CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 353

_id ddss9446
id ddss9446
authors Horgen, Turid
year 1994
title Post Occupancy Evaluation as a Strategy to Develop an Improved Work Environment
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary A post-occupancy evaluation is a formal way of finding out whether a recently occupied, remodelled, or built environment is performing, as was intended in its programming or design, and a term which has been developed in the professional field in the United States over the last 20 years. The Scandinavian approach to the same question has emphasised surfacing the values of the users of the work environment as a tool for a more comprehensive approach to space planning and design. A recent case-study of the Taubman Building at Harvard University's John F. Kennedy School of Government was aimed at blending the two strategies for evaluation, defined postoccupancy evaluation as a dialogue with the client, as a process to help the client reflect on spatial and technological improvements, or alternate strategies for organisational locations in buildings, and offers an interesting example of a possible future direction for POE's. Sheila Sheridan, Director of Facilities and Services at the Kennedy School, commissioned the case-study, and has been using it result in her daily work. Jacqueline Vischer, who has developed a survey of seven key dimensions of work-place comfort for commercial office buildings throughout eastern North America, and Turid Horgen, who has developed tools for participatory environmental evaluation and programming, widely used in Scandinavia, carried out the study and facilitated the evaluation process. The study is also done in the context of the ongoing research on these issues in the design Inquiry Group at the School of Architecture and Planning at MIT, which is involved in a larger program for developing strategies and tools for more effective programming and management of corporate space. This research defines the workplace environment as the interaction between four dimensions: space, technology, organisation and finance. Our approach is to integrate programming and evaluation with organisational planning and organisational transformation.Post occupancy evaluation is seen as a way to inform the client about his organisational culture as he manages the fit between a facility and its uses, and as one of several tools to bridge the frameworks and viewpoints and the many "languages" which are brought into the decision making process of designing the built environment.
series DDSS
last changed 2003/08/07 16:36

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
doi https://doi.org/10.52842/conf.acadia.1994.039
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id 2647
authors Koutamanis, Alexander
year 1994
title Sun and Time in the Built Environment
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 248
doi https://doi.org/10.52842/conf.ecaade.1994.x.f4j
summary At a time when requirements on the quality of the built environment are increasingly becoming explicit and specific, computer technology promises the ability to analyse and evaluate buildings during the design process. The computer can extract the necessary information from conventional geometric representations, generate comprehensive descriptions of the aspects to be analysed and use these to arrive at precise and accurate results that can be represented visually. Visual representations facilitate comprehension of the analyses and of their results because of their agreement with our predominantly visual perception of the built environment. The consequent close correspondences between geometric design representations and the visual representation of analyses and evaluations allow direct correlation of the results with the design as a whole. Such correlation is instrumental for imposing explicit and justifiable constraints on the further development of a design. One good example of visual analyses is daylighting. In many drafting and modelling programs a viewing point can be set on the basis the sun’s height and azimuth. The projection returned reveals the surfaces that are directly lit by the sun. In other programs the sun’s height and azimuth can be used to position a light source with parallel rays. This source gives rise to shading and shadows that correspond to the ones produced by the sun. In addition, several programs can calculate the position of the sun and hence the viewing point or the light source on the basis of the date, the time and the geographic coordinates of the place. The availability of computer-aided daylighting analysis has obvious advantages for practice. Efficiency and reliability of the analysis increase, while flexibility is superior to analog simulations. Unfortunately automation of daylighting analysis may also impede understanding of underlying principles, that is, of the issues at the focus of architectural education. Explaining how the analysis is performed and why becomes thus a necessity for computer-aided design education. Exercises that aim at more than just learning and using a computer program can enrich the student’s understanding of the analysis and its results. The efficiency and flexibility of the computer facilitate the study of aspects such as the comparison of local apparent time, local mean time, standard time and daylight saving time and their significance for daylighting, solar heating and cooling patterns and possibilities. Sundials with their explicit correspondence to solar movement can be instrumental in this respect. The efficiency and flexibility of the computer also support the investigation of the techniques by which the daylighting analysis is performed and explain the relationships between projective theory, sciagraphy and computer graphics. A better understanding of the principles and techniques for daylighting analysis has a generally positive influence on the students’ learning of the daylighting analysis software and more significantly on their correlation of daylighting constraints with their designs. This leads in turn to increased flexibility and adaptability of the designs with respect to daylighting and to a conscious and meaningful exploration of variations and alternative solutions.
series eCAADe
email
last changed 2022/06/07 07:50

