology group has developed and tested a graphic-based reordering tool which has been applied to large governmental buildings, both existing and new. The same tool can be used for weighted objectives ranking and evaluation, to have a synthetic view of the combined basic preferences and differences of the involved parties as for example in a jury wise evaluation and ranking of alternative proposals. The proposed tool is the electronic and graphic version of the data and association matrices, which have been for a long time recommended for use in the preliminary phases of design. But as long as these instruments could only be drawn and redrawn on paper they were much too ineffectual and found little real application. The developed tool is connected by sub-routines to a computer aided design package, within which the spatial patterns are translated into plans and attached data bases. The matching takes place in a number of steps. The first is to describe the organisation (the demanding party) as functional units which can be made corresponding with spatial units. The prescription of spatial needs can take place in both quantitative and qualitative manners. The Matchmaker tools offer the possibility of interactive clustering of spatial needs. Another step, which can be taken concurrently, is to describe the monument in spatial units and distance relationships. The input can be generated directly within the matrix, but it is much easier, more self evident and realistic to generate this automatically from the draughted plan. The following step is the input of constraints originating from heritage preservation objectives, expressed in levels of authorised intervention. Again, the Matchmaker tools offer here the possibility of visual clustering of spatial units, their relationships and associated properties. In the next step, the matching takes place. In this step the actual positions, properties and constraints of existing spaces in the monument are compared (and visualised by discrepancies views) to the optimised and clustered spatial needs of the end user. In the following phase, the feasibility in terms of space, building fabric and costs can be appraised. Once a compromise has been attained, preliminary proposals can be designed and laid down in terms of drawings. The spatialdesigns can then again be translated into matrix views and evaluated.
series DDSS
email
last changed 2003/08/07 16:36

_id ddss9428
id ddss9428
authors Erturk, Scvinc and Erturk, Zafer
year 1994
title Historical Background of the Visual Simulation Models in Architectural Design
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary It is well known that every sort of visualization model has its own capacity to represent the reality and designers' concepts of space. To the authors' knowledge, there are very few attempts to measure and compare their relative potential power of presentation. Given this lack of academic studies, it would be necessary to give a historical background on the use of visual models. Basically those tools could be divided into two main types : traditional visula techniques such as drawings , scale models and most advance technological tools ranging from basic slidesand films to recentlydeveloped techniquessuch as relatoscope, and computer aided simulation models. This paper covers the historical background of visual models .
series DDSS
last changed 2003/08/07 16:36

_id cc19
authors Glennie, William L.
year 1994
title Europe '94 - A Visitor's Report on the State of CAAD in Education
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 262
doi https://doi.org/10.52842/conf.ecaade.1994.x.s5h
summary During May, June and July of this year, I had the pleasure of visiting twelve institutions across Europe where computers are being used in the teaching of Architecture. There are as many different approaches to the incorporation of computers in the curriculum as there are places, and they all have some degree of success. My greatest surprise was the large size of these Schools, even in relatively small countries. Dealing with a huge number of students makes any kind of mandatory computer instruction almost impossible. In spite of all difficulties, enthusiasm and willingness to work directly with students was the single most important characteristic in the faculty and staff who are having the greatest success. Support staff dedicated to the maintenance of equipment and software were provided at most of the institutions. For those who do not have this benefit it is critical to relieve the teaching and research faculty of the need for these time-consuming tasks. Formal research activities are not essential to effective education. The process of setting up such efforts is again a distraction from the more important job of teaching. If research projects grow naturally out of the curriculum, they may be pursued without impeding instruction. Most serious of all, there is a substantial lack of communication and cooperation among these schools, and by implication, among all of the other schools in Europe. The mechanism of annual conferences held by ECAADE is insufficient to exchange information and interests. There were several occasions when I mentioned work that was being carried out at one place that would match very nicely with efforts at another. However, it is clearly impossible for any one school to spearhead this kind of collection and coordination of activities. The only appropriate organisation for this kind of exchange would be a centralised service initiated and maintained by the European Community. It is very important that such a body does not attempt to limit or direct the work of individual schools, rather simply serves as a clearinghouse through which the various groups can benefit from each other's work, to the mutual benefit of all.
series eCAADe
email
last changed 2022/06/07 07:50

