CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 355

_id 5c68
authors Peng, C.
year 1994
title Exploring communication in collaborative design: co-operative architectural modelling
source Design Studies Vol 15 No 1 January 1994, pp. 19-44
summary An exploration of communication in collaborative design from the perspective of co-operative architectural modelling is reported. The objectives and problems of communication in collaborative design are described and anaysed by viewing design as, basically, disciplines of modelling complex objects. Three cases of teamwork in architectural modelling are studied, each demonstrating a rich and informative approach to collaboration. Looking at the cases from the co-operative modelling perspective, important conditions for communication are observed: firstly, the participation and co-ordination among heterogeneous systems of representation and action that individual members of a design team work with; and secondly, the interconnection between common goals shared by all participants and domain-oriented goals pursued by individuals. In exploring how the conditions were met, it was found useful to characterize communication in terms of the inter-relations between common images and distributed design developments. Two generic patterns of communication in collaborative design were found, which suggest two alternative conceptual frameworks for developing computational representations.
series journal paper
last changed 2003/04/23 15:14

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2012/12/04 07:53

_id c95f
authors Petrovic, Ivan and Svetel, Igor
year 1994
title Conversation on Design Action: By Men or by Machines?
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 15-23
doi https://doi.org/10.52842/conf.ecaade.1994.015
summary A design studio of the future shall be based on dislocated, distributed design services, and feature the ‘design by collaboration’ enabled by the computer transmitted information. However, in a collaborative design process, computer may take an additional role, i.e., as an “ultimately structured dynamic communication medium ... based on the notion of commitment and interpretation” (Winograd and Flores 1987). Various models of ‘intelligent’ design systems based on the ideas of ‘open, distributed, artificial intelligence systems’ have shown that the computer-based design agents which act on the object-to-be-designed model could be involved in a “conversation for action” (Winograd and Flores, Ibid.). The aim of the paper is to illustrate a computer-based design system that enables ‘a-kind-of’ conversations by the design agents before the design decisions were made. After the description of a design experiment and the conversation that went on between the design agents, the traits of the applied ‘design design system’ are discussed.

series eCAADe
last changed 2022/06/07 08:00

_id caadria2004_k-1
id caadria2004_k-1
authors Kalay, Yehuda E.
year 2004
title CONTEXTUALIZATION AND EMBODIMENT IN CYBERSPACE
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 5-14
doi https://doi.org/10.52842/conf.caadria.2004.005
summary The introduction of VRML (Virtual Reality Markup Language) in 1994, and other similar web-enabled dynamic modeling software (such as SGI’s Open Inventor and WebSpace), have created a rush to develop on-line 3D virtual environments, with purposes ranging from art, to entertainment, to shopping, to culture and education. Some developers took their cues from the science fiction literature of Gibson (1984), Stephenson (1992), and others. Many were web-extensions to single-player video games. But most were created as a direct extension to our new-found ability to digitally model 3D spaces and to endow them with interactive control and pseudo-inhabitation. Surprisingly, this technologically-driven stampede paid little attention to the core principles of place-making and presence, derived from architecture and cognitive science, respectively: two principles that could and should inform the essence of the virtual place experience and help steer its development. Why are the principles of place-making and presence important for the development of virtual environments? Why not simply be content with our ability to create realistically-looking 3D worlds that we can visit remotely? What could we possibly learn about making these worlds better, had we understood the essence of place and presence? To answer these questions we cannot look at place-making (both physical and virtual) from a 3D space-making point of view alone, because places are not an end unto themselves. Rather, places must be considered a locus of contextualization and embodiment that ground human activities and give them meaning. In doing so, places acquire a meaning of their own, which facilitates, improves, and enriches many aspects of our lives. They provide us with a means to interpret the activities of others and to direct our own actions. Such meaning is comprised of the social and cultural conceptions and behaviors imprinted on the environment by the presence and activities of its inhabitants, who in turn, ‘read’ by them through their own corporeal embodiment of the same environment. This transactional relationship between the physical aspects of an environment, its social/cultural context, and our own embodiment of it, combine to create what is known as a sense of place: the psychological, physical, social, and cultural framework that helps us interpret the world around us, and directs our own behavior in it. In turn, it is our own (as well as others’) presence in that environment that gives it meaning, and shapes its social/cultural character. By understanding the essence of place-ness in general, and in cyberspace in particular, we can create virtual places that can better support Internet-based activities, and make them equal to, in some cases even better than their physical counterparts. One of the activities that stands to benefit most from understanding the concept of cyber-places is learning—an interpersonal activity that requires the co-presence of others (a teacher and/or fellow learners), who can point out the difference between what matters and what does not, and produce an emotional involvement that helps students learn. Thus, while many administrators and educators rush to develop webbased remote learning sites, to leverage the economic advantages of one-tomany learning modalities, these sites deprive learners of the contextualization and embodiment inherent in brick-and-mortar learning institutions, and which are needed to support the activity of learning. Can these qualities be achieved in virtual learning environments? If so, how? These are some of the questions this talk will try to answer by presenting a virtual place-making methodology and its experimental implementation, intended to create a sense of place through contextualization and embodiment in virtual learning environments.
series CAADRIA
type normal paper
last changed 2022/06/07 07:52