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ddss9419
id ddss9419
authors Choukry, Maha
year 1994
title Knowledge Acquisition by Measurement: The Domain of Building Change
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary This paper presents a study that is aimed at finding a basis for systematic knowledge acquisition. More specifically, it attempts to introduce, knowledge acquisition by measurement: a method thatallows objective evaluation of empirical observations. Measurement has proven to be a significant tool to acquire, evaluate, and upgrade knowledge in some knowledge domains. In other domains,such as the domain of building change, measurement is barely subject of study. Building change knowledge acquisition by measurement seems to become a significant subject of study for several reasons: (i) increase our objective knowledge of previous building changes, (ii) allow systematic monitoring of present changes, and (iii) assist decisions planning for change in new buildings. In current studies, questions such as what were required changes, what were the building elements that fulfilled a change, how often did a building change, and what were the costs related to a change, often get no systematic or objective answers. Hence, to overcome that, I am concerned with finding a method that is to answer the following questions: 1) What is the domain of building change; 2) Is a method of knowledge acquisition by measurement adequate to represent buildingchanges; 3) Can empirical observations of building change be systematically represented and objectively evaluated using this method; and 4) How can this method be applied to assist theunderstanding of previous changes, the control of present changes, and assist planning for building change. The method introduced is based on three modules: (i) domain of building change; (ii) modelling this domain; and (iii) measurement. These three modules enable the formulation of the measurement of building change, namely the change indicator. Multiple change indicators, such as cost change indicator, or occurrence change indicator can measure empirical observations ofbuilding change. Sequential steps that lead to the development of this method start by section 1, where the domain of building change is specified. In section 2 this domain is modelled, and in section 3, knowledge acquisition by measurement method is introduced. A case study, shows how empirical building changes can be measured is explained in section 4. In section 5, three possible applications are introduced, and in section 6, I explain how a computerized prototype would enhance the efficiency of using such applications. Findings and conclusions resulting from this study are summarized in section 7.
series DDSS
email
last changed 2003/08/07 16:36

_id ddss9421
id ddss9421
authors Daru, Roel and Adams, Wim
year 1994
title Matchmaker: An Instrument for Matching Demand for and Supply of Buildings and Revealing Specific Discrepancies
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary To match supply and demand of buildings, various approaches are possible. While artificial intelligenceis favoured by some, we think that a less 'heavy' approach can be more cost and time efficient. The casewe have chosen to exemplify our approach concerns architectural heritage. To match supply and demandwhile at the same time respecting the constraints imposed by cultural heritage, it is necessary to bringthem together and to effectuate feasibility studies in the shortest possible time. The feasibility study shouldbe served by tools allowing the various partners to communicate on the level of the match between them, translated in terms of spatial organisation and building constraints. In the past years, our designmorphology group has developed and tested a graphic-based reordering tool which has been applied to large governmental buildings, both existing and new. The same tool can be used for weighted objectives ranking and evaluation, to have a synthetic view of the combined basic preferences and differences of the involved parties as for example in a jury wise evaluation and ranking of alternative proposals. The proposed tool is the electronic and graphic version of the data and association matrices, which have been for a long time recommended for use in the preliminary phases of design. But as long as these instruments could only be drawn and redrawn on paper they were much too ineffectual and found little real application. The developed tool is connected by sub-routines to a computer aided design package, within which the spatial patterns are translated into plans and attached data bases. The matching takes place in a number of steps. The first is to describe the organisation (the demanding party) as functional units which can be made corresponding with spatial units. The prescription of spatial needs can take place in both quantitative and qualitative manners. The Matchmaker tools offer the possibility of interactive clustering of spatial needs. Another step, which can be taken concurrently, is to describe the monument in spatial units and distance relationships. The input can be generated directly within the matrix, but it is much easier, more self evident and realistic to generate this automatically from the draughted plan. The following step is the input of constraints originating from heritage preservation objectives, expressed in levels of authorised intervention. Again, the Matchmaker tools offer here the possibility of visual clustering of spatial units, their relationships and associated properties. In the next step, the matching takes place. In this step the actual positions, properties and constraints of existing spaces in the monument are compared (and visualised by discrepancies views) to the optimised and clustered spatial needs of the end user. In the following phase, the feasibility in terms of space, building fabric and costs can be appraised. Once a compromise has been attained, preliminary proposals can be designed and laid down in terms of drawings. The spatialdesigns can then again be translated into matrix views and evaluated.
series DDSS
email
last changed 2003/08/07 16:36