_id 2647
authors Koutamanis, Alexander
year 1994
title Sun and Time in the Built Environment
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 248
doi https://doi.org/10.52842/conf.ecaade.1994.x.f4j
summary At a time when requirements on the quality of the built environment are increasingly becoming explicit and specific, computer technology promises the ability to analyse and evaluate buildings during the design process. The computer can extract the necessary information from conventional geometric representations, generate comprehensive descriptions of the aspects to be analysed and use these to arrive at precise and accurate results that can be represented visually. Visual representations facilitate comprehension of the analyses and of their results because of their agreement with our predominantly visual perception of the built environment. The consequent close correspondences between geometric design representations and the visual representation of analyses and evaluations allow direct correlation of the results with the design as a whole. Such correlation is instrumental for imposing explicit and justifiable constraints on the further development of a design. One good example of visual analyses is daylighting. In many drafting and modelling programs a viewing point can be set on the basis the sun’s height and azimuth. The projection returned reveals the surfaces that are directly lit by the sun. In other programs the sun’s height and azimuth can be used to position a light source with parallel rays. This source gives rise to shading and shadows that correspond to the ones produced by the sun. In addition, several programs can calculate the position of the sun and hence the viewing point or the light source on the basis of the date, the time and the geographic coordinates of the place. The availability of computer-aided daylighting analysis has obvious advantages for practice. Efficiency and reliability of the analysis increase, while flexibility is superior to analog simulations. Unfortunately automation of daylighting analysis may also impede understanding of underlying principles, that is, of the issues at the focus of architectural education. Explaining how the analysis is performed and why becomes thus a necessity for computer-aided design education. Exercises that aim at more than just learning and using a computer program can enrich the student’s understanding of the analysis and its results. The efficiency and flexibility of the computer facilitate the study of aspects such as the comparison of local apparent time, local mean time, standard time and daylight saving time and their significance for daylighting, solar heating and cooling patterns and possibilities. Sundials with their explicit correspondence to solar movement can be instrumental in this respect. The efficiency and flexibility of the computer also support the investigation of the techniques by which the daylighting analysis is performed and explain the relationships between projective theory, sciagraphy and computer graphics. A better understanding of the principles and techniques for daylighting analysis has a generally positive influence on the students’ learning of the daylighting analysis software and more significantly on their correlation of daylighting constraints with their designs. This leads in turn to increased flexibility and adaptability of the designs with respect to daylighting and to a conscious and meaningful exploration of variations and alternative solutions.
series eCAADe
email
last changed 2022/06/07 07:50

_id cd34
authors Marinelli, A.M., Belibani, R. and Gadola, A.
year 1994
title Multimedia in Communication: A Study on the Urban Image of Barcelona
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 103-107
doi https://doi.org/10.52842/conf.ecaade.1994.103
summary The Hypertext on Barcelona was realized within the interuniversity scientific research "La Produzione dei circuiti multimediali didattici per l'architettura e l'urbanistica" (The production of multimedia didactic circuits for architecture and urban planning), coordinator Prof. Paola Coppola Pignatelli - Dipartimento di Progettazione Architettonica e Urbana- Facoltà di Architettura, Università "La Sapienza", Roma, Italia. During the numerous debates on the relationship between multimedia and communication of the project a long list of problems emerged: the understanding and the management of explorable fields opened by these new media; the informative overflow that can introduce irrelevant information; the "interactive" anxiousness that produces a continuous jumping from one theme to another without any understanding; the identification of the right contents of a multimedia product, that requires an elaborate culture of media languages; the education of the users on new models of learning. From the debates emerged in short a principal point: the necessity to study and to experiment a "multimedia tool" able of transmitting knowledge not through a simple sum of data but through a group of information. If every single tool has -its own characteristics and if the combinations are not automatic, then the modes and contents should be examined. Is it possible therefore to invent a strategy of communication?
series eCAADe
last changed 2022/06/07 07:59

_id 051a
authors Ng, Edward and Mori, Stefano
year 1994
title The Electronic Hartlib Project
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 108-114
doi https://doi.org/10.52842/conf.ecaade.1994.108
summary One of the many criticisms of early efforts in multimedia based teaching, learning and information systems is that most of the development is focused on constructing closed systems, and that once they are completed, altering their content, especially by third party users, is next to impossible. This leads to two problems. Firstly, in the current funding environment, it is almost impossible to sustain the system. Secondly, the system thereby developed is not very flexible and hence can be difficult to use. In Sheffield, we are trying to address this problem by constructing an open system. Using an interface-less data structuring system, an object oriented technique has been developed to separate the interface from the generic files thereby allowing unlimited posthumous alteration and adaptation. A prototype has been developed in Hypercard and in Director, but the beauty of the system is that it can be adapted to run on almost anything.