_id ddss9486
id ddss9486
authors Smeltzer, Geert
year 1994
title The Application of Virtual Reality Systems in Architectural Design Processes
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary This paper describes the application of virtual reality systems in architectural design processes. It is based upon research on virtual reality technology to develop a more natural interface between men and design systems. It is also based upon the development of an integrated laboratory set-up for an immersive and a desk-top virtual reality system. This set-up should offer possibilities to manipulate 3D design models and to simulate the lighting situation in real time. Finally it is based upon an application of virtual reality technology for a design presentation. The research problem was determined by the question in which way the design process changes under the influence of technology. Other research questions, autonomous as possible, were how natural an interface can be using sensors, how a design model can be using real world features and how a representation can be as realistic as possible, using lighting simulations. The development problem was determined by the fact that the laboratory set-up had to be developed in co-operation with a hardware and a software vendor. This led to the development of two set-ups: one immersive virtual reality system and one desk top system. Another problem for the development of the set-up was that the project had to result in the presentation and demonstration of virtual reality technol-ogy that was not yet generally available to a larger group of organisations or enterprises. The first case study involved the development of a virtual reality presentation of a housing project in the Netherlands. The presentation was meant for people who were interested in the houses and was announced as a virtual open house. A potential buyer could walk through the model and move furniture around. The problem addressed concerned the relationship between the level of detail of the model, the speed of representation and the ease of interface system's. The second case study concerned the use of a virtual reality interface, model and representation for the evaluation of visibility and safety aspects of another housing project. At first this application was meant for the designers and their client. Based upon their evaluation of the design, several design improvements were made. Afterwards, this application was used for internal demonstrations. The application for the evaluation and the demonstrations were developed for an immersive virtual reality system and for a desk top system. The problem addressed was first of all a design problem and secondly a technical problem. This technical problem was related to the difference between the two virtual reality systems in terms of consequences for those applications. In the near future the research project, called the Asterisk project, will also examine and develop the possibilities of the simultaneous use of the system by more than one user, possibly on different locations. This means a development from single user single site to a multi user, a multiple site virtual reality systems. This project will also evaluate the feasibility of the application of virtual reality technology during an architectural design process. This research project will be followed by the development of a prototype of a virtual architecture system demonstrations of this system and an introduction to the market.
series DDSS
email
last changed 2003/08/07 16:36