_id db00
authors Espina, Jane J.B.
year 2002
title Base de datos de la arquitectura moderna de la ciudad de Maracaibo 1920-1990 [Database of the Modern Architecture of the City of Maracaibo 1920-1990]
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 133-139
summary Bases de datos, Sistemas y Redes 134The purpose of this report is to present the achievements obtained in the use of the technologies of information andcommunication in the architecture, by means of the construction of a database to register the information on the modernarchitecture of the city of Maracaibo from 1920 until 1990, in reference to the constructions located in 5 of Julio, Sectorand to the most outstanding planners for its work, by means of the representation of the same ones in digital format.The objective of this investigation it was to elaborate a database for the registration of the information on the modernarchitecture in the period 1920-1990 of Maracaibo, by means of the design of an automated tool to organize the it datesrelated with the buildings, parcels and planners of the city. The investigation was carried out considering three methodologicalmoments: a) Gathering and classification of the information of the buildings and planners of the modern architectureto elaborate the databases, b) Design of the databases for the organization of the information and c) Design ofthe consultations, information, reports and the beginning menu. For the prosecution of the data files were generated inprograms attended by such computer as: AutoCAD R14 and 2000, Microsoft Word, Microsoft PowerPoint and MicrosoftAccess 2000, CorelDRAW V9.0 and Corel PHOTOPAINT V9.0.The investigation is related with the work developed in the class of Graphic Calculation II, belonging to the Departmentof Communication of the School of Architecture of the Faculty of Architecture and Design of The University of the Zulia(FADLUZ), carried out from the year 1999, using part of the obtained information of the works of the students generatedby means of the CAD systems for the representation in three dimensions of constructions with historical relevance in themodern architecture of Maracaibo, which are classified in the work of The Other City, generating different types ofisometric views, perspectives, representations photorealistics, plants and facades, among others.In what concerns to the thematic of this investigation, previous antecedents are ignored in our environment, and beingthe first time that incorporates the digital graph applied to the work carried out by the architects of “The Other City, thegenesis of the oil city of Maracaibo” carried out in the year 1994; of there the value of this research the field of thearchitecture and computer science. To point out that databases exist in the architecture field fits and of the design, alsoweb sites with information has more than enough architects and architecture works (Montagu, 1999).In The University of the Zulia, specifically in the Faculty of Architecture and Design, they have been carried out twoworks related with the thematic one of database, specifically in the years 1995 and 1996, in the first one a system wasdesigned to visualize, to classify and to analyze from the architectural point of view some historical buildings of Maracaiboand in the second an automated system of documental information was generated on the goods properties built insidethe urban area of Maracaibo. In the world environment it stands out the first database developed in Argentina, it is the database of the Modern andContemporary Architecture “Datarq 2000” elaborated by the Prof. Arturo Montagú of the University of Buenos Aires. The general objective of this work it was the use of new technologies for the prosecution in Architecture and Design (MONTAGU, Ob.cit). In the database, he intends to incorporate a complementary methodology and alternative of use of the informationthat habitually is used in the teaching of the architecture. When concluding this investigation, it was achieved: 1) analysis of projects of modern architecture, of which some form part of the historical patrimony of Maracaibo; 2) organized registrations of type text: historical, formal, space and technical data, and graph: you plant, facades, perspectives, pictures, among other, of the Moments of the Architecture of the Modernity in the city, general data and more excellent characteristics of the constructions, and general data of the Planners with their more important works, besides information on the parcels where the constructions are located, 3)construction in digital format and development of representations photorealistics of architecture projects already built. It is excellent to highlight the importance in the use of the Technologies of Information and Communication in this investigation, since it will allow to incorporate to the means digital part of the information of the modern architecturalconstructions that characterized the city of Maracaibo at the end of the XX century, and that in the last decades they have suffered changes, some of them have disappeared, destroying leaves of the modern historical patrimony of the city; therefore, the necessity arises of to register and to systematize in digital format the graphic information of those constructions. Also, to demonstrate the importance of the use of the computer and of the computer science in the representation and compression of the buildings of the modern architecture, to inclination texts, images, mapping, models in 3D and information organized in databases, and the relevance of the work from the pedagogic point of view,since it will be able to be used in the dictation of computer science classes and history in the teaching of the University studies of third level, allowing the learning with the use in new ways of transmission of the knowledge starting from the visual information on the part of the students in the elaboration of models in three dimensions or electronic scalemodels, also of the modern architecture and in a future to serve as support material for virtual recoveries of some buildings that at the present time they don’t exist or they are almost destroyed. In synthesis, the investigation will allow to know and to register the architecture of Maracaibo in this last decade, which arises under the parameters of the modernity and that through its organization and visualization in digital format, it will allow to the students, professors and interested in knowing it in a quicker and more efficient way, constituting a contribution to theteaching in the history area and calculation. Also, it can be of a lot of utility for the development of future investigation projects related with the thematic one and restoration of buildings of the modernity in Maracaibo.
keywords database, digital format, modern architecture, model, mapping
series SIGRADI
email
last changed 2016/03/10 09:51

