CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 358

_id c95f
authors Petrovic, Ivan and Svetel, Igor
year 1994
title Conversation on Design Action: By Men or by Machines?
doi https://doi.org/10.52842/conf.ecaade.1994.015
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 15-23
summary A design studio of the future shall be based on dislocated, distributed design services, and feature the ‘design by collaboration’ enabled by the computer transmitted information. However, in a collaborative design process, computer may take an additional role, i.e., as an “ultimately structured dynamic communication medium ... based on the notion of commitment and interpretation” (Winograd and Flores 1987). Various models of ‘intelligent’ design systems based on the ideas of ‘open, distributed, artificial intelligence systems’ have shown that the computer-based design agents which act on the object-to-be-designed model could be involved in a “conversation for action” (Winograd and Flores, Ibid.). The aim of the paper is to illustrate a computer-based design system that enables ‘a-kind-of’ conversations by the design agents before the design decisions were made. After the description of a design experiment and the conversation that went on between the design agents, the traits of the applied ‘design design system’ are discussed.

series eCAADe
last changed 2022/06/07 08:00

_id ddss9449
id ddss9449
authors Kendall, Stephen
year 1994
title Control of Parts: Identifying Patterns of Control in Production Chains
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary If we examine the stages of production of complex physical systems, we notice that parts change as they progress along a value chain. Parts are deformed, have parts removed, and are assembled and disassembled, in various sequences. In such processes, production operations (milling, cutting, aligning, attaching, and so on) are of particular interest, as are the sequences of production, since some operations and sequences have been found to be more efficient than others, lead to fewer mistakes and produce higher quality results. Research continues to be produced seeking to optimize production operations, sequences and product quality. The production operations we can observe in the making of artifacts are also of interest because they are by definition the result of action taken by certain agents. Parts are changed or controlled by human beings, employing their own hands or sophisticated machines. Today, we are used to making a distinction among agents involved in production: some agents specify what is to be made, and others make what is specified. One agent can do both, but specialization and division of labour has presented us with this distinction. This is now conventional, aside from whether it is "good" or not. The distinction is the basis for the interest in "concurrent design and production of products", the renewed focus on distribution and coordination of work in teams, and the related interest in understanding the dynamics of building systems in terms of the agents who control them. This paper focuses on the place certain kinds of agents take in complex production flows. Since production of parts is both a technical and a social enterprise, we will discover, when we look closely, complex webs of interactions which can be mapped, showing how agents relate to each other through the parts with which they are concerned. In examining the class of agents who control parts, we can see two patterns of control, termed DISPERSED PATTERNS and OVERLAPPING PATTERNS. These become palpable in a graphic diagramming tool, which is demonstrated in what follows. These diagrams also provide a means to consider the agents whose role is to specify what is to be made. The paper includes notes related studies in other fields.Finally, the paper suggests how this perspective can be useful, and several research topics based on it are sketched.
series DDSS
last changed 2003/08/07 16:36

_id ddss9417
id ddss9417
authors Chan, Chiu-Shui
year 1994
title A Hypermedia Tutoring for Multimedia Tasks
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Using a computer or a software package involves procedural knowledge, or knowledge of a series of instructions. When a user recognizes the appropriate computer commands (the method) in acertain application, it is assumed that the user is capable of doing a computer-related or computeraided task. Based on this assumption, the current project explores methods of developing a computer tutoring system to convey know-how efficiently. The purpose of the project is to make novices familiar with machines and with techniques of handling multimedia for presenting design concepts. A teaching tool is designed that combines images, sounds, and movements to create an effective learning environment. The tool is a hypermedia system consisting of different software and hardware components implemented in the HyperCard. How to manipulate different media will be taught by means of cross-references, graphic display, text explanations, and background music. Hopefully, this project will suggest some useful methods for teaching CAD to novice computer users.
series DDSS
email
last changed 2003/08/07 16:36

