CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 356

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
doi https://doi.org/10.52842/conf.acadia.1994.039
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id dda4
authors Yezioro, Abraham
year 1994
title Form and Performance in Intelligent CAAD Systems for Early Stages in Solar Design Building
source Technion, Faculty of Architecture and Town Planing, Haifa
summary Great care should be taken at the initial design stages to determine the principles and solution schemes for climate and energy-conscious buildings. The present study deals with supporting the designer's efforts at the early stages to lay down the appropriate principles for a conceptual and geometric design of energy-preserving buildings, which are also thermally comfortable and adapted to local climatic conditions. For years, especially during the last decade, important data concerning climate-conscious construction has been compiled, but the information has not been utilized by designers, due to its inaccessibility. It is significant, though, that solutions based on this knowledge could be found and assessed at the preliminary design steps. A correct climate-conscious design conceived at the initial stages may guarantee that during later phases of the project's development no problems calling for essential and drastic changes in the basic design will crop up. The meaning of such changes at later stages may require sometimes a redesigning of the entire project. It is vital, therefore, to understand at the pre-conceptual phase, what are the correct climatic-solar design strategies which satisfy the requirements of the local conditions, and enable the attainment of thermal comfort conditions, while consuming the least possible energy. The present study proposes a computer-aided passive solar design system (PASYS) which enables the handling of entire designing process, and its general, conceptual aspects, as well as the preliminary designing steps and their particular, practical aspects. The system is based both on a knowledge base which stores the existing information concerning solar-climatic construction in the form of rules of thumb, and on precise procedural models which enable finding solutions suited to the local climatic conditions. The proposed system is an intelligent CAAD system which equips the designer who is aware of the constraints of climate and energy, with a tool to achieve a better design. PASYS was developed as a universal system to deal with the various activities involved in the initial – pre-conceptual and conceptual - design stages. The system supports the following design activities of each stage of this kind: analysis, synthesis, documentation, assessment and decision making. It is capable of analyzing given conditions, thus helping the designer understand which are the significant preliminary design stages that have a bearing on thermal comfort conditions in a given climate. The system is also capable of proposing solutions corresponding with the particular design phase, and assess their adequacy. These solutions take into account the constraints determined both by the designer and by the system itself, owing to the knowledge base it contains. The system can also document the various solutions that have been found and selected, so that may be further developed at later stages. This documentation is carried out by a graphic interface, developed as part of the system, as well as by an interface devised for existing CAD software. This study highlights the interaction between form and performance. The system is able to assess the performance of a proposed design by considering a given geometry (form), or viceversa, it is able to recommend a solution that can deliver desired and required performances. The study comprises three parts: (a.) Development of the conceptual model of a knowledge based design process. (b.) Further development of the initial stages of the afore mentioned process, including the pre-conceptual and conceptual stages. (c.) Demonstration of the mode of work with the PASYS system. // The first part of the study deals with the definition of the design process, the definition of the various design steps and their characteristics, and the definition of the activities involved in each design step. This part of the work also presents the kinds of knowledge bases affecting the design process, and shows how this knowledge is an inseparable part of the design process. The second part deals with the development of the initial design stages - the pre-conceptual and the conceptual - which are based on knowledge. This part also contains compiled knowledge that is relevant to the design stage, and a knowledge storage and retrieval method that was developed so as to make the knowledge available and accessible on demand. This part further presents precise procedural methods, developed to find solutions adapted to the specific given conditions, and to precisely assess the performance of the proposed solution. A case in point is the module of the SHADING system which enables a precise assessment of the mutual shading of buildings, and an examination of the exposure of the southern elevation to the sun, which is necessary in order to determine the effective solar absorption area in a proposed project in given environment conditions. The third part of the study demonstrates the solar-climatic design process put into action and supported by the system that was developed. This system enables the designer, even at the preliminary design stages, to determine which properties relating to local climatic conditions he will introduce into the building. This important, seemingly natural act, is usually performed during more advanced stages, when it might generate significant changes in the design, at a juncture when changes are hard to make. A PASYS-aided design environment ensures that from the beginning of the designing process, the project will be designed correctly and efficiently as far as energy is concerned.
keywords Knowledge Base; Design Process; Form; Performance; CAAD Systems
series thesis:PhD
email
last changed 2003/03/03 11:58