_id 68c8
authors Flemming, U., Coyne, R. and Fenves, S. (et al.)
year 1994
title SEED: A Software Environment to Support the Early Phases in Building Design
source Proceeding of IKM '94, Weimar, Germany, pp. 5-10
summary The SEED project intends to develop a software environment that supports the early phases in building design (Flemming et al., 1993). The goal is to provide support, in principle, for the preliminary design of buildings in all aspects that can gain from computer support. This includes using the computer not only for analysis and evaluation, but also more actively for the generation of designs, or more accurately, for the rapid generation of design representations. A major motivation for the development of SEED is to bring the results of two multi-generational research efforts focusing on `generative' design systems closer to practice: 1. LOOS/ABLOOS, a generative system for the synthesis of layouts of rectangles (Flemming et al., 1988; Flemming, 1989; Coyne and Flemming, 1990; Coyne, 1991); 2. GENESIS, a rule-based system that supports the generation of assemblies of 3-dimensional solids (Heisserman, 1991; Heisserman and Woodbury, 1993). The rapid generation of design representations can take advantage of special opportunities when it deals with a recurring building type, that is, a building type dealt with frequently by the users of the system. Design firms - from housing manufacturers to government agencies - accumulate considerable experience with recurring building types. But current CAD systems capture this experience and support its reuse only marginally. SEED intends to provide systematic support for the storing and retrieval of past solutions and their adaptation to similar problem situations. This motivation aligns aspects of SEED closely with current work in Artificial Intelligence that focuses on case-based design (see, for example, Kolodner, 1991; Domeshek and Kolodner, 1992; Hua et al., 1992).
series other
email
last changed 2003/04/23 15:14

_id 211f
authors Giangrande, A., Marinelli, A.M. and Sansoni, C.
year 1994
title A CAAD Based Method for Designing Industrial Plants in Sensitive Landscapes
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 75-83
doi https://doi.org/10.52842/conf.ecaade.1994.075
summary The protection and management of the visual landscape require new conceptual and operative tools to better link (integrate) the creative and the evaluation phases of the design process. These tools should aid the designer to take into account and evaluate the visual impact of a new project from the early steps of the process: that is the same as saying that we have to upset the logic of EIA (Environmental Impact Assessment), a procedure that usually is applied when the project is finished or is coming to an end. This paper illustrates the first results of a research that aims to produce a system to aid the designer of buildings or infrastructures — industry plants, transport systems, etc. — that could generate a strong impact on the surrounding landscape. To this end we applied some methods and techniques which was worked out in scientific fields that have developed a lot in the late years: MCDA (Multi-Criteria Decision Aid) and CAAD (Computer Aided Architectural Design). The paper describes a software prototype to aid design of industrial installations for the early design phases.