_id ddss9476
id ddss9476
authors Porada, Mikhael and Porada, Sabine
year 1994
title "To See Ideas" or The Visualizing of Programmatic Data Reading Examples in Architecture and Town Planning
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Whether images are still in the mind, metaphors, sketches or icons, they play a crucial role. They have always been the heuristic pivot around which the process of artefact design organizes itself, particularly in architecture and town-planning. "To see ideas" through computer ideograms is to experiment an interesting and new direction for "pictural approach" supported design. Cognitive psychology emphasizes the important part played by mental images in reasoning, imagination in the working of human intelligence and the construction of mental images as cognitive factors underlying reasoning. It also points out how close computerized objects and mental schemata are. "To reason over a situation is first to remember or build some mental models of this situation; second to make those models work or simulate them in order to observe what would happen in different circumstances and then verify whether they fit the experiment data; third to select the best model, a tool meant to sustain and amplify the elaboration of mental models, which is a spontaneous activity". We introduce our exploration of the direct transmission of mental models through computer ideograms. We study the "operative" and the "expressive" aspects, and this allows us to analyze how some aspects in a field of knowledge are represented by ideograms, schemata, icons, etc. Aid to imagination, reasoning and communication by means of a graphic language must be limited to some figurative relevant aspects of the domain considered; it should not aim at a realistic simulation. Therefore, the important role played by icons and the spatial schematic representation of knowledge is emphasized. Our hypothesis is that an architectural concept does not result from an inductive process, but rather is built to solve problems through the direct representation of ideas with ideograms. An experiment was conducted with a graphic language, a dynamic scenography and actor-objects. The language allows one to build and visualize models from the various domains of knowledge of the object. The dynamic scenography can explore and simulate kinetically those models by means of staging various narrations and visual scenarios. The actor-objects play various and complementary parts in order to make the image explicit and link it with the concept. We distinguish between two parallel levels of reality in computer ideographics: one concerns the model, it represents the visualization of a graphic model at a particular moment and according to a particular representation, the other concerns the ideogram.
series DDSS
last changed 2003/08/07 16:36

_id 2638
authors Choi, Jin Won
year 1994
title ArchiWAIS: A Multimedia-Based Architectural Information System for Teaching and Learning Architectural History and Theory
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 161-169
doi https://doi.org/10.52842/conf.acadia.1994.161
summary Currently, there is a debate among architectural educators regarding the use of computers in the curricula. At present, computers are used for design purposes, and there is limited use in other areas of the curricula. This paper explores an instructional tool developed specifically for the teaching and learning of architectural history and theory, and since these courses are main components of any architectural curricula, using this tool can have a great impact on architectural education in general. The tool, called ArchiWAIS, is a multimedia-based architectural information system that utilizes emerging computer technologies such as multimedia, hypermedia, and telecommunications. As a multimedia system ArchiWAIS provides effective ways of handling various architectural media-text, images, architectural drawings and diagrams, three-dimensional models, animation and sound. ArchiWAIS as a distributed hypermedia system also provides multiple ways to search multimedia databases and browse through multimedia. ArchiWAIS is a WAIS (Wide-Area Information Server) client and has access to architectural databases specially constructed for this experimental project as well as general WAIS databases. ArchiWAIS is one of two subsystems of ArchiTOUR, an educational system currently under development. While ArchiWAIS searches and collects a variety of architectural information, HyperTOUR, the other subsystem of ArchiTOUR, can be used for presenting and learning a specific subject in architectural history and theory. A future extension of ArchiTOUR will be the integration of other curricula into the system, in essence, creating a common ground among architectural courses.
series ACADIA
last changed 2022/06/07 07:56

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id ddss9447
id ddss9447
authors Jabi, Wassim
year 1994
title An Outline of the Requirements for a Computer Supported Collaborative Design System
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Computer-Aided Architectural Design (CAAD) systems have adequately satisfied several needs so far. They have dramatically improved the accuracy and consistency of working drawings, enabled designers to visualize their design ideas in three-dimensions, allowed the analysis of designs through data exchange and integrated databases, and even allowed the designers to evaluate (and in some cases generate) designs based on comparisons to previous cases and/or the formalization of specific rules and grammars. Yet, there is a general consensus that CAAD systems have not yet achieved their full potential. First, most systems employ a single-user approach to solving architectural problems which fails to grapple with the fact that most design work is done through teamwork. Second, current systems still cannot support early design stages which involve client briefing, data collection, building program formulation, and schematic design generation. Thus, if CAAD is to ultimately benefit the design process, it must (1) emulate and support the design team approach to architectural problem solving and (2) be deployed in the earliest possible stages of the design process. This paper seeks to study remedies to both of the afore-mentioned limitations through focusing on the interaction between a set of requirements (the building program) and the architectural solution that satisfies them (the schematic design). The core of this interaction forms the fundamental dialectic and collaborative nature of what is called designing: a concerned social activity that proceeds by creating architectural elements to address a set of requirements and their re-thinking as a result of architectural conjecture. To investigate this relationship, it is proposed to build a computer-supported collaborative design environment using the tools of conceptual modelling (based on the NIAM notation), object-oriented algorithms, and distributed agents. Based on a literature survey and earlier findings on the role of artifacts in collaborative design, this paper outlines the requirements for the above system and reports on initial experiments. Thus, it constitutes the first stage of a research project that will lead to a full implementation of a distributed collaborative computer environment addressing the above issues.
series DDSS
type normal paper
email
last changed 2008/06/12 16:32