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ddss9442
id ddss9442
authors Hensen, Jan
year 1994
title Energy Related Design Decisions Deserve Simulation Approach
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Building energy consumption and indoor climate result from complex dynamic thermal interactions between outdoor environment, building structure, heating, ventilating and air-conditioning (HVAC) system and occupants. Apart from a few trivial relations, this reality is too complicated to be casted in simple expressions, rules or graphs. As shown in a previous paper, there are now tools available - in the form of computer simulation systems - which treat the building and plant as an integrated, dynamic system. It is argued that these can and should be used in the context of design decision support and design evaluation related to thermal energy. The paper will give ageneral overview of building energy design tools which range from simplified design tools (SDT's) to comprehensive modelling and simulation systems. It will be demonstrated why SDT's are very limited in scope and range of applicability. With respect to building energy simulation the paper will compare simplified models with comprehensive models in terms of ressource needs, applicability etc. In view of the risk involved when using SDT´s or simplified models, the paper strongly promotes the use of comprehensive tools in combination with emerging intelligent front ends. The message ofthe paper will be: let the machine do the work.
series DDSS
email
last changed 2003/08/07 16:36

_id ddss9480
id ddss9480
authors Schipper, Roel and Augenbroe, Godfried
year 1994
title An Information Model of Energy Performance in Early Building Design
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Design is a creative and dynamic process. The level to which a future generation of Intelligent Integrated Building Design Systems will be able to support this process depends on the power of the underlying conceptual models to cover the semantics of design. In the definition of generic building models, the concept of constraints appears to be a powerful means to formalize those semantics. Both design performance goals, and rules and relations in design composition can be described as constraints. The Engineering Data Model (EDM), recently developed at UCLA, acknowledges this fact. It allows the formal definition of object oriented building models, using constraints as the central concept for describing relations. This paper will discuss the development of an EDM building model for the integrated design for energy performance, and the implementa-tion of this model in a small prototype system. We will specifically deal with modelling informati-on in the early design stages. This information typically consists of multiple global design alternatives on one hand, and a wide range of conflicting design goals on the other hand. In the paper, it is demonstrated that integration of these conflicting views on building performance in one coherent model is the key to obtaining an optimal design result. Using the Dutch building codes for energy performance (NEN 2916) as an example of design goals, the concepts and relations of these building codes were translated to a formal EDM model. A small shell was built on top of this computer-interpretable model, to demonstrate the useability of the model during the solving of a concrete design problem. It is shown that the EDM building model is able to provide the designer with integrated information through combining different sets of performance constraints and design alternatives in one environment.
series DDSS
email
last changed 2003/08/07 16:36

_id 6637
authors Ward, D., Brown, A.G.P. and Horton, F.F.
year 1994
title A Design Assistant for Environmental Optimisation of Buildings
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 247
doi https://doi.org/10.52842/conf.ecaade.1994.x.u0s
summary The dual function of the Environmental Design Assistant which we have developed is to act firstly as a teaching aid and secondly as a design aid. In terms of it's role as a design assistant it is similar in nature to the application described by Papamichael, K, in Novitski, B. J. (1993). However, the work described here forms part of an overall strategy to develop a user friendly design assistant across the spectrum of Architectural design disciplines: this is one particular strand of the project. One aim embodied in the development of the environmental design assistant has been the pragmatic one of the production and refining of a tool to perform environmental assessments of buildings in accordance with the British recommendations made in BREEAM (Building Research Establishment Energy Assessment Method). In this respect the assistant allows for the consequences of design decisions to be readily assessed and then for those decisions to be modified. The Assistant has undergone a series of refinements to make it more user-friendly, efficient and appropriate as an Architectural design aid; and this has been the second aim of the project. The project has acted as a vehicle for the application of design principles applied to the presentation, information structuring and navigation associated with Hypermedia and Multimedia products. We are applying the kind of good design principles which have been summarised well by Schulmeister, R. (1994). These principles include Ariadne's Thread (paths for navigation), Lost in Hyperspace (backward navigation), More-than-browsing (interaction) and Tutoring (providing feedback to the user). Adoption of such principles is, we believe, essential in order to realise the potential of Hypermedia tools. The principal development tool for the work has been SuperCard. This has been used in conjunction with a range of other software including ArchiCad and Intellidraw and a range of image grabbing devices.