series eCAADe
email
last changed 2022/06/07 07:51

_id ddss9434
id ddss9434
authors Grant, M.
year 1994
title Urban Gis - The Application of the Information Technologies to Urban Management
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Many cities in the UK and indeed throughout the developed world are characterised by the all too familiar symptoms of urban blight caused by insensitive intervention in the environment. The common denominator within this class of problem is the lack of a coordinated, integrated approach to the planning, design and maintenance of our cities. The cycle of development and redevelopment calls for input from a diverse range of disciplines relating to architecture, civilengineering, transport engineering, and the management of city utilities. This lack of a common up datable information base renders access to a global view of the city difficult, if not impossible.This problem has provided the motivation to move towards an integrated philosophy regarding information collection, collation and dissemination. The impetus is provided primarily through theincreasing complexity of urban management but also through central governments policy to progress towards decentralisation of services. Fiscal pressure to increase efficiency, lower manpower resources and arrive at speedier judgements all point to an increasing reliance on the information technologies. Current work at ABACUS within Strathclyde University addresses research whose objective is to identify, and then prototype, a relevant urban information system. It is proposed that by attributing a geometrical framework with those physical quantities thatare relevant to the formal and functional evaluation of the urban environment, the means of evaluating the qualities and quantities of the buildings aswell as the social and economic prospects may be realised.
series DDSS
email
last changed 2003/08/07 16:36

_id 0726
authors Kadysz, Andrzej
year 1994
title CAD the Tool
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 212
doi https://doi.org/10.52842/conf.ecaade.1994.x.k7r
summary What is the role of CAAD as a tool of architectural form creation ? We used to over-estimate the role of computer as significant factor of design process. In fact it serves only to produce technical documentation and to visualise designed buildings. We usually use CAAD to record ideas, not to create designs. We use it like more complex pencil. But it is unsuitable for conceptual design , with imperceptible influence on idea definition. Its practical usefulnes is limited. I would like to consider and find out reasons of that state, present some conclusions and ideas on computer aided architectural form creation. Many tools were invented to extend posibilities of human body or intellect. Microscop and telescop are extensions of human eye. Which organ is extended by computer (especially by CAAD)? CAAD with high developed function of visualising of the object beeing designed seems to be an extension of architect's imagination. It is beeing used to foresee visual efects, to check designed forms, to see something what we are not able to imagine. It performes the role of electronic modeler. Real model and virtual model - the medium of presentation is diferent but ways of using them are similar . Dislocation of place where we build model is not a big achievement, but potential possbilities of CAAD in modeling are almost unlimited (?). What are special features of CAAD as a modeling tool? First we have to consider what is indispensible when building a model: to embody idea. To do this we need space, substance and tools. In architectural design practice space is a real site with definite climate, neigbourhood, orientation. Substance that we shape is an archiectural form composed of many difrent elements: walls, windows, roof, entry, ... , proportions, rhythm, emotions, impresions... The tool is: our knowledge, imagination, talent, experience, norms, law and drawing equipment. Working with the computer, making virtual model, we have many of mentioned elements given in structure of CAAD program and interpreted by it. But many of them have different character. Making traditional dummy of building we operate on reality which is manually accessible. In case of computer model we operate on information. Space, substance and tool (- program) are informations, data. Human being is not an abstract data processor, but creature that lives non stop in close, direct, sensual contact with nature. By this contact with enviroment collects experiences. Computer can operate on digital data that is optionally selected and given by user, independent upon enviromental conditions. Usually architecture was created on basis of enviroment, climate, gravity. But these do not exist in CAAD programs or exist in the symbolic form. Character of these conditions is not obvious. We can watch demeanour of objects in gravity but it can be also antigravity. In theory of systems everything is considered as a part of biger system. In "virtual" reality (in computer space) we deal with accurences which are reduced to abstract level, free upon terms or connections. We work with our CAAD software using geometric space whithout any other principle.

series eCAADe
last changed 2022/06/07 07:50

_id d5b3
authors Knight, Michael and Brown, Andre
year 1999
title Working in Virtual Environments through appropriate Physical Interfaces
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 431-436
doi https://doi.org/10.52842/conf.ecaade.1999.431
summary The work described here is aimed at contributing towards the debate and development relating to the construction of interfaces to explore buildings and their environs through virtual worlds. We describe a particular hardware and software configuration which is derived by the use of low cost games software to create the Virtual Environment. The Physical Interface responds to the work of other researchers, in this area, in particular Shaw (1994) and Vasquez de Velasco & Trigo (1997). Virtual Evironments might have the potential to be "a magical window into other worlds, from molecules to minds" (Rheingold, 1992), but what is the nature of that window? Currently it is often a translucent opening which gives a hazy and distorted (disembodied) view. And many versions of such openings are relatively expensive. We consider ways towards clearing the haze without too much expense, adapting techniques proposed by developers of low cost virtual reality systems (Hollands, 1995) for use in an architectural setting.
keywords Virtual Environments, Games Software
series eCAADe
email
last changed 2022/06/07 07:51