_id 5dff
authors Bricken, M.
year 1994
title Virtual Worlds: No Interface to Design
source Cyberspace - First Steps, M.Benedikt ed, MIT Press
summary In a virtual world, we are inside an environment of pure information that we can see, hear, and touch. The technology itself is invisible, and carefully adapted to human activity so that we can behave naturally in this artificial world. We can create any imaginable environment and we can experience entirely new perspectives and capabilities within it. A virtual world can be informative, useful, and fun; it can also be boring and uncomfortable. The difference is in the design. The platform and the interactive devices we use, the software tools and the purpose of the environment are all elements in the design of virtual worlds. But the most important component in designing comfortable, functional worlds is the person inside them. Cyberspace technology couples the functions of the computer with human capabilities. This requires that we tailor the technology to people, and refine the fit to individuals. We then have customized interaction with personalized forms of information that can amplify our individual intelligence and broaden our experience. Designing virtual worlds is a challenging departure from traditional interface design. In the first section of this chapter I differentiate between paradigms for screen-based interface design and paradigms for creating virtual worlds. The engineer, the designer, and the participant co-create cyberspace. Each role carries its own set of goals and expectations, its own model of the technology's salient features. In the second section of the chapter I address these multiple perspectives, and how they interrelate in the cooperative design process. In conclusion, I consider broader design issues, including control, politics, and emergent phenomena in cyberspace.
series other
last changed 2003/11/21 15:16

_id ddss9455
id ddss9455
authors Kraria, H. and Bridges, Alan
year 1994
title Building Integration Tools for Collaborative Design
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary For many years, research in CAAD systems has been mostly oriented towards single environ-ments, thus restricting the designer to a static environment. In reality the activities of user designers constantly interact with other participants activities (i.e. a structural engineer, services engineer, etc.). For instance, the architect is heavily influenced by the nature of the structural engineering process. It defines the character and integration of the basic components in other words, design is a collaborative process carried out by several participants with a single overall objective. The separation of architectural and engineering aspects in building design has brought on isolated computer tools. These tools are not interchangeable, the situation demands for their integration, all the interaction are supported by the social aspect of members of group participa-ting in collaborating work. The benefits of sharing CAD tools and related data between all members of the design team are that everyone works on the same information, co-ordination is easier and more accurate, and there is a reduction in the amount of repetition, as the need to redraw information is eliminated. The result is an increase in the accuracy and speed of the production of drawings. The technological aspects to support collaborative work and in particular the interaction process in design, is the main work issue being carried out at Strathclyde University, Department of Architecture and Building Science, Glasgow, Scotland U.K.
series DDSS
email
last changed 2003/08/07 16:36