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id 8822
authors Jakimowicz, Adam
year 1994
title Abstract Modelling - Forming and Exploring
doi https://doi.org/10.52842/conf.ecaade.1994.x.o5l
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 214
summary Architectural design is always concerned with form to things. It is the sphere or action where meanings are to be expressed and further on - received (by a receiver), felt, understood. "Meanings" mean not only rational information. The matter is to reach the essence and to master ways appropriate to expose and interprete it. Quality of the form decides whether architectural or any work is worth attention or not and to what degree. Form is an attribute of a thing. It is form that "speaks". This linguistic metaphore shows one of natural, inborn features of things and states. However, questions appear: 1. Does everything have form? 2. Is the form an objective term? 3. What limitations of the definition of the form to accept- if any? The friendly environment for creating form consists of conscious intentions plus open mind. Rules are certain, but liquid. Every formal communication system may be widened individually. The only limitation is to be received according to intentions. So, incredibly, the infinite number of combinations, even within one system, may be possible.

series eCAADe
email
last changed 2022/06/07 07:50

_id 06e1
authors Keul, Alexander
year 1996
title LOST IN SPACE? ARCHITECTURAL PSYCHOLOGY - PAST, PRESENT, FUTURE
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary A methodological review by Kaminski (1995) summed up five perspectives in environmental psychology - patterns of spatial distribution, everyday “jigsaw puzzles”, functional everyday action systems, sociocultural change and evolution of competence. Architectural psychology (named so at the Strathclyde conference 1969; Canter, 1973) as psychology of built environments is one leg of environmental psychology, the second one being psychology of environmental protection. Architectural psychology has come of age and passed its 25th birthday. Thus, a triangulation of its position, especially in Central Europe, seems interesting and necessary. A recent survey mainly on university projects in German-speaking countries (Kruse & Trimpin, 1995) found a marked decrease of studies in psychology of built environments. 1994, 25% of all projects were reported in this category, which in 1975 had made up 40% (Kruse, 1975). Guenther, in an unpublished survey of BDP (association of professional German psychologists) members, encountered only a handful active in architectural psychology - mostly part-time, not full-time. 1996, Austria has two full-time university specialists. The discrepancy between the general interest displayed by planners and a still low institutionalization is noticeable.

How is the research situation? Using several standard research data banks, the author collected articles and book(chapter)s on architectural psychology in German- and English-language countries from 1990 to 1996. Studies on main architecture-psychology interface problems such as user needs, housing quality evaluations, participatory planning and spatial simulation / virtual reality did not outline an “old, settled” discipline, but rather the sketchy, random surface of a field “always starting anew”. E.g., discussions at the 1995 EAEA-Conference showed that several architectural simulation studies since 1973 caused no major impact on planner's opinions (Keul&Martens, 1996). “Re-inventions of the wheel” are caused by a lack of meetings (except this one!) and of interdisciplinary infrastructure in German-language countries (contrary to Sweden or the United States). Social pressures building up on architecture nowadays by inter-European competition, budget cuts and citizen activities for informed consent in most urban projects are a new challenge for planners to cooperate efficiently with social scientists. At Salzburg, the author currently manages the Corporate Design-process for the Chamber of Architecture, Division for Upper Austria and Salzburg. A “working group for architectural psychology” (Keul-Martens-Maderthaner) has been active since 1994.

keywords Model Simulation, Real Environments
series EAEA
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2005/09/09 10:43

_id ddss9477
id ddss9477
authors Reuter, Wolf
year 1994
title Design As Argumentation and Power-Acting - Theory and Methods
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary The process of design is seen as the generation, transformation and communication of knowledge in the brains of the professional designers and other persons and groups, who are interested in or concerned by the design output and who would or should participate in the design process. Only if it is known how these kinds of information and communication processes work, computer support is possible. Design thinking follows a microstructural scheme. A steady change of the understan-ding of the problem also changes the sight of the solution and also changes the need for knowled-ge contributing to the solution. In all stages of the design process alternatives or alternative ways of action are generated. The participants communicate about questions feasibility, the distribution of advantages and disadvantages, expected consequences, and other possibilities. They exchange positions and arguments, upon which finally they base their weighting of aspects and their personal judgement. The process of argumentation and evaluation is considered, it can be formalized and supported by formal methods. The decision about a design alternative by different people is not only based on explicit argumentation and/or formal evaluation procedures, but also on the use of power. Different means of power are stated. Some decision making procedures which control the misuse of power, are discussed.
series DDSS
last changed 2003/08/07 16:36