_id ddssup9610
id ddssup9610
authors Krafta, Romulo
year 1996
title Built form and urban configuration development simulation
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary The "centrality/potential" model, proposed by Krafta (1994), for configurational development, aims at the simulation of inner city built form growth. This is generally achieved by simulating the uneven distribution of floor area increments, resulting from replacement of old buildings, considered "devalued capital" form new ones. The model considers two main variables - public urban space system and built form - and treats them unevenly; the former is extensively disaggregated whereas the latter is not. This feature enables the model to make just a rough account of intra-urban built form development. The issue of built form simulation is then taken further in the following way: a) Urban built form is disaggregated by types. Buildings are classified by a cross combination of scale, purpose, age and quality standard; b) The city is itself considered as a set of intertwined typologic cities. This means that each unit of public space is identified by its dominant built form type, producing a multilayered-discontinuous city. Each one has its own market characteristics: rentability, technological availability and demand size; c) The market constraints determine which layer-city has priority over the others, as well as each one's size of growth. References to rentability and demand size gives each built form type priorities for development d) Spatial conditions, in the form of particular evaluation of centrality and spatial opportunity measures, regulates the distribution of built form increments and typological succession. Locational values, denoted by centrality and spatial opportunity measures, area differently accounted for in each layer-city simulation. e) Simulation is obtained by "running" the model recursively. Each built form type is simulated separately and in hyerarquical order, so that priority and replacement of built form types is acknowledged properly.
series DDSS
email
last changed 2003/08/07 16:36

_id ddss9461
id ddss9461
authors Leusen, Marc van
year 1994
title System of Types in the Domain of Residential Buildings
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary At the early stages of the architectural design process, general decisions are made with respect to a building's spatial organization. These concern its overall shape and size, as well as its internal organization. Characteristics of a building's spatial organization, however vaguely and incomplete-ly described at those stages, may have serious consequences for various aspects of its performan-ce. Those consequences are often difficult to determine in advance and emerge only during time-consuming elaboration of the design or even not before the actual building is in operation. A designer's ability of foreseeing them is much dependent on his knowledge of existing buildings. More particularly, it depends on his understanding of the performances of types rather than specific precedents. In general terms, the present study aims at supporting design decisions at the early stages by improving the awareness and understanding of types. Many architectural handbooks particularly those in the domain of housing attempt to support access to and acquisition of such knowledge through so-called typologies, in which types are described by means of graphical descriptions, and illustrated with one or more precedents. The effectiveness of such books as design supporting tools is limited by the fact, among others, that type descriptions are not based upon a well-defined representation of spatial organization. This leads to uncertainty as to the handbook's completeness and to unreliability of performances associated with types. The present study explores the possibilities of dealing with these shortcomings. It is limited to the domain of the complex residential building. After a review of existing work in the area of housing typology, the study presents and discusses the following products: (i) a type-representation of basic arrangements of dwellings, that is, a representation which retains only the most general characteristics of spatial organization, (ii) a demonstration of the potential of this representation; this demonstration involves the enumeration and limited exploration of certain ranges of type descriptions.
series DDSS
last changed 2003/08/07 16:36