series eCAADe
last changed 2022/06/07 07:58

_id 61a4
authors Parsons, Peter W.
year 1994
title Craft and Geometry in Architecture: An Experimental Design Studio Using the Computer
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 171-176
doi https://doi.org/10.52842/conf.acadia.1994.171
summary Craft is one of the main aspects of architecture that accounts for its strong corporeal presence. The Computer used as a geometry machine lacks such tectonics. The predominant means for bringing a sense of materiality to its geometric constructions is through rendering, and in this respect the computer is not significantly different from geometric drawing. One need only recall the beautifully rendered drawings of the Beaux-Arts for a comparison. With the rise of modern architecture such 'paper' architecture was voraciously denounced in the cause of relating architectural production more closely with crafted production. Even now the interest in craft has persisted despite postmodern criticism. Therefore, a means for bringing a greater sense of craft to computer-aided design seems desirable. The architectural studio discussed in this paper was initiated partly for this purpose by intentionally confronting the computer's proclivity to move its users away from craft toward geometry, while at the same time taking advantage of its capabilities as a geometry machine. Craft can best be understood by practicing it. Consider, for example, the use of a chisel in woodwork. As one applies force with it, one can feel the resistance of the material. Carving with the grain feels differently than carving against or across it. Carving a piece of maple feels differently than carving a piece of pine. If one presses too hard on the chisel or does not hold it at the precise angle, there is a great risk of creating an unwanted gouge. Gradually with practice the tool feels as if it is an extension of the hand that holds it. it becomes an extension of the body. One can feel the physical qualities of the wood through it. Like a limb of the body its presence can become transparent and one can learn about what one feels through it. It can imprint a memory in the mind that comes to the brain, not through the eyes alone, but through the tactile senses. On the other hand it is tiring to use a chisel for an extended period of time. One's body begins to ache and, as the body tires, the risks of making an unwanted mistake increase. Furthermore, because a tool becomes wedded to the body, it is almost impossible to use more than one tool at a time unless they are being used in conjunction with one another as one might use two limbs of the body together. On a computer one can never 'feel' an object, the image of which is on the screen, in the same manner that one can feel with a chisel the material upon which one is working. One becomes particularly aware of this when creating a 3D computer model of a hand tool. One wants to hold it, not just look at it. Thus the artifice of the object created by means of the computer becomes very apparent, because the 'tool' has not yet taken on the qualities of a tool, although it has taken on the appearance of one.
series ACADIA
last changed 2022/06/07 07:59

_id 6b1d
authors Porada, Mikhael
year 1994
title Architectural Briefing Data Representation and Sketch Simulation Computer Environment
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 55-59
doi https://doi.org/10.52842/conf.ecaade.1994.055
summary Reflection about the architectural programme starts with the analysis of its writing, its "style" which bears not only the "griffe" of the programmer but as well the structure, methodology, codes of reading, etc. particular to a programming approach. The programme structure corresponds in most cases to the different levels in the text's format and the composition modes of representing data and their relations. The choice made can either facilitate or impede the reading as interpretation of the programme. The programmer’s aim should be to open the text to reading towards a "synthetic schematic" summary, a sort of cognitive threshold which allows the reader to understand both the client's objectives and the designer's intentions enhanced by his experience. Articulating a designer's experience means focusing on his knowhow and memory. The designer's recollected knowledge and heuristic approaches to the solution of a basic design problem - types, his readings and spatial evaluations permanently feed the knowhow. It is important for the architect to have access to past examples, to the collective memory of his workplace, and a repertoire of readings, notes, sketches, influences and citations. It is therfore equally important that a computer environment also have a multimodal "architect's memory" or "project memory" module in which different forms of representation are classified, and made accessible as memory components. It is also necessary to have the possibility to access at any moment in an interactive manner to the recomposition, addition and adaptation of these mnemonic components. The information coming from the programme, classified as descriptive, prescriptive and quantitative types of data, must be able to be interrogated in different modes of representation : text, matrices, nets, diagrams, and so on, so that the pertinent information can be extraded at any given design process stage. Analysis of competition programmes show that often the description of an activity, for example, the Great Stadium competition in Paris, is described by several pages of text, a circulation diagram with arrows and legend, a topological proximity diagram with legend and as table activity - areas . These different representations, which are supposed to be complementary and give the most pertinent view of the client needs, show in fact after analysis, many description problems, incoherance, and which result in a reading difficulty.