_id ddss9486
id ddss9486
authors Smeltzer, Geert
year 1994
title The Application of Virtual Reality Systems in Architectural Design Processes
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary This paper describes the application of virtual reality systems in architectural design processes. It is based upon research on virtual reality technology to develop a more natural interface between men and design systems. It is also based upon the development of an integrated laboratory set-up for an immersive and a desk-top virtual reality system. This set-up should offer possibilities to manipulate 3D design models and to simulate the lighting situation in real time. Finally it is based upon an application of virtual reality technology for a design presentation. The research problem was determined by the question in which way the design process changes under the influence of technology. Other research questions, autonomous as possible, were how natural an interface can be using sensors, how a design model can be using real world features and how a representation can be as realistic as possible, using lighting simulations. The development problem was determined by the fact that the laboratory set-up had to be developed in co-operation with a hardware and a software vendor. This led to the development of two set-ups: one immersive virtual reality system and one desk top system. Another problem for the development of the set-up was that the project had to result in the presentation and demonstration of virtual reality technol-ogy that was not yet generally available to a larger group of organisations or enterprises. The first case study involved the development of a virtual reality presentation of a housing project in the Netherlands. The presentation was meant for people who were interested in the houses and was announced as a virtual open house. A potential buyer could walk through the model and move furniture around. The problem addressed concerned the relationship between the level of detail of the model, the speed of representation and the ease of interface system's. The second case study concerned the use of a virtual reality interface, model and representation for the evaluation of visibility and safety aspects of another housing project. At first this application was meant for the designers and their client. Based upon their evaluation of the design, several design improvements were made. Afterwards, this application was used for internal demonstrations. The application for the evaluation and the demonstrations were developed for an immersive virtual reality system and for a desk top system. The problem addressed was first of all a design problem and secondly a technical problem. This technical problem was related to the difference between the two virtual reality systems in terms of consequences for those applications. In the near future the research project, called the Asterisk project, will also examine and develop the possibilities of the simultaneous use of the system by more than one user, possibly on different locations. This means a development from single user single site to a multi user, a multiple site virtual reality systems. This project will also evaluate the feasibility of the application of virtual reality technology during an architectural design process. This research project will be followed by the development of a prototype of a virtual architecture system demonstrations of this system and an introduction to the market.
series DDSS
email
last changed 2003/08/07 16:36

_id ee8b
authors Yakeley, Megan and Coates, Paul
year 1994
title The Virtual Ching's Head
doi https://doi.org/10.52842/conf.ecaade.1994.x.p3b
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 225
summary The bar in the Architectural Association, named after the bust that sat in one corner, had white formica topped tables. Each day around lunchtime these were cleaned with Vim by the bar staff, ready for the new day’s thought’s, ideas, and occasional inspirations. Students used the bar as an ideal place to discuss their work, the table tops providing an endless supply of virtual napkins waiting not to be used but to be drawn on. This atmosphere of providing a relaxed environment to discuss and debate architectural ideas proved immensly popular, with tea spills adding to the table top sketches. It is often forgotten in the ordered cleanliness of the CAD studio, where the protection of the computers overrides the comfort of their users, that ideas and their development do not always come when we most expect. Providing an atmosphere in which the designer feels comfortable enough to play is as vital now as at the time when the Architectural Association was seen as an ideal place to foster debate. As the architect feels more comfortable, so will the ideas flow more freely. This paper demonstrates how a CAD environment can become the virtual equivalent of a coffee bar as it relates to the design studio, where ideas are thrown around with abandon, and where the discussion of those ideas is more important than the material with which the ideas are depicted. In contrast, the use of computers in design is following along the same path as beautifully descriptive artwork or highly skillful technical drawings, that say much about the presentation abilities of their authors, yet often little about the actual designs. Designers often are so seduced by the medium that they do not properly see the message. A computer’s ability to present three dimesnional form instantly, and the ease with which those forms may be altered, stretched, shrunk, reversed and so on make the computer an ideal sketching tool. This paper shows the results of the combined RIBA Part II and MSc Computing and Design course. This two year, 96 week course is entirely computer based, and uses generative modelling to explore the fundamental nature of the design of form. This paper seeks to show how this approach may be successfully used with some students, and how the approach complements existing teaching methods and techniques. To accompany these notes a computer based presentation will illustrate a variety of past and present student work. This will show how rule based form, and the use of computers as a sketching tool, has influenced the students' working methods and their approach to the creation of form. Finally, we will show that the use of such a formal approach leads inevitably to a greater understanding of, and therefore a greater ability to articulate and illustrate, a student’s own design ideas and proposals. The use of the computer at every stage of the design process forces the student to be entirely explicit about every action as it occurs. Similarly the rule based approach requires them to be explicit about actions they propose to take in the future. This double combination has produced students who are highly articulate about their designs at every stage, and this paper aims to demonstrate that the more articulate the student, the greater is the possibility for success.
series eCAADe
last changed 2022/06/07 07:50