_id ga0009
id ga0009
authors Lewis, Matthew
year 2000
title Aesthetic Evolutionary Design with Data Flow Networks
source International Conference on Generative Art
summary For a little over a decade, software has been created which allows for the design of visual content by aesthetic evolutionary design (AED) [3]. The great majority of these AED systems involve custom software intended for breeding entities within one fairly narrow problem domain, e.g., certain classes of buildings, cars, images, etc. [5]. Only a very few generic AED systems have been attempted, and extending them to a new design problem domain can require a significant amount of custom software development [6][8]. High end computer graphics software packages have in recent years become sufficiently robust to allow for flexible specification and construction of high level procedural models. These packages also provide extensibility, allowing for the creation of new software tools. One component of these systems which enables rapid development of new generative models and tools is the visual data flow network [1][2][7]. One of the first CG packages to employ this paradigm was Houdini. A system constructed within Houdini which allows for very fast generic specification of evolvable parametric prototypes is described [4]. The real-time nature of the software, when combined with the interlocking data networks, allows not only for vertical ancestor/child populations within the design space to be explored, but also allows for fast "horizontal" exploration of the potential population surface. Several example problem domains will be presented and discussed. References: [1] Alias | Wavefront. Maya. 2000, http://www.aliaswavefront.com [2] Avid. SOFTIMAGE. 2000, http://www.softimage.com [3] Bentley, Peter J. Evolutionary Design by Computers. Morgan Kaufmann, 1999. [4] Lewis, Matthew. "Metavolve Home Page". 2000, http://www.cgrg.ohio-state.edu/~mlewis/AED/Metavolve/ [5] Lewis, Matthew. "Visual Aesthetic Evolutionary Design Links". 2000, http://www.cgrg.ohio-state.edu/~mlewis/aed.html [6] Rowley, Timothy. "A Toolkit for Visual Genetic Programming". Technical Report GCG-74, The Geometry Center, University of Minnesota, 1994. [7] Side Effects Software. Houdini. 2000, http://www.sidefx.com [8] Todd, Stephen and William Latham. "The Mutation and Growth of Art by Computers" in Evolutionary Design by Computers, Peter Bentley ed., pp. 221-250, Chapter 9, Morgan Kaufmann, 1999.    
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ddss9468
id ddss9468
authors Mustoe, I. and Bridges, A.
year 1994
title An Intelligent Architectural Design Resource
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary With the development of optical disc technology very large resources of visual material are becoming available to designers. For example, the School of Architecture at University College Dublin has compiled a 30 cm Phillips Laser vision disc containing some 20,000 images of buildings from all parts of Europe. Conventional methods of accessing such large bodies of information tend to be based on formal query languages and are unsuitable for designers searching design precedents or other forms of inspiration. Conventional expert systems, based on deductive inference engines, are equally unsuitable. The difficulty stems from design being an exploratory rather than deductive process. The paper describes a novel type of pattern matching expert system, referred to as "image", which has been developed to provide a method of search which is more appropriate to designers. By the use of image, designers can make meaningful but non-deductive connections between their attitudes towards design and the contents of an optical disc. The bit-string manipulation algorithm underlying image is explained and an example of the use of the system in controlling the Dublin disc is also described.
series DDSS
email
last changed 2003/08/07 16:36

_id ddss9469
id ddss9469
authors Nutt, Bev
year 1994
title The Decisions of Facility Adaption
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Obsolescence in buildings is driven today by functional, locational and financial factors rather than by physical deterioration alone. As a result, it is no longer reasonable to expect that new building stock will remain within its originally designed class of use throughout its effective life. It is also optimistic to assume that 'change of use' adaptions, once made, will not be subject to further changes in due course. In these circumstances, the conventional notion of designing for a particular 'building type' must be questioned. The paper will describe current research into the adaptability potential of buildings, particularly the development of decision protocols to evaluate options for the adaption of vacant building stock to different uses. Speculative suggestions will be advanced concerning the probable impact of the research and on urban planning and building design.
series DDSS
last changed 2003/08/07 16:36