series eCAADe
email
last changed 2022/06/07 07:50

_id 0ecc
authors Anh, Tran Hoai
year 1994
title APPLICATION OF FULL-SCALE MODELLING IN VIETNAM: AN OUTLINE FOR DISCUSSION
source Beyond Tools for Architecture [Proceedings of the 5th European Full-scale Modeling Association Conference / ISBN 90-6754-375-6] Wageningen (The Netherlands) 6-9 September 1994, pp. 59-70
summary This paper discusses the possibility of applying full-scale modelling in Vietnam, a non-western so called developing country. It deals with two main questions: 1) Is the application of full-scale modelling to be restricted to the West only? 2) what are the possibilities, constraints and fields of application - with attention to the methodological validity and technical solution for full-scale modelling in Vietnam? It is argued that since full-scale modelling is based on people-environment interaction, it should, in principle, apply to studies about people–environment relation anywhere on earth. On the methodological validity, it is discussed that application of full-scale modelling in Vietnam faces similar methodological problems as encountered in European applications (such as people's behaviour in experiment, ability to understand the abstraction of models, etc.) although at another level as this paper will make clear. However, it would be needed to design a modelling kit that is of low costs and adapted to the availability of local materials and suitable for the climatic condition of Vietnam. Two fields of application are projected as most applicable in Vietnam: modelling in architectural education and research investigation. Application for user's participation in the design process will depend on the development of building policy in the country.
keywords Model Simulation, Real Environments
series other
type normal paper
last changed 2004/05/04 11:00

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 27b5
authors Dießenbacher, Claus and Rank, Ernst
year 1995
title A Multimedia Archaeological Museum
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 13-20
doi https://doi.org/10.52842/conf.ecaade.1995.013
summary This paper will present a project, which was first initiated in 1994 as a graduate students seminar and is now being continued as a research project in a cooperation of computer scientists, architects and archaeologists. An ancient roman city (Colonia Ulpia Traiana near todays Xanten in Germany) has been reconstructed, using various levels of abstraction. On the coarsest level, a 3D-model of the whole city was established, distinguishing between different historical periods of the city. The second level picks places of special interest (temples, the forum, the amphitheater, the townbaths etc.) and reconstructs these buildings or groups of buildings. On the finest level important interior parts or functional details like the Hypocaustae in the town-baths are modelled. All reconstructions are oriented as close as possible to results from excavations or other available documents. All levels of the 3D-model have been visualized using photorealistic images and sequences of video animations. The 3D model is integrated into a multimedia environment, augmenting the visualization elements with plans of the city and individual buildings and with text documents. It is intended, that parts of the outlined system will be available at the site of the ancient city, where today a large public archaeological park is located.
series eCAADe
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_2.htm
last changed 2022/06/07 07:55