_id dda4
authors Yezioro, Abraham
year 1994
title Form and Performance in Intelligent CAAD Systems for Early Stages in Solar Design Building
source Technion, Faculty of Architecture and Town Planing, Haifa
summary Great care should be taken at the initial design stages to determine the principles and solution schemes for climate and energy-conscious buildings. The present study deals with supporting the designer's efforts at the early stages to lay down the appropriate principles for a conceptual and geometric design of energy-preserving buildings, which are also thermally comfortable and adapted to local climatic conditions. For years, especially during the last decade, important data concerning climate-conscious construction has been compiled, but the information has not been utilized by designers, due to its inaccessibility. It is significant, though, that solutions based on this knowledge could be found and assessed at the preliminary design steps. A correct climate-conscious design conceived at the initial stages may guarantee that during later phases of the project's development no problems calling for essential and drastic changes in the basic design will crop up. The meaning of such changes at later stages may require sometimes a redesigning of the entire project. It is vital, therefore, to understand at the pre-conceptual phase, what are the correct climatic-solar design strategies which satisfy the requirements of the local conditions, and enable the attainment of thermal comfort conditions, while consuming the least possible energy. The present study proposes a computer-aided passive solar design system (PASYS) which enables the handling of entire designing process, and its general, conceptual aspects, as well as the preliminary designing steps and their particular, practical aspects. The system is based both on a knowledge base which stores the existing information concerning solar-climatic construction in the form of rules of thumb, and on precise procedural models which enable finding solutions suited to the local climatic conditions. The proposed system is an intelligent CAAD system which equips the designer who is aware of the constraints of climate and energy, with a tool to achieve a better design. PASYS was developed as a universal system to deal with the various activities involved in the initial – pre-conceptual and conceptual - design stages. The system supports the following design activities of each stage of this kind: analysis, synthesis, documentation, assessment and decision making. It is capable of analyzing given conditions, thus helping the designer understand which are the significant preliminary design stages that have a bearing on thermal comfort conditions in a given climate. The system is also capable of proposing solutions corresponding with the particular design phase, and assess their adequacy. These solutions take into account the constraints determined both by the designer and by the system itself, owing to the knowledge base it contains. The system can also document the various solutions that have been found and selected, so that may be further developed at later stages. This documentation is carried out by a graphic interface, developed as part of the system, as well as by an interface devised for existing CAD software. This study highlights the interaction between form and performance. The system is able to assess the performance of a proposed design by considering a given geometry (form), or viceversa, it is able to recommend a solution that can deliver desired and required performances. The study comprises three parts: (a.) Development of the conceptual model of a knowledge based design process. (b.) Further development of the initial stages of the afore mentioned process, including the pre-conceptual and conceptual stages. (c.) Demonstration of the mode of work with the PASYS system. // The first part of the study deals with the definition of the design process, the definition of the various design steps and their characteristics, and the definition of the activities involved in each design step. This part of the work also presents the kinds of knowledge bases affecting the design process, and shows how this knowledge is an inseparable part of the design process. The second part deals with the development of the initial design stages - the pre-conceptual and the conceptual - which are based on knowledge. This part also contains compiled knowledge that is relevant to the design stage, and a knowledge storage and retrieval method that was developed so as to make the knowledge available and accessible on demand. This part further presents precise procedural methods, developed to find solutions adapted to the specific given conditions, and to precisely assess the performance of the proposed solution. A case in point is the module of the SHADING system which enables a precise assessment of the mutual shading of buildings, and an examination of the exposure of the southern elevation to the sun, which is necessary in order to determine the effective solar absorption area in a proposed project in given environment conditions. The third part of the study demonstrates the solar-climatic design process put into action and supported by the system that was developed. This system enables the designer, even at the preliminary design stages, to determine which properties relating to local climatic conditions he will introduce into the building. This important, seemingly natural act, is usually performed during more advanced stages, when it might generate significant changes in the design, at a juncture when changes are hard to make. A PASYS-aided design environment ensures that from the beginning of the designing process, the project will be designed correctly and efficiently as far as energy is concerned.
keywords Knowledge Base; Design Process; Form; Performance; CAAD Systems
series thesis:PhD
email
last changed 2003/03/03 11:58