_id 4f13
authors Ronchi, Alfredo M.
year 1994
title A Brief History of CAAD in Italy
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 227
doi https://doi.org/10.52842/conf.ecaade.1994.x.f3n
summary Twenty years of revolution, from the middle '70 to the middle '90. Many things have changed since the origins of computer graphics and computer aided design in architecture. We started teaching drafting on terminals which connected to mini computers, complex procedures or sets of graphics libraries working with keywords, vectors and storage screens. The next step was devoted to the discovery of workstations in the early '80's, where the user sat face on to the whole power of a multitasking system. At that time to use up to 16 time sharing processes running on the same work station seemed to have no practical use at all. Fortunately someone (ie Xerox PARC laboratories) at the same time started to develop the so-called GUI. Graphical user interface started a revolution in human/machine interface (ie Smalltalk). The desktop metaphor, the use of multiple windows and dialogues joined with icons and pop up menus let the user manage more applications and, even more important, created a standard in application/user interface (CUA). In the meantime focus had moved from hardware to software, systems being chosen from the software running. The true revolution we have seen starting from that base and involving an ever increasing number of users was the birth of PC based applications for CAAD. Generally speaking nowadays there are three main technologies concerning teaching: communication, multimedia and virtual reality. The first is the real base for future revolution. In the recent past we have started to learn how to manage information by computers. Now we can start to communicate and share information all over the world in real time. The new age opened by fax, followed by personal communication systems and networks is the entry point for a real revolution. We can work in the virtual office, meet in virtual space and cooperate in workgroups. ATM and ISDN based teleconferencing will provide a real working tool for many. The ever increasing number of e-mail addresses and network connections is carrying us towards the so called 'global village'. The future merger between personal digital assistant and personal communication will be fascinating. Multi & HyperMedia technology is, like a part of VR, a powerful way to share and transfer information in a structured form. We do not need to put things in a serial form removing links because we can transfer knowledge as is. Another interesting and fundamental aspect typical of VR applications is the capability to change cognitive processes from secondary (symbolic - reconstructive) to primary (perceptive - motory). In this way we can learn by direct experience, by experiment as opposed to reading books. All these things will affect not only ways of working but also ways of studying and teaching. Digital communications, multimedia and VR will help students, multimedia titles will provide different kinds of information directly at home using text, images, video clips and sounds. Obviously all those things will not substitute human relationship as a multimedia title does not compete against a book but it helps.

series eCAADe
last changed 2022/06/07 07:50

_id ddss9489
id ddss9489
authors Spreckelmeyer, Kent F.
year 1994
title The Symbolic Dimensions of Workplace Evaluations
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Post-Occupancy Evaluation (POE) techniques have been used during the past twenty years in a variety of workplace settings to measure specific occupant responses to the physical dimensions of the office environment. Typically, these measures have been used by environmental researchers and designers to improve instrumental aspects of the workplace, such as increased levels of occupant satisfaction with lighting, temperature, privacy, and office configuration. A growing body of evidence has begun to suggest that while instrumental approaches to workplace evaluation have produced improvements in specific office conditions, overall levels of worker satisfaction and perceptions of the general character of the office setting remain low. It has also been suggested that future pressures for reconfiguring the workplace -- increased use of individual communication technologies, working away from the office setting, rapid and continual changes in working patterns - will exacerbate these negative perceptions of workers. This paper will suggest ways in which POEs can be employed to identify and measure the less tangible aspects of office setting and how this information can be used to enhance the designers ability to address the cultural and social dimensions of the workplace. The central thesis of this paper is that POE theories and research methodologies must be focused on the symbolic dimensions of the workplace (i.e., office image, organizational culture, work purpose) in order to understand the ways in which the environment contributes to specific improvements in worker productivity, health, and satisfaction. Data will be presented from the author's recent POE studies of governmental offices and published supporting material found in Environment and Behaviour and The Journal of Architectu-ral and Planning Research. The author has conducted evaluation and programming studies for a number of private and governmental client groups in both office and health-care settings during the past fifteen years, and he will use evidence from this body of work as well as parallel studies of colleagues to support the thesis of the paper.
series DDSS
last changed 2003/08/07 16:36

_id ddss9497
id ddss9497
authors Venemans, P., Daru, R. and Wagenberg, A. van
year 1994
title Orientation in and Around Large Buildings: Guidelines and Architects
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Wayfinding and orientation problems for visitors of large buildings such as hospitals and offices are still prevalent in spite of a long tradition of research on spatial cognition. Analysis of suchproblems indicates that the characteristics of the building mainly cause these problems. These problems can be prevented by a design tool that aims at improving the orientation of users in large buildings, as changing a building afterwards is often expensive and impractical. As a base for such a design tool, guidelines are derived from the research on wayfinding and orientation. However, guidelines are only part of the solution. This design tool should be structured and presented in a form useful to architectural designers. In order to enhance its usefulness, architects of large public buildings studied a draft version of the tool and were interviewed about: (i) presentation form preferred for the tool and the guidelines, as well as the guideline contents; (ii) the function of the design tool with regard to the architects' design style; (iii) typical design solutions which specifically support or conflict with the guidelines; (iv) possible conflicts resulting from the guideline suggestions, in relation to other goals of the client or the architect. In the paper we discuss the results of the interviews and present our conclusions. We also demonstrate a prototype of the design tool.
series DDSS
email
last changed 2003/08/07 16:36

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 17HOMELOGIN (you are user _anon_891262 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002