CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 359

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id caadria2004_k-1
id caadria2004_k-1
authors Kalay, Yehuda E.
year 2004
title CONTEXTUALIZATION AND EMBODIMENT IN CYBERSPACE
doi https://doi.org/10.52842/conf.caadria.2004.005
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 5-14
summary The introduction of VRML (Virtual Reality Markup Language) in 1994, and other similar web-enabled dynamic modeling software (such as SGI’s Open Inventor and WebSpace), have created a rush to develop on-line 3D virtual environments, with purposes ranging from art, to entertainment, to shopping, to culture and education. Some developers took their cues from the science fiction literature of Gibson (1984), Stephenson (1992), and others. Many were web-extensions to single-player video games. But most were created as a direct extension to our new-found ability to digitally model 3D spaces and to endow them with interactive control and pseudo-inhabitation. Surprisingly, this technologically-driven stampede paid little attention to the core principles of place-making and presence, derived from architecture and cognitive science, respectively: two principles that could and should inform the essence of the virtual place experience and help steer its development. Why are the principles of place-making and presence important for the development of virtual environments? Why not simply be content with our ability to create realistically-looking 3D worlds that we can visit remotely? What could we possibly learn about making these worlds better, had we understood the essence of place and presence? To answer these questions we cannot look at place-making (both physical and virtual) from a 3D space-making point of view alone, because places are not an end unto themselves. Rather, places must be considered a locus of contextualization and embodiment that ground human activities and give them meaning. In doing so, places acquire a meaning of their own, which facilitates, improves, and enriches many aspects of our lives. They provide us with a means to interpret the activities of others and to direct our own actions. Such meaning is comprised of the social and cultural conceptions and behaviors imprinted on the environment by the presence and activities of its inhabitants, who in turn, ‘read’ by them through their own corporeal embodiment of the same environment. This transactional relationship between the physical aspects of an environment, its social/cultural context, and our own embodiment of it, combine to create what is known as a sense of place: the psychological, physical, social, and cultural framework that helps us interpret the world around us, and directs our own behavior in it. In turn, it is our own (as well as others’) presence in that environment that gives it meaning, and shapes its social/cultural character. By understanding the essence of place-ness in general, and in cyberspace in particular, we can create virtual places that can better support Internet-based activities, and make them equal to, in some cases even better than their physical counterparts. One of the activities that stands to benefit most from understanding the concept of cyber-places is learning—an interpersonal activity that requires the co-presence of others (a teacher and/or fellow learners), who can point out the difference between what matters and what does not, and produce an emotional involvement that helps students learn. Thus, while many administrators and educators rush to develop webbased remote learning sites, to leverage the economic advantages of one-tomany learning modalities, these sites deprive learners of the contextualization and embodiment inherent in brick-and-mortar learning institutions, and which are needed to support the activity of learning. Can these qualities be achieved in virtual learning environments? If so, how? These are some of the questions this talk will try to answer by presenting a virtual place-making methodology and its experimental implementation, intended to create a sense of place through contextualization and embodiment in virtual learning environments.
series CAADRIA
type normal paper
last changed 2022/06/07 07:52

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
doi https://doi.org/10.52842/conf.acadia.1994.039
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id 7d6c
authors Chapin, William L., Lacey, T. and Leifer, Larry
year 1994
title DesignSpace: A Manual Interaction Environment for Computer Aided Design DEMONSTRATIONS: Virtual Reality Multimedia
source Proceedings of ACM CHI'94 Conference on Human Factors in Computing Systems 1994 v.2 pp. 33-34
summary DesignSpace is a computer-aided-design (CAD) system that facilitates dexterous manipulation of mechanical design representations. The system consists of an interactive simulation programmed with a seamless extended model of the designer's physical environment and driven with continuous instrumentation of the designer's physical actions. The simulation displays consistent visual and aural images of the virtual environment without occluding the designer's sensation of the physical surroundings. Developed at Stanford University's Center for Design Research (CDR), DesignSpace serves as an experimental testbed for design theory and methodology research. DesignSpace includes significant contributions from recent CDR development projects: TalkingGlove, CutPlane, VirtualHand, TeleSign, and VirtualGrasp. The current DesignSpace prototype provides modeling facility for only crude conceptual design and assembly, but can network multiple systems to share a common virtual space and arbitrate the collaborative interaction. The DesignSpace prototype employs three head-tracked rear projection images, head-coupled binaural audio, hand instrumentation, and electromagnetic position tracking.
keywords Virtual Environment; Dexterous Manipulation; Interactive Simulation; Presence; Spatial Acoustics; Manual and Gestural Communication; Teleconference; Collaboration
series other
last changed 2002/07/07 16:01