_id ddss9401
id ddss9401
authors Akin, Omer
year 1994
title Psychology of Early Design in Architecture
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Lately there has been a good deal of emphasis on the early stages of the design process, particularly by developers of computer aids and quantitative design models for both evaluation and generation of designs in a variety of domains. Yet, there is little understanding of the early design-process. While the early design process as manifested by human designers need not be the sole basis of the description of this phase, it certainly represents and important kernel of knowledge, especially for those who are interested in developing models, systems or merely interfaces for such systems. This paper focuses on the characterization of the psychology of the early design phase in architecture. It is described in terms of the general design strategies and problem solving tactics used; and is contrasted against some of the process characteristics that
series DDSS
email
last changed 2003/08/07 16:36

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id ddssup9604
id ddssup9604
authors Boelen, A.J.
year 1996
title Impact-Analysis of Urban Design Realtime impact-analysis models for urban designers
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary The past five years Prof Dr Jr T.M. de Jong, professor in environmental planning and sustainability at the Technical University of Delft, has developed a theoretical foundation for the analysis of urban design on the ecological, technical, economical, cultural and political impacts of morphologic interventions on different levels of scale. From september 1994 Jr AJ. Boelen (Urban Design Scientist and Knowledge Engineer) started a research project at the same university to further explore the possibilities of these theories and to develop impact evaluation models for urban design and development with the theoretical work of De Jong as a starting point. The paper discusses the development of a design and decision support system based on these theories. For the development of this system, techniques like object-orientation, genetic algorithms and knowledge engineering are used. The user interface, the relation between the real world, paper maps and virtual maps and the presentation of design-interventions and impacts caused by the interventions are important issues. The development-process is an interactive step by step process. It consists of the making of a prototype of the system, testing the theory and hypothe-sisses the system is based on, by applying tests end adjusting the theory and hypothesisses where needed. Eventually the system must be able to act as an integrator of many different models already developed or still to be developed. The structure of the system will allow easy future expansion and adjustment to changing insights. The logic used to develop the basic theory on which this system is founded makes it possible to even introduce and maintain rather subjective aspects like quality or appraisal as impacts that can be evaluated. In a previously developed system "Momentum" this was proved to work effectively for the national level. In this project we will - amongst other things - try to prove the effectiveness of impact-evaluation for other levels of scale.
series DDSS
email
last changed 2003/11/21 15:16