_id a743
authors Laing, L. and Kraria, H.
year 1994
title CAD as an Interface for Integrated Collaborative Design
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 235
doi https://doi.org/10.52842/conf.ecaade.1994.x.w5h
summary In the traditional approach to building design, the designer (usually the architect) produces a design (often quite detailed)in blueprint before handing this to the next member of the design team (engineer) to superimpose the structure, services etc. Often this proves so impractical that the initial proposal has to be referred back to the architect for revision, and the process repeated - and this cycle may be repeated many times. Such routines arise in building design because designers find collaboration among themselves difficult to control, the task of design integration ultimately falling upon the construction manager or the contractor. This is the most common cause of problems arising during the execution of the project on site, causing a delays in the construction process, and building failures which might only be detected after occupancy. As a test-bed for addressing this problem, a system of coordinated files is proposed for use by design-students (with a working knowledge of AutoCAD) during a design project. The aim is to related data (CAD information) across all students working on the same project but developing different aspects. Participating students will be drawn from a range of design specialisms. Each member accessing the same information while developing different aspects (e.g. structure, services, and cost modelling). This goes beyond the conventional use of 'XREF' (cross-referenced drawings) and involves each member accessing and working with the same dataset - e.g. using different layers, co-ordination is easier and the data better integrated - there is thereby a reduction of the amount of repetition as the need to redraw information is eliminated. References or an initial data-set is set up by the tutor and available for reference at any stage of design project. The technological aspects to support collaborative work (and in particular the interaction process in design) is the main thrust of the undergraduate degree in Building Design Engineering at the University of Strathclyde.

series eCAADe
email
last changed 2022/06/07 07:50

_id c8bf
authors Ranulph Glanville
year 1994
title Remoteness and the Value of Sharing
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 210
doi https://doi.org/10.52842/conf.ecaade.1994.x.b1w
summary The technology of the near future creates the possibility of the Virtual Studio. The Virtual Studio emphasises the importance of sharing (co-operative working, interaction, updating: the importance of “betweenness”). It also emphasises the means by which we create the Virtual Studio and its intersection with what we normally call “reality”. And the means by which we share.
series eCAADe
last changed 2022/06/07 07:50

_id cbed
authors Yakubu, G.S.
year 1994
title Maximising the Benefits of CAD Systems in Architectural Education
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 228
doi https://doi.org/10.52842/conf.ecaade.1994.x.u8n
summary The positive impact of Computer Aided Design (CAD) in professional architectural practice has been in focus in recent times but relatively little has been written on its significance in the education of the contemporary architect. It is common knowledge that the profession of architecture is currently undergoing enormous strains as it battles to keep abreast of trends and developments in a period of series of rapid advancement in science, technology and management (RIBA, 1992). Whilst attempts are being made to redress the shortcomings of the profession in the above context, the requirements for architectural education are yet to forge a coherent strategy for the implementation of CAD/IT in the curriculum of schools of architecture. In almost every other field, including engineering, medicine and the humanities, computing application to problem-solving and decision-making is seen as a way forward as we move into 21st century. Architectural education must integrate CAD/IT into the teaching of core modules that give the architect distinctive competence: studio design. That is one of the best ways of doing justice to the education of the architect of today and the future. Some approaches to the teaching of CAD in schools of architecture have been touched upon in the recent past. Building upon this background as well as an understanding of the nature of design teaching/learning, this paper examines ways of maximising the benefits of CAD systems in architectural education and of bringing computer aided designing into the studio not only to enhance design thinking and creativity but also to support interactive processes. In order to maximise or optimise any function, one approach is to use the hard systems methodology which utilises analytic, analogic and iconic models to show the effect of those factors which are significant for the purposes being considered. The other approach is to use the soft systems methodology in which the analysis encompasses the concept of a human activity system as a means of improving a situation. The use of soft systems methodology is considered more appropriate for dealing with the problem of design which is characterised by a flux of interacting events and ideas that unroll through time. The paper concludes that the main impediment to maximising the benefits of CAD systems in architectural education is not only the inappropriate definition of the objectives for the implementation of CAD education but also that the control subsystems are usually ill-structured and relatively poorly defined. Schools must attempt to define a coherent and consistent policy on the use of CAD systems as an integral part of studio design and evolve an in-house strategic and operational controls that enable the set objectives to be met. Furthermore, it is necessary to support the high level of productivity from CAD systems with a more efficient management system, especially in dealing with communication, data sharing via relational database, co-ordination and integration. Finally, the use of soft systems methodology is recommended as the way forward to optimising CAD systems in design education as it would provide continuous improvements while maintaining their productive value.