_id ddss9425
id ddss9425
authors Deguchi, Atsushi and Hagishima, Satoshi
year 1994
title Integration System for Urban Design from Planning Management to Visalization
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Advanced tools based on CAD or GIS systems and simulation methods have recently been introduced to support the many aspects of urban planning (design, analysis, evaluation, presentation). This research aims at constructing a system by integrating these support tools and linking GIS and simulation tools. The major purpose of this system are to manage the geographical data base of the target urban area, utilize the digital information of the area for planning and analysis,evaluate the impact of alternative proposals on the physical environment such as sunlight and daylight, visualize the results of analysis, and support the management of urban redevelopment /development projects. This paper shows some applications to illustrate usefulness of the system. These examples are concerned with a contemporary problem in urban planning of Tokyo: redevelopment of low-rise high-density residential districts and high-rise development in the central business districts. Urban redevelopment for the high-density urban areas in Japan requiresa evaluation of alternative plans by visualizing their environmental impact. This system enables the quantitative analysis of the environmental impact by using 3-dimensional geographical data andsimulation methods. In general, the merit and effect of planning support systems are recognized in terms of the "efficiency" of the planning process. The primary function of GIS is thought to bethe unification and management of various pieces of information. In addition, this research indicates the effectiveness of the integrated system in terms of utilizing the geographical information and visualizing the image of the future environment.
series DDSS
last changed 2003/08/07 16:36

_id db00
authors Espina, Jane J.B.
year 2002
title Base de datos de la arquitectura moderna de la ciudad de Maracaibo 1920-1990 [Database of the Modern Architecture of the City of Maracaibo 1920-1990]
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 133-139
summary Bases de datos, Sistemas y Redes 134The purpose of this report is to present the achievements obtained in the use of the technologies of information andcommunication in the architecture, by means of the construction of a database to register the information on the modernarchitecture of the city of Maracaibo from 1920 until 1990, in reference to the constructions located in 5 of Julio, Sectorand to the most outstanding planners for its work, by means of the representation of the same ones in digital format.The objective of this investigation it was to elaborate a database for the registration of the information on the modernarchitecture in the period 1920-1990 of Maracaibo, by means of the design of an automated tool to organize the it datesrelated with the buildings, parcels and planners of the city. The investigation was carried out considering three methodologicalmoments: a) Gathering and classification of the information of the buildings and planners of the modern architectureto elaborate the databases, b) Design of the databases for the organization of the information and c) Design ofthe consultations, information, reports and the beginning menu. For the prosecution of the data files were generated inprograms attended by such computer as: AutoCAD R14 and 2000, Microsoft Word, Microsoft PowerPoint and MicrosoftAccess 2000, CorelDRAW V9.0 and Corel PHOTOPAINT V9.0.The investigation is related with the work developed in the class of Graphic Calculation II, belonging to the Departmentof Communication of the School of Architecture of the Faculty of Architecture and Design of The University of the Zulia(FADLUZ), carried out from the year 1999, using part of the obtained information of the works of the students generatedby means of the CAD systems for the representation in three dimensions of constructions with historical relevance in themodern architecture of Maracaibo, which are classified in the work of The Other City, generating different types ofisometric views, perspectives, representations photorealistics, plants and facades, among others.In what concerns to the thematic of this investigation, previous antecedents are ignored in our environment, and beingthe first time that incorporates the digital graph applied to the work carried out by the architects of “The Other City, thegenesis of the oil city of Maracaibo” carried out in the year 1994; of there the value of this research the field of thearchitecture and computer science. To point out that databases exist in the architecture field fits and of the design, alsoweb sites with information has more than enough architects and architecture works (Montagu, 1999).In The University of the Zulia, specifically in the Faculty of Architecture and Design, they have been carried out twoworks related with the thematic one of database, specifically in the years 1995 and 1996, in the first one a system wasdesigned to visualize, to classify and to analyze from the architectural point of view some historical buildings of Maracaiboand in the second an automated system of documental information was generated on the goods properties built insidethe urban area of Maracaibo. In the world environment it stands out the first database developed in Argentina, it is the database of the Modern andContemporary Architecture “Datarq 2000” elaborated by the Prof. Arturo Montagú of the University of Buenos Aires. The general objective of this work it was the use of new technologies for the prosecution in Architecture and Design (MONTAGU, Ob.cit). In the database, he intends to incorporate a complementary methodology and alternative of use of the informationthat habitually is used in the teaching of the architecture. When concluding this investigation, it was achieved: 1) analysis of projects of modern architecture, of which some form part of the historical patrimony of Maracaibo; 2) organized registrations of type text: historical, formal, space and technical data, and graph: you plant, facades, perspectives, pictures, among other, of the Moments of the Architecture of the Modernity in the city, general data and more excellent characteristics of the constructions, and general data of the Planners with their more important works, besides information on the parcels where the constructions are located, 3)construction in digital format and development of representations photorealistics of architecture projects already built. It is excellent to highlight the importance in the use of the Technologies of Information and Communication in this investigation, since it will allow to incorporate to the means digital part of the information of the modern architecturalconstructions that characterized the city of Maracaibo at the end of the XX century, and that in the last decades they have suffered changes, some of them have disappeared, destroying leaves of the modern historical patrimony of the city; therefore, the necessity arises of to register and to systematize in digital format the graphic information of those constructions. Also, to demonstrate the importance of the use of the computer and of the computer science in the representation and compression of the buildings of the modern architecture, to inclination texts, images, mapping, models in 3D and information organized in databases, and the relevance of the work from the pedagogic point of view,since it will be able to be used in the dictation of computer science classes and history in the teaching of the University studies of third level, allowing the learning with the use in new ways of transmission of the knowledge starting from the visual information on the part of the students in the elaboration of models in three dimensions or electronic scalemodels, also of the modern architecture and in a future to serve as support material for virtual recoveries of some buildings that at the present time they don’t exist or they are almost destroyed. In synthesis, the investigation will allow to know and to register the architecture of Maracaibo in this last decade, which arises under the parameters of the modernity and that through its organization and visualization in digital format, it will allow to the students, professors and interested in knowing it in a quicker and more efficient way, constituting a contribution to theteaching in the history area and calculation. Also, it can be of a lot of utility for the development of future investigation projects related with the thematic one and restoration of buildings of the modernity in Maracaibo.
keywords database, digital format, modern architecture, model, mapping
series SIGRADI
email
last changed 2016/03/10 09:51