_id ddss9411
id ddss9411
authors Bouillé, Francois
year 1994
title Mastering Urban Network Intersection And Superimposition, in an Object-oriented Knowledge System Integrating Rules, Neurons and Processes
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Many networks cover the urban texture, either superimposed at a variable distance, or really intersecting, or even in interconnection. We briefly recall the HBDS model, working on persistent abstract data types associated to graphical representations and carrying algorithms expressing conditions to be verified and/or actions to be performed. HBDS is an integrated system too, including database, expert system dealing with fuzzy rules and facts, discrete simulation engine, and neural engine; it has a general purpose programming language. Any urban network is associated to a given prototype, according to the same scheme named prototype with more specific components. These prototypes allow to build the different thematic structures instantiations of the prototypes. All possible cases of arc intersection or "pseudo-intersection" (simple superimposition)or interconnection are obtained by, owing to new prototypes. Moreover, such (pseudo)-intersections are automatically recognized and processed without a human intervention, owing to classes ofconstraints and classes of rules. They deal with particular constraints concerning the location of some urban furniture, and rules concerning the way a cable or a pipe must follow according to thepre-existing other networks in a given area, the minimal distances, minimal or maximal depths, and some required equipments. Urban classes of (pseudo-)intersections inserted in the hyperciass"neuron", inheriting of neural features, may be used for automated learning of urban knowledge; owing to their "behavior", these neurons can communicate and perform actions on other components. Urban classes inserted in the hyperciass "process" may be used for building very large models simulating complex urban phenomenons, thus allowing a better understanding of the real phenomenons. As a conclusion, we emphasize the methodological aspects of object-oriented integration for an efficient processing of the urban context, based on prototyping and mixing rules, neurons and processes.
series DDSS
last changed 2003/08/07 16:36

_id ddss9413
id ddss9413
authors Branki, Cherif
year 1994
title Communicative Acts in Cooperative Architectural Design Environments
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary The purpose of this paper is to present a scheme, that can be used to support the communication process in cooperative design. Computational aids for design have largely been for a designerworking by himself/herself. These aids have also been supplemented by the widespread use of artificial intelligence approaches. However, design is so complex, and very rarely acted upon by a single designer but many more working towards the same aim. This involves a new paradigm in which designers need to cooperate with each other using a computational medium. A protocol analysis in cooperative design has been carried out and technological support has been proposed.Cooperative design becomes an important paradigm for the next generation of intelligent computer aided design systems. It will be conducted in many forms among several designers and willrequire the support of advanced communication facilities beyond the "passive" transmission of data and messages. Technological advances in communication networks have opened up new ways for cooperative design interaction across several processes of cooperation among designers, designers and computer aided design systems, computer aided design systems and knowledge based systems, and knowledge based systems themselves. In cooperative design environments, aunit of communication among designers is the transfer of a message from one designer (a sender) to another (a receiver). The aim of such communication is to provide the receiver with some information or to have the receiver take certain actions. Inspired by the speech act theory, a branch of the philosophy of language and linguistics, such a unit is called a communicative act. By analogy to architectural design, a communicative act is a performing act in designers communication.
series DDSS
email
last changed 2003/08/07 16:36

_id 01ef
authors Cajati, Claudio
year 1994
title From Real to Virtual Building Behaviours: “Expert Hypertexts” in the Design Studio
doi https://doi.org/10.52842/conf.ecaade.1994.x.w5v
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 243
summary Starting from the refuse of the most impressive, on fashion performances of the so called Virtual Reality, I hypothize for the architectural education of the next decade a strategy based on the following scenario: ()- as regards the form of the virtual studio, it should result from the synergy of many moments and opportunities: telematic interaction; students working at home; students training through assistant design tools in the university venue, with or without teachers’ supervision; informal discussion teachers-students about such training; traditional teachers’ lectures as introductions or resumes; (-) as regards the function of the virtual studio, it should realize the awareness of building behaviours, by teaching architectural design through the critical analysis of positive and - even more important - negative “precedents”.
series eCAADe
email
last changed 2022/06/07 07:50