_id db00
authors Espina, Jane J.B.
year 2002
title Base de datos de la arquitectura moderna de la ciudad de Maracaibo 1920-1990 [Database of the Modern Architecture of the City of Maracaibo 1920-1990]
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 133-139
summary Bases de datos, Sistemas y Redes 134The purpose of this report is to present the achievements obtained in the use of the technologies of information andcommunication in the architecture, by means of the construction of a database to register the information on the modernarchitecture of the city of Maracaibo from 1920 until 1990, in reference to the constructions located in 5 of Julio, Sectorand to the most outstanding planners for its work, by means of the representation of the same ones in digital format.The objective of this investigation it was to elaborate a database for the registration of the information on the modernarchitecture in the period 1920-1990 of Maracaibo, by means of the design of an automated tool to organize the it datesrelated with the buildings, parcels and planners of the city. The investigation was carried out considering three methodologicalmoments: a) Gathering and classification of the information of the buildings and planners of the modern architectureto elaborate the databases, b) Design of the databases for the organization of the information and c) Design ofthe consultations, information, reports and the beginning menu. For the prosecution of the data files were generated inprograms attended by such computer as: AutoCAD R14 and 2000, Microsoft Word, Microsoft PowerPoint and MicrosoftAccess 2000, CorelDRAW V9.0 and Corel PHOTOPAINT V9.0.The investigation is related with the work developed in the class of Graphic Calculation II, belonging to the Departmentof Communication of the School of Architecture of the Faculty of Architecture and Design of The University of the Zulia(FADLUZ), carried out from the year 1999, using part of the obtained information of the works of the students generatedby means of the CAD systems for the representation in three dimensions of constructions with historical relevance in themodern architecture of Maracaibo, which are classified in the work of The Other City, generating different types ofisometric views, perspectives, representations photorealistics, plants and facades, among others.In what concerns to the thematic of this investigation, previous antecedents are ignored in our environment, and beingthe first time that incorporates the digital graph applied to the work carried out by the architects of “The Other City, thegenesis of the oil city of Maracaibo” carried out in the year 1994; of there the value of this research the field of thearchitecture and computer science. To point out that databases exist in the architecture field fits and of the design, alsoweb sites with information has more than enough architects and architecture works (Montagu, 1999).In The University of the Zulia, specifically in the Faculty of Architecture and Design, they have been carried out twoworks related with the thematic one of database, specifically in the years 1995 and 1996, in the first one a system wasdesigned to visualize, to classify and to analyze from the architectural point of view some historical buildings of Maracaiboand in the second an automated system of documental information was generated on the goods properties built insidethe urban area of Maracaibo. In the world environment it stands out the first database developed in Argentina, it is the database of the Modern andContemporary Architecture “Datarq 2000” elaborated by the Prof. Arturo Montagú of the University of Buenos Aires. The general objective of this work it was the use of new technologies for the prosecution in Architecture and Design (MONTAGU, Ob.cit). In the database, he intends to incorporate a complementary methodology and alternative of use of the informationthat habitually is used in the teaching of the architecture. When concluding this investigation, it was achieved: 1) analysis of projects of modern architecture, of which some form part of the historical patrimony of Maracaibo; 2) organized registrations of type text: historical, formal, space and technical data, and graph: you plant, facades, perspectives, pictures, among other, of the Moments of the Architecture of the Modernity in the city, general data and more excellent characteristics of the constructions, and general data of the Planners with their more important works, besides information on the parcels where the constructions are located, 3)construction in digital format and development of representations photorealistics of architecture projects already built. It is excellent to highlight the importance in the use of the Technologies of Information and Communication in this investigation, since it will allow to incorporate to the means digital part of the information of the modern architecturalconstructions that characterized the city of Maracaibo at the end of the XX century, and that in the last decades they have suffered changes, some of them have disappeared, destroying leaves of the modern historical patrimony of the city; therefore, the necessity arises of to register and to systematize in digital format the graphic information of those constructions. Also, to demonstrate the importance of the use of the computer and of the computer science in the representation and compression of the buildings of the modern architecture, to inclination texts, images, mapping, models in 3D and information organized in databases, and the relevance of the work from the pedagogic point of view,since it will be able to be used in the dictation of computer science classes and history in the teaching of the University studies of third level, allowing the learning with the use in new ways of transmission of the knowledge starting from the visual information on the part of the students in the elaboration of models in three dimensions or electronic scalemodels, also of the modern architecture and in a future to serve as support material for virtual recoveries of some buildings that at the present time they don’t exist or they are almost destroyed. In synthesis, the investigation will allow to know and to register the architecture of Maracaibo in this last decade, which arises under the parameters of the modernity and that through its organization and visualization in digital format, it will allow to the students, professors and interested in knowing it in a quicker and more efficient way, constituting a contribution to theteaching in the history area and calculation. Also, it can be of a lot of utility for the development of future investigation projects related with the thematic one and restoration of buildings of the modernity in Maracaibo.
keywords database, digital format, modern architecture, model, mapping
series SIGRADI
email
last changed 2016/03/10 09:51