series eCAADe
last changed 2022/06/07 07:50

_id 211f
authors Giangrande, A., Marinelli, A.M. and Sansoni, C.
year 1994
title A CAAD Based Method for Designing Industrial Plants in Sensitive Landscapes
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 75-83
doi https://doi.org/10.52842/conf.ecaade.1994.075
summary The protection and management of the visual landscape require new conceptual and operative tools to better link (integrate) the creative and the evaluation phases of the design process. These tools should aid the designer to take into account and evaluate the visual impact of a new project from the early steps of the process: that is the same as saying that we have to upset the logic of EIA (Environmental Impact Assessment), a procedure that usually is applied when the project is finished or is coming to an end. This paper illustrates the first results of a research that aims to produce a system to aid the designer of buildings or infrastructures — industry plants, transport systems, etc. — that could generate a strong impact on the surrounding landscape. To this end we applied some methods and techniques which was worked out in scientific fields that have developed a lot in the late years: MCDA (Multi-Criteria Decision Aid) and CAAD (Computer Aided Architectural Design). The paper describes a software prototype to aid design of industrial installations for the early design phases.

series eCAADe
email
last changed 2022/06/07 07:51

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
doi https://doi.org/10.52842/conf.acadia.1994.039
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id 0ecc
authors Anh, Tran Hoai
year 1994
title APPLICATION OF FULL-SCALE MODELLING IN VIETNAM: AN OUTLINE FOR DISCUSSION
source Beyond Tools for Architecture [Proceedings of the 5th European Full-scale Modeling Association Conference / ISBN 90-6754-375-6] Wageningen (The Netherlands) 6-9 September 1994, pp. 59-70
summary This paper discusses the possibility of applying full-scale modelling in Vietnam, a non-western so called developing country. It deals with two main questions: 1) Is the application of full-scale modelling to be restricted to the West only? 2) what are the possibilities, constraints and fields of application - with attention to the methodological validity and technical solution for full-scale modelling in Vietnam? It is argued that since full-scale modelling is based on people-environment interaction, it should, in principle, apply to studies about people–environment relation anywhere on earth. On the methodological validity, it is discussed that application of full-scale modelling in Vietnam faces similar methodological problems as encountered in European applications (such as people's behaviour in experiment, ability to understand the abstraction of models, etc.) although at another level as this paper will make clear. However, it would be needed to design a modelling kit that is of low costs and adapted to the availability of local materials and suitable for the climatic condition of Vietnam. Two fields of application are projected as most applicable in Vietnam: modelling in architectural education and research investigation. Application for user's participation in the design process will depend on the development of building policy in the country.
keywords Model Simulation, Real Environments
series other
type normal paper
last changed 2004/05/04 11:00

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 28f1
authors Carrara, Gianfranco, Kalay, Yehuda E. and Novembri, Gabriele
year 1994
title Knowledge-Based Computational Support for Architectural Design
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 5-12
doi https://doi.org/10.52842/conf.acadia.1994.005
summary The process of architectural design aims to define a physical form that will achieve certain functional and behavioral objectives in a particular context. It comprises three distinct, but highly interrelated, operations: (1) Definition of the desired objectives; (2) production of alternative design solutions; (3) evaluation of the expected performances of the solutions and their comparison to the predefined objectives. Design can be viewed as a process of search for a solution that satisfies stated needs, while at the same time adapting the needs to the opportunities and limitations inherent in the emerging solution. // Computational techniques were developed to assist each one of the three operations, with varying degrees of success. We propose to integrate all three operations into one whole, by developing a computational model that will facilitate smooth transition from one operation to another. The role of computers in supporting this model will include providing a knowledge base of prototypical design objectives and solutions, storing project-specific design goals and solutions, and predicting their expected performances. This paper discusses the rationale and background for developing such a knowledge-based design system, and presents the parameters for implementing it as a computational tool to support architectural design. Examples from a prototype implementation serve to illustrate the discussion.
series ACADIA
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 17HOMELOGIN (you are user _anon_809913 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002