_id ga0024
id ga0024
authors Ferrara, Paolo and Foglia, Gabriele
year 2000
title TEAnO or the computer assisted generation of manufactured aesthetic goods seen as a constrained flux of technological unconsciousness
source International Conference on Generative Art
summary TEAnO (Telematica, Elettronica, Analisi nell'Opificio) was born in Florence, in 1991, at the age of 8, being the direct consequence of years of attempts by a group of computer science professionals to use the digital computers technology to find a sustainable match among creation, generation (or re-creation) and recreation, the three basic keywords underlying the concept of “Littérature potentielle” deployed by Oulipo in France and Oplepo in Italy (see “La Littérature potentielle (Créations Re-créations Récréations) published in France by Gallimard in 1973). During the last decade, TEAnO has been involving in the generation of “artistic goods” in aesthetic domains such as literature, music, theatre and painting. In all those artefacts in the computer plays a twofold role: it is often a tool to generate the good (e.g. an editor to compose palindrome sonnets of to generate antonymic music) and, sometimes it is the medium that makes the fruition of the good possible (e.g. the generator of passages of definition literature). In that sense such artefacts can actually be considered as “manufactured” goods. A great part of such creation and re-creation work has been based upon a rather small number of generation constraints borrowed from Oulipo, deeply stressed by the use of the digital computer massive combinatory power: S+n, edge extraction, phonetic manipulation, re-writing of well known masterpieces, random generation of plots, etc. Regardless this apparently simple underlying generation mechanisms, the systematic use of computer based tools, as weel the analysis of the produced results, has been the way to highlight two findings which can significantly affect the practice of computer based generation of aesthetic goods: ? the deep structure of an aesthetic work persists even through the more “desctructive” manipulations, (such as the antonymic transformation of the melody and lyrics of a music work) and become evident as a sort of profound, earliest and distinctive constraint; ? the intensive flux of computer generated “raw” material seems to confirm and to bring to our attention the existence of what Walter Benjamin indicated as the different way in which the nature talk to a camera and to our eye, and Franco Vaccari called “technological unconsciousness”. Essential references R. Campagnoli, Y. Hersant, “Oulipo La letteratura potenziale (Creazioni Ri-creazioni Ricreazioni)”, 1985 R. Campagnoli “Oupiliana”, 1995 TEAnO, “Quaderno n. 2 Antologia di letteratura potenziale”, 1996 W. Benjiamin, “Das Kunstwerk im Zeitalter seiner technischen Reprodizierbarkeit”, 1936 F. Vaccari, “Fotografia e inconscio tecnologico”, 1994
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id a3ef
authors Garcia, F., Fernandez, A. and Barrallo, J.
year 1994
title Discovering Fractal Geometry in CAAD
doi https://doi.org/10.52842/conf.ecaade.1994.069
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 69-74
summary Fractal geometry provides a powerful tool to explore the world of non-integer dimensions. Very short programs, easily comprehensible, can generate an extensive range of shapes and colors that can help us to understand the world we are living. This shapes are specially interesting in the simulation of plants, mountains, clouds and any kind of landscape, from deserts to rain-forests. The environment design, aleatory or conditioned, is one of the most important contributions of fractal geometry to CAAD. On a small scale, the design of fractal textures makes possible the simulation, in a very concise way, of wood, vegetation, water, minerals and a long list of materials very useful in photorealistic modeling.
series eCAADe
last changed 2022/06/07 07:51