_id 68c8
authors Flemming, U., Coyne, R. and Fenves, S. (et al.)
year 1994
title SEED: A Software Environment to Support the Early Phases in Building Design
source Proceeding of IKM '94, Weimar, Germany, pp. 5-10
summary The SEED project intends to develop a software environment that supports the early phases in building design (Flemming et al., 1993). The goal is to provide support, in principle, for the preliminary design of buildings in all aspects that can gain from computer support. This includes using the computer not only for analysis and evaluation, but also more actively for the generation of designs, or more accurately, for the rapid generation of design representations. A major motivation for the development of SEED is to bring the results of two multi-generational research efforts focusing on `generative' design systems closer to practice: 1. LOOS/ABLOOS, a generative system for the synthesis of layouts of rectangles (Flemming et al., 1988; Flemming, 1989; Coyne and Flemming, 1990; Coyne, 1991); 2. GENESIS, a rule-based system that supports the generation of assemblies of 3-dimensional solids (Heisserman, 1991; Heisserman and Woodbury, 1993). The rapid generation of design representations can take advantage of special opportunities when it deals with a recurring building type, that is, a building type dealt with frequently by the users of the system. Design firms - from housing manufacturers to government agencies - accumulate considerable experience with recurring building types. But current CAD systems capture this experience and support its reuse only marginally. SEED intends to provide systematic support for the storing and retrieval of past solutions and their adaptation to similar problem situations. This motivation aligns aspects of SEED closely with current work in Artificial Intelligence that focuses on case-based design (see, for example, Kolodner, 1991; Domeshek and Kolodner, 1992; Hua et al., 1992).
series other
email
last changed 2003/04/23 15:14

_id a3ef
authors Garcia, F., Fernandez, A. and Barrallo, J.
year 1994
title Discovering Fractal Geometry in CAAD
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 69-74
doi https://doi.org/10.52842/conf.ecaade.1994.069
summary Fractal geometry provides a powerful tool to explore the world of non-integer dimensions. Very short programs, easily comprehensible, can generate an extensive range of shapes and colors that can help us to understand the world we are living. This shapes are specially interesting in the simulation of plants, mountains, clouds and any kind of landscape, from deserts to rain-forests. The environment design, aleatory or conditioned, is one of the most important contributions of fractal geometry to CAAD. On a small scale, the design of fractal textures makes possible the simulation, in a very concise way, of wood, vegetation, water, minerals and a long list of materials very useful in photorealistic modeling.
series eCAADe
last changed 2022/06/07 07:51

_id ddss9434
id ddss9434
authors Grant, M.
year 1994
title Urban Gis - The Application of the Information Technologies to Urban Management
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Many cities in the UK and indeed throughout the developed world are characterised by the all too familiar symptoms of urban blight caused by insensitive intervention in the environment. The common denominator within this class of problem is the lack of a coordinated, integrated approach to the planning, design and maintenance of our cities. The cycle of development and redevelopment calls for input from a diverse range of disciplines relating to architecture, civilengineering, transport engineering, and the management of city utilities. This lack of a common up datable information base renders access to a global view of the city difficult, if not impossible.This problem has provided the motivation to move towards an integrated philosophy regarding information collection, collation and dissemination. The impetus is provided primarily through theincreasing complexity of urban management but also through central governments policy to progress towards decentralisation of services. Fiscal pressure to increase efficiency, lower manpower resources and arrive at speedier judgements all point to an increasing reliance on the information technologies. Current work at ABACUS within Strathclyde University addresses research whose objective is to identify, and then prototype, a relevant urban information system. It is proposed that by attributing a geometrical framework with those physical quantities thatare relevant to the formal and functional evaluation of the urban environment, the means of evaluating the qualities and quantities of the buildings aswell as the social and economic prospects may be realised.
series DDSS
email
last changed 2003/08/07 16:36