series eCAADe
last changed 2022/06/07 08:00

_id 4f13
authors Ronchi, Alfredo M.
year 1994
title A Brief History of CAAD in Italy
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 227
doi https://doi.org/10.52842/conf.ecaade.1994.x.f3n
summary Twenty years of revolution, from the middle '70 to the middle '90. Many things have changed since the origins of computer graphics and computer aided design in architecture. We started teaching drafting on terminals which connected to mini computers, complex procedures or sets of graphics libraries working with keywords, vectors and storage screens. The next step was devoted to the discovery of workstations in the early '80's, where the user sat face on to the whole power of a multitasking system. At that time to use up to 16 time sharing processes running on the same work station seemed to have no practical use at all. Fortunately someone (ie Xerox PARC laboratories) at the same time started to develop the so-called GUI. Graphical user interface started a revolution in human/machine interface (ie Smalltalk). The desktop metaphor, the use of multiple windows and dialogues joined with icons and pop up menus let the user manage more applications and, even more important, created a standard in application/user interface (CUA). In the meantime focus had moved from hardware to software, systems being chosen from the software running. The true revolution we have seen starting from that base and involving an ever increasing number of users was the birth of PC based applications for CAAD. Generally speaking nowadays there are three main technologies concerning teaching: communication, multimedia and virtual reality. The first is the real base for future revolution. In the recent past we have started to learn how to manage information by computers. Now we can start to communicate and share information all over the world in real time. The new age opened by fax, followed by personal communication systems and networks is the entry point for a real revolution. We can work in the virtual office, meet in virtual space and cooperate in workgroups. ATM and ISDN based teleconferencing will provide a real working tool for many. The ever increasing number of e-mail addresses and network connections is carrying us towards the so called 'global village'. The future merger between personal digital assistant and personal communication will be fascinating. Multi & HyperMedia technology is, like a part of VR, a powerful way to share and transfer information in a structured form. We do not need to put things in a serial form removing links because we can transfer knowledge as is. Another interesting and fundamental aspect typical of VR applications is the capability to change cognitive processes from secondary (symbolic - reconstructive) to primary (perceptive - motory). In this way we can learn by direct experience, by experiment as opposed to reading books. All these things will affect not only ways of working but also ways of studying and teaching. Digital communications, multimedia and VR will help students, multimedia titles will provide different kinds of information directly at home using text, images, video clips and sounds. Obviously all those things will not substitute human relationship as a multimedia title does not compete against a book but it helps.

series eCAADe
last changed 2022/06/07 07:50

_id a34c
authors Sadowski, Michal
year 1994
title Protection and Conservation of Monuments Supported by GIS
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 240
doi https://doi.org/10.52842/conf.ecaade.1994.x.g2m
summary The issue of monument protection and conservation not incidentally has become a part of the scope of interests of the Center for Computer Aided Architectural Design. As a research-educational division of the School of Architecture, Warsaw University of Technology, we are a partner providing advisory and implementation services. Employment of a large computer system such as Intergraph's MGE will constitute a considerable improvement for Conservation Offices in the introduction, storage, updating and accessibility of historical maps, photographs, information about information, geological and topological, network, roads, sites, CAD drawings and 3D models. Another important effect will be that of setting a direction for activities of other offices interested in increasing their work efficiency through computerization.
series eCAADe
last changed 2022/06/07 07:50