_id caadria2007_549
id caadria2007_549
authors Huang, Chuang-Yu
year 2007
title The Role of Physical Models in Digital Design Processes
doi https://doi.org/10.52842/conf.caadria.2007.x.d1s
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
summary In recent years, designers have used digital media at various points of the design process, which helps expand architectural possibilities. Digital media has changed not only the architectural style, but also the design process (Lynn, 1999). In earlier times, some researchers of design thinking have looked at how the role of physical models played in traditional design processes (Millon, 1994). However, the design process has been changed when media designers used to adjust from traditional to digital. Therefore, visual thinking and cognitive behavior of designers also change while using physical models in design processes. From the synthesis of the two aforementioned disciplines, we can find that there exists a point of deficiency. That is the cognitive research about designers who use physical models in digital design processes is absent. This is discussed in the current paper.
series CAADRIA
email
last changed 2022/06/07 07:50

_id 06e1
authors Keul, Alexander
year 1996
title LOST IN SPACE? ARCHITECTURAL PSYCHOLOGY - PAST, PRESENT, FUTURE
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary A methodological review by Kaminski (1995) summed up five perspectives in environmental psychology - patterns of spatial distribution, everyday “jigsaw puzzles”, functional everyday action systems, sociocultural change and evolution of competence. Architectural psychology (named so at the Strathclyde conference 1969; Canter, 1973) as psychology of built environments is one leg of environmental psychology, the second one being psychology of environmental protection. Architectural psychology has come of age and passed its 25th birthday. Thus, a triangulation of its position, especially in Central Europe, seems interesting and necessary. A recent survey mainly on university projects in German-speaking countries (Kruse & Trimpin, 1995) found a marked decrease of studies in psychology of built environments. 1994, 25% of all projects were reported in this category, which in 1975 had made up 40% (Kruse, 1975). Guenther, in an unpublished survey of BDP (association of professional German psychologists) members, encountered only a handful active in architectural psychology - mostly part-time, not full-time. 1996, Austria has two full-time university specialists. The discrepancy between the general interest displayed by planners and a still low institutionalization is noticeable.

How is the research situation? Using several standard research data banks, the author collected articles and book(chapter)s on architectural psychology in German- and English-language countries from 1990 to 1996. Studies on main architecture-psychology interface problems such as user needs, housing quality evaluations, participatory planning and spatial simulation / virtual reality did not outline an “old, settled” discipline, but rather the sketchy, random surface of a field “always starting anew”. E.g., discussions at the 1995 EAEA-Conference showed that several architectural simulation studies since 1973 caused no major impact on planner's opinions (Keul&Martens, 1996). “Re-inventions of the wheel” are caused by a lack of meetings (except this one!) and of interdisciplinary infrastructure in German-language countries (contrary to Sweden or the United States). Social pressures building up on architecture nowadays by inter-European competition, budget cuts and citizen activities for informed consent in most urban projects are a new challenge for planners to cooperate efficiently with social scientists. At Salzburg, the author currently manages the Corporate Design-process for the Chamber of Architecture, Division for Upper Austria and Salzburg. A “working group for architectural psychology” (Keul-Martens-Maderthaner) has been active since 1994.

keywords Model Simulation, Real Environments
series EAEA
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2005/09/09 10:43