_id ddss9441
id ddss9441
authors Hammond, Barbara
year 1994
title Computer Aided Urban Design
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary The product of the Urban Design process in the public sector in the UK is usually a briefing document of some kind which communicates design ideas in outline both to the lay public and to private developers. The problem with briefing effectively is that outline expression of ideas does not provide a strong basis for negotiation with developers; the temptation therefore is to work up one proposal in detail and to present it as the only option. This type of prescriptive briefing may be successful in situations where the public body has control over the land, the economy is buoyant and the site has a simple context. Its problems are that it is labour intensive, so some areas are covered in detail, others not at all; it is seen as restrictive by developers, so may create a climate of conflict rather than certainty; it is not responsive to change; it covers specific sites thoroughly but does not deal well with large, complex areas; on large sites it tends towards a homogeneous environment whereas the nature of towns and cities is pluralistic and heterogeneous; it confines the Urban Designer to site specific work rather than allowing concentration on the whole urban system. Urban Designers at the London Docklands Development Corporation felt that CAD might present some answers to these problems in facilitating an iterative, interactive briefing process which could respond quickly to change; whereby varying options for development could be investigated fully but quickly and resource-efficiently; which could be used to communicate design ideas effectively to non-professionals; which could help to make negotiation with developers more effective, less confrontational; which could deal with large, complex sites effectively. The idea was that a piece of city could be modeled on the computer and an urban design study would then be carried out on it which would test varying options for development, resulting in an outline, but three dimensional, model for an area which could be used in three ways: as a briefing tool, as part of a marketing exercise and as a tool to aid effective negotiation and consultation at the planning stage. A pilot project was carried out on a set of development sites at East India Dock and, following the success of this, a full study was carried at Surrey Quays Centre. The paper describes these projects and discusses both their products and their effect on the developmentprocess as aids in decision making.
series DDSS
last changed 2003/08/07 16:36

_id ddss9446
id ddss9446
authors Horgen, Turid
year 1994
title Post Occupancy Evaluation as a Strategy to Develop an Improved Work Environment
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary A post-occupancy evaluation is a formal way of finding out whether a recently occupied, remodelled, or built environment is performing, as was intended in its programming or design, and a term which has been developed in the professional field in the United States over the last 20 years. The Scandinavian approach to the same question has emphasised surfacing the values of the users of the work environment as a tool for a more comprehensive approach to space planning and design. A recent case-study of the Taubman Building at Harvard University's John F. Kennedy School of Government was aimed at blending the two strategies for evaluation, defined postoccupancy evaluation as a dialogue with the client, as a process to help the client reflect on spatial and technological improvements, or alternate strategies for organisational locations in buildings, and offers an interesting example of a possible future direction for POE's. Sheila Sheridan, Director of Facilities and Services at the Kennedy School, commissioned the case-study, and has been using it result in her daily work. Jacqueline Vischer, who has developed a survey of seven key dimensions of work-place comfort for commercial office buildings throughout eastern North America, and Turid Horgen, who has developed tools for participatory environmental evaluation and programming, widely used in Scandinavia, carried out the study and facilitated the evaluation process. The study is also done in the context of the ongoing research on these issues in the design Inquiry Group at the School of Architecture and Planning at MIT, which is involved in a larger program for developing strategies and tools for more effective programming and management of corporate space. This research defines the workplace environment as the interaction between four dimensions: space, technology, organisation and finance. Our approach is to integrate programming and evaluation with organisational planning and organisational transformation.Post occupancy evaluation is seen as a way to inform the client about his organisational culture as he manages the fit between a facility and its uses, and as one of several tools to bridge the frameworks and viewpoints and the many "languages" which are brought into the decision making process of designing the built environment.
series DDSS
last changed 2003/08/07 16:36

_id 0726
authors Kadysz, Andrzej
year 1994
title CAD the Tool
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 212
doi https://doi.org/10.52842/conf.ecaade.1994.x.k7r
summary What is the role of CAAD as a tool of architectural form creation ? We used to over-estimate the role of computer as significant factor of design process. In fact it serves only to produce technical documentation and to visualise designed buildings. We usually use CAAD to record ideas, not to create designs. We use it like more complex pencil. But it is unsuitable for conceptual design , with imperceptible influence on idea definition. Its practical usefulnes is limited. I would like to consider and find out reasons of that state, present some conclusions and ideas on computer aided architectural form creation. Many tools were invented to extend posibilities of human body or intellect. Microscop and telescop are extensions of human eye. Which organ is extended by computer (especially by CAAD)? CAAD with high developed function of visualising of the object beeing designed seems to be an extension of architect's imagination. It is beeing used to foresee visual efects, to check designed forms, to see something what we are not able to imagine. It performes the role of electronic modeler. Real model and virtual model - the medium of presentation is diferent but ways of using them are similar . Dislocation of place where we build model is not a big achievement, but potential possbilities of CAAD in modeling are almost unlimited (?). What are special features of CAAD as a modeling tool? First we have to consider what is indispensible when building a model: to embody idea. To do this we need space, substance and tools. In architectural design practice space is a real site with definite climate, neigbourhood, orientation. Substance that we shape is an archiectural form composed of many difrent elements: walls, windows, roof, entry, ... , proportions, rhythm, emotions, impresions... The tool is: our knowledge, imagination, talent, experience, norms, law and drawing equipment. Working with the computer, making virtual model, we have many of mentioned elements given in structure of CAAD program and interpreted by it. But many of them have different character. Making traditional dummy of building we operate on reality which is manually accessible. In case of computer model we operate on information. Space, substance and tool (- program) are informations, data. Human being is not an abstract data processor, but creature that lives non stop in close, direct, sensual contact with nature. By this contact with enviroment collects experiences. Computer can operate on digital data that is optionally selected and given by user, independent upon enviromental conditions. Usually architecture was created on basis of enviroment, climate, gravity. But these do not exist in CAAD programs or exist in the symbolic form. Character of these conditions is not obvious. We can watch demeanour of objects in gravity but it can be also antigravity. In theory of systems everything is considered as a part of biger system. In "virtual" reality (in computer space) we deal with accurences which are reduced to abstract level, free upon terms or connections. We work with our CAAD software using geometric space whithout any other principle.