_id caadria2006_633
id caadria2006_633
authors WAN-YU LIU
year 2006
title THE EMERGING DIGITAL STYLE: Attention shift in architectural style recognition
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 633-635
doi https://doi.org/10.52842/conf.caadria.2006.x.g4f
summary “Style” has long been an important index to observe the design thinking of designers in architecture. Gombrich (1968) defined style as a particular selection from the alternatives when doing things; Ackerman (1963) considered that a distiguishable ensemble of certain characteristics we call a style; Schapiro (1961) pointed out that style is constant forms, and sometimes the constant elements, qualities and expression; Kirsch (1998), Cha and Gero (1999) thought of style as a form element and shape pattern. As Simon and others referred to, style emerged from the process of problem solving, Chan (1994, 2001) ever devised a serious of experiments to set up the operational definitions of style, further five factors that relate to generating styles. Owing to that the greater part of sketches and drawings in the design process couldn’t be replaced by computer-aided design systems (Eisentraut, 1997), designers must shift between different problem-solving methods while facing different design problems. The purpose in this research is to discuss the influences of computer usage on style generation and style recognition: The employment of certain procedural factors that occurred in the design processes that using conventional media is different from the ones that using computer media? Do personal styles emerge while designers shifting between different media in the design processes? Does any unusual phenomenon emerge while accustomed CAD-systems designers recognizing a style?
series CAADRIA
email
last changed 2022/06/07 07:49

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
doi https://doi.org/10.52842/conf.acadia.1994.039
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id 1262
authors Alshawi, M.
year 1994
title A run time exchange of component information between CAD and object models: A standard interface
source The Int. Journal of Construction IT 2(2), pp. 37-52
summary Integrated computer aided design could only occur in engineering once CAD systems could represent physical features and components rather than graphical primitives. In most dedicated CAD systems, the knowledge of a complete component exists only for the duration of each drawing command and the data stored in the database is simply a set of graphic primitives. This paper proposes an approach for real time information transfer from and to CAD systems based on a high level object representation of the design drawing. Drawing components are automatically identified and represented in an object hierarchy that reflects the 'part-of' relation between the various components including building spaces. Such hierarchies transfer an industry standard CAD system i.e. AutoCAD, into a high level object oriented system that can communicate with external applications with relative ease.
series journal paper
last changed 2003/05/15 21:45

_id e807
authors Anadol, Z., and Akin, O.
year 1994
title Determining the impact of cad drafting tools on the building delivery process
source The Int. Journal of Construction IT 2(1), pp.1-8
summary Computer aided design is intended to change the way design and construction are carried out. at a minimum, this implies savings realized in terms of time spent and improvement of the quality of designs produced. to test this idea, we hypothesized that computer aided drafting and design operations may be instrumental in reducing the number of change orders issued and help control cost overruns by improving the accuracy of construction documents. we compared change orders in projects designed in the conventional media against ones developed with computers. we found that there is evidence supporting our hypothesis. furthermore, in the process of investigating this question, we found that computer applications to improve the management of existing building information (as-built drawings, building system related information, and the like) represent even more critical needs than those that can reduce change orders through more accurate design drawings.
series journal paper
last changed 2003/05/15 21:45

_id ca51
authors Asanowicz, Aleksander
year 1994
title CAFE: Composition for Architects - Forms and Emotions
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 249
doi https://doi.org/10.52842/conf.ecaade.1994.x.l3s
summary In the architectural creation process there has always been an inclination to improve the methods of designing in the way of ,,objectivization" of designing process. Objectivization which would explain why we do design in this way and not the other. In spite of the trend to the total objectivization (Vitruvius, Alberti, Palladio), the results appeared to be still subjective, i.e. they included methods of designing typical of the one and only architect. This fact made them completely useless in the designing practice. On the other hand one cannot underestimate their meaning as to this very practice. Because it is just thanks to them that the development of designing studies has taken place. We do learn not only watching works of great architects, but also studying their opinions concerning problems of form, function and construction. That is why it seems to be useful to collect experiences concerning the classic theory of architectural composition, which have been gathered through centuries, as well as to try once again to objectivize the process. Composition information arranged in the form of data-base would create the ground for proper functioning of an expert system uniting diagnostic and planning functions. Study of that kind, not claiming design applications could be an excellent educational equipment in teaching architectural composition. In the proposed teaching system attempts have been made to look at the architectural composition theory in the light of the perception of the form, and - emerging in this process - emotional and aesthetic evaluations. In order to define which evaluations have been most often expressed during the perception process of architectural forms, the students of Architecture Faculty in Bialystok Technical University have been polled on the subject: ,,Which words are most commonly used in the descriptions of architecture works?"

series eCAADe
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 17HOMELOGIN (you are user _anon_499431 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002