_id ddss9416
id ddss9416
authors Campbell, Noel and O'Reilly, Thomas
year 1994
title GIS: Science or Tool - The Built Environment Perspective
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary This paper attempts to locate GIS in the context of the built environment professions, rather than in the context of computer science, recognizing the integrated but limiting approach of viewingGIS from a strictly computer / spatial science perspective. The paper reviews the conflicts and tensions appearing in the GIS debate seeing them as reflecting the differences between the perceptions and interests of software developers and those of the professions. The "spatial science versus professional tool" dilemma is therefore critically assessed. Science is identified as the dominant paradigm within which GIS development has taken place. This encompasses the emphasis on GIS as spatial science; the interest in particular forms of spatial analysis; a narrow approach to the idea of information; the debate about the appropriate emphasis on the location for GIS in undergraduate education. The interests and activities of the professions cannot be encompassed within the pre-existing science paradigm. The paper identifies the interest the professions have had in broad geographical issues (as distinct from narrow spatial issues). It recognizes the different conventions and procedures used in recording and using geographical information, not all of them objective or scientific. It views the computer, not as a "scientific engine", but as a modern medium for representing and analyzing information. This includes storage and analysis, both internally (algorithmic manipulation) and outside (qualitative manipulation, beyond formal -"computer"- logic). This approach suggests a framework for research of a nature more sympathetic to the needs of the built environment professions in particular and an agenda which would include an examination of: (i) the conventions and procedures used in the professions to collect, store and process information and how these translate to computer technology; (ii) the types of software used and the way procedures may be accommodated by combining and integrating packages; (iii) the dynamism of GIS development (terms such as "dedicated", "mainframe", "PC-based", "distributed", "pseudo-", etc. are identified as indicativeof the need for professions-based approaches to GIS development); (iv) a critique of "information" (modelling of information flows within the professions, may yield valuable insights into the (modelling of information flows within the professions , may yield valuable insights into the similarity of requirements for a variety of "workplace scenarios").
series DDSS
email
last changed 2003/08/07 16:36

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2012/12/04 07:53

_id ddss9419
id ddss9419
authors Choukry, Maha
year 1994
title Knowledge Acquisition by Measurement: The Domain of Building Change
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary This paper presents a study that is aimed at finding a basis for systematic knowledge acquisition. More specifically, it attempts to introduce, knowledge acquisition by measurement: a method thatallows objective evaluation of empirical observations. Measurement has proven to be a significant tool to acquire, evaluate, and upgrade knowledge in some knowledge domains. In other domains,such as the domain of building change, measurement is barely subject of study. Building change knowledge acquisition by measurement seems to become a significant subject of study for several reasons: (i) increase our objective knowledge of previous building changes, (ii) allow systematic monitoring of present changes, and (iii) assist decisions planning for change in new buildings. In current studies, questions such as what were required changes, what were the building elements that fulfilled a change, how often did a building change, and what were the costs related to a change, often get no systematic or objective answers. Hence, to overcome that, I am concerned with finding a method that is to answer the following questions: 1) What is the domain of building change; 2) Is a method of knowledge acquisition by measurement adequate to represent buildingchanges; 3) Can empirical observations of building change be systematically represented and objectively evaluated using this method; and 4) How can this method be applied to assist theunderstanding of previous changes, the control of present changes, and assist planning for building change. The method introduced is based on three modules: (i) domain of building change; (ii) modelling this domain; and (iii) measurement. These three modules enable the formulation of the measurement of building change, namely the change indicator. Multiple change indicators, such as cost change indicator, or occurrence change indicator can measure empirical observations ofbuilding change. Sequential steps that lead to the development of this method start by section 1, where the domain of building change is specified. In section 2 this domain is modelled, and in section 3, knowledge acquisition by measurement method is introduced. A case study, shows how empirical building changes can be measured is explained in section 4. In section 5, three possible applications are introduced, and in section 6, I explain how a computerized prototype would enhance the efficiency of using such applications. Findings and conclusions resulting from this study are summarized in section 7.
series DDSS
email
last changed 2003/08/07 16:36

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 17HOMELOGIN (you are user _anon_566106 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002