series eCAADe
last changed 2022/06/07 07:50

_id e8b9
authors Kesler, Beatrice
year 1994
title PROGRAMME OF HABITAT WISHES - A TOOL FOR COMMUNICATION
source Beyond Tools for Architecture [Proceedings of the 5th European Full-scale Modeling Association Conference / ISBN 90-6754-375-6] Wageningen (The Netherlands) 6-9 September 1994, pp. 23-30
summary How to develop an attractive built environment with the desired housing and well kept outdoor conditions? As long as experts do not ask lay-people for their needs and wants, we must not be surprised that people are not interested in their environment and show a lack of care. The contribution of (future) inhabitants in the planning process can have a material and a social impact on building, improving and maintaining a neighbourhood. One of the problems that have to be solved is the question how to improve the communication between non-professionals and professionals, between inhabitants and designers (architects). Inhabitants express themselves in a simple language about the number of rooms, cupboards, size of the garden and parking place. Architects communicate in drawings of designs and talk in a technical language about functions, forms, spacial structures, light and expression. It can be helpful - is the fundamental idea in Wageningen - to develop a shared language, to start talking about activities and to use scale models in a structured process. The participation process is a sort of exploratory expedition. Good communication is a must for a successful participation process. A clear expression of the 'programme of habitat wishes' is the first step in the dialogue between inhabitants and architect. The Structural Space Planning Method is a structured process to develop a 'programme of habitat wishes' for the built environment. It can be related to all sorts of objects: houses, co-housing projects, institutions, playgrounds, streets or neighbourhoods. Full scale and scale models are part of the Structural Space Planning Method, as described by Van Dam (these proceedings). This contribution describes some practical experiences with the development of the 'programme of habitat wishes' and the effects on the participation process.
keywords Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 10:59

_id d5b3
authors Knight, Michael and Brown, Andre
year 1999
title Working in Virtual Environments through appropriate Physical Interfaces
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 431-436
doi https://doi.org/10.52842/conf.ecaade.1999.431
summary The work described here is aimed at contributing towards the debate and development relating to the construction of interfaces to explore buildings and their environs through virtual worlds. We describe a particular hardware and software configuration which is derived by the use of low cost games software to create the Virtual Environment. The Physical Interface responds to the work of other researchers, in this area, in particular Shaw (1994) and Vasquez de Velasco & Trigo (1997). Virtual Evironments might have the potential to be "a magical window into other worlds, from molecules to minds" (Rheingold, 1992), but what is the nature of that window? Currently it is often a translucent opening which gives a hazy and distorted (disembodied) view. And many versions of such openings are relatively expensive. We consider ways towards clearing the haze without too much expense, adapting techniques proposed by developers of low cost virtual reality systems (Hollands, 1995) for use in an architectural setting.
keywords Virtual Environments, Games Software
series eCAADe
email
last changed 2022/06/07 07:51

_id 2647
authors Koutamanis, Alexander
year 1994
title Sun and Time in the Built Environment
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 248
doi https://doi.org/10.52842/conf.ecaade.1994.x.f4j
summary At a time when requirements on the quality of the built environment are increasingly becoming explicit and specific, computer technology promises the ability to analyse and evaluate buildings during the design process. The computer can extract the necessary information from conventional geometric representations, generate comprehensive descriptions of the aspects to be analysed and use these to arrive at precise and accurate results that can be represented visually. Visual representations facilitate comprehension of the analyses and of their results because of their agreement with our predominantly visual perception of the built environment. The consequent close correspondences between geometric design representations and the visual representation of analyses and evaluations allow direct correlation of the results with the design as a whole. Such correlation is instrumental for imposing explicit and justifiable constraints on the further development of a design. One good example of visual analyses is daylighting. In many drafting and modelling programs a viewing point can be set on the basis the sun’s height and azimuth. The projection returned reveals the surfaces that are directly lit by the sun. In other programs the sun’s height and azimuth can be used to position a light source with parallel rays. This source gives rise to shading and shadows that correspond to the ones produced by the sun. In addition, several programs can calculate the position of the sun and hence the viewing point or the light source on the basis of the date, the time and the geographic coordinates of the place. The availability of computer-aided daylighting analysis has obvious advantages for practice. Efficiency and reliability of the analysis increase, while flexibility is superior to analog simulations. Unfortunately automation of daylighting analysis may also impede understanding of underlying principles, that is, of the issues at the focus of architectural education. Explaining how the analysis is performed and why becomes thus a necessity for computer-aided design education. Exercises that aim at more than just learning and using a computer program can enrich the student’s understanding of the analysis and its results. The efficiency and flexibility of the computer facilitate the study of aspects such as the comparison of local apparent time, local mean time, standard time and daylight saving time and their significance for daylighting, solar heating and cooling patterns and possibilities. Sundials with their explicit correspondence to solar movement can be instrumental in this respect. The efficiency and flexibility of the computer also support the investigation of the techniques by which the daylighting analysis is performed and explain the relationships between projective theory, sciagraphy and computer graphics. A better understanding of the principles and techniques for daylighting analysis has a generally positive influence on the students’ learning of the daylighting analysis software and more significantly on their correlation of daylighting constraints with their designs. This leads in turn to increased flexibility and adaptability of the designs with respect to daylighting and to a conscious and meaningful exploration of variations and alternative solutions.
series eCAADe
email
last changed 2022/06/07 07:50

_id 8fb2
id 8fb2
authors McCall, Raymond, Bennett, Patrick and Johnson, Erik
year 1994
title An Overview of the PHIDIAS II HyperCAD System
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 63-74
doi https://doi.org/10.52842/conf.acadia.1994.063
summary The PHIDIAS II HyperCAD system combines the functionality of CAD graphics, hypermedia, database management and knowledge-based computation in a single, highly integrated design environment. The CAD functionality includes both 3-D and 2-D vector graphics. The hypermedia includes support for text, raster images, video and sound. The database management enables persistent storage and interlinking of large collections of text, images, video, sound and vector graphics, i.e., thousands of vector graphic objects and drawings in a single database. Retrieval is provided both through use of "associative indexing" based on hyperlinks and through use of an advanced query language. The knowledge- based computation includes both inference and knowledgebased critiquing.

A highly unusual feature of PHIDIAS II is that it implements all of its functions using only hypermedia mechanisms. Complex vector graphic drawings and objects are represented as composite hypermedia nodes. Inference and critiquing are implemented through use of what are known as virtual structures [Halasz 1988], including virtual links and virtual nodes. These nodes and links are dynamic (computed) rather than static (constant). They are defined as expressions in the same language used for queries and are computed at display time. The implementation of different kinds of functions using a common set of mechanisms makes it easy to use them in combination, thus further augmenting the system's functionality.

PHIDIAS supports design by informing architects as they develop a solution's form. The idea is thus not to make the design process faster or cheaper but rather to improve the quality of the things designed. We believe that architects can create better buildings for their users if they have better information. This includes information about buildings of given types, user populations, historical and modern precedents, local site and climate conditions, the urban and natural context and its historical development, as well as local, state and federal regulations.

series ACADIA
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 17HOMELOGIN (you are user _anon_905595 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002