_id ab3c
authors Kramer, G.
year 1996
title Mapping a Single Data Stream to Multiple Auditory Variables: A Subjective Approach to Creating a Compelling Design
source Proceedings of the Third International Conferenceon Auditory Display, Santa FO Institute
summary Representing a single data variable changing in time via sonification, or using that data to control a sound in some way appears to be a simple problem but actually involves a significant degree of subjectivity. This paper is a response to my own focus on specific sonification tasks (Kramer 1990, 1993) (Fitch & Kramer, 1994), on broad theoretical concerns in auditory display (Kramer 1994a, 1994b, 1995), and on the representation of high-dimensional data sets (Kramer 1991a & Kramer & Ellison, 1991b). The design focus of this paper is partly a response to the others who, like myself, have primarily employed single fundamental acoustic variables such as pitch or loudness to represent single data streams. These simple representations have framed three challenges: Behavioral and Cognitive Science-Can sonifications created with complex sounds changing simultaneously in several dimensions facilitate the formation of a stronger internal auditory image, or audiation, than would be produced by simpler sonifications? Human Factors and Applications-Would such a stronger internal image of the data prove to be more useful from the standpoint of conveying information? Technology and Design-How might these richer displays be constructed? This final question serves as a starting point for this paper. After years of cautious sonification research I wanted to explore the creation of more interesting and compelling representations.
series other
last changed 2003/04/23 15:50

_id 4604
authors Laveau, S. and Faugeras, O.
year 1994
title 3D Scene Representation as a Collection of Images and Fundamental Matrices
source INRIA Report
summary The problem we solve in this paper is the following. Suppose we are given N views of a static scene obtained from different viewpoints, perhaps with different cameras. These viewpoints we call reference viewpoints since they are all we know of the scene. We would like to decide if it is possible to predict ano- ther view of the scene taken by a camera from a viewpoint which is arbitrary and a priori di erent from all the reference viewpoints. One method for doing this would be to use these viewpoints to construct a three-dimensional repre- sentation of the scene and reproject this representation on the retinal plane of the virtual camera. In order to achieve this goal, we would have to establish some sort of calibration of our system of cameras, fuse the three-dimensional representations obtained from, say, pairs of cameras thereby obtaining a set of 3-D points, the scene. We would then have to approximate this set of points by surfaces, a segmentation problem which is still mostly unsolved, and then intersect the optical rays from the virtual camera with these sur- faces. This is the most straightforward way of going from a set of images to a new image using the current computer vision paradigm of rst building a three-dimensional representation of the environment from which the rest is derived. We do not claim that there does not exist any simpler way of using the three-dimensional representation than the one we just sketched, but this is just simply not our point. Our point is that it is possible to avoid entirely the explicit three-dimensional reconstruction process: the scene is represented by its images and by some ba- sically linear relations that govern the way points can be put in correspondence between views when they are the images of the same scene-point. These images and their algebraic relations are all we need for predicting a new image. This approach is similar in spirit to the one that has been used in trinocular stereo. Hypotheses of correspondences between two of the images are used to predict features in the third. These predictions can then be checked to validate or inva- lidate the initial correspondence. This approach has proved to be quite e cient and accurate. Related to these ideas are those develo- ped in the photogrammetric community under the name of transfer methods which nd for one or more image points in a given image set, the corresponding points in some new image set.
series report
last changed 2003/04/23 15:50

_id ddss9462
id ddss9462
authors Liggett, Robert S. and Jepson, William H.
year 1994
title Implementing an Integrated Environment for Urban Simulation CAD, Visualization and GIS
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Using technology which has been adapted from military flight simulation hardware and software, researchers at UCLA's Graduate School of Architecture and Urban Planning are currently developing an integrated computing environment for Urban Simulation which includes a high-level visual simulation package, an industry standard CAD system, and a traditional two dimensional geographic information system and data bases. The focal point of the integrated system is a visual simulation engine which has been developed using Silicon Graphics' IRIS Performer application development environment. With this system, aerial photographs can be combined with street level video to efficiently create a realistic (down to plants, street signs and the graffiti on the walls) model of an urban neighbourhood which can then be used for interactive fly and walk-through demonstrations. Links have been established between this visual simulation system and AutoCAD to allow models (at varying levels of detail) to be generated using the CAD system and translated into the form required for the visualization system. Links between the GIS system (in this case ARC/INFO and ARCVIEW) and the visual simulation system provide the capability for dynamic query and display of information from the GIS data base in a real-time 3-dimensional format. Links between the CAD and GIS systems allow common base maps to be used for the GIS and modelling systems as well as automatic generation of 3-d form. While an earlier paper by the authors discussed proposed strategies for such an Urban Simulation System, this paper focuses on the results of actual implementation of these strategies, as well as the use of the system for modelling, exploration and display of alternative physical environments.
series DDSS
email
last changed 2003/08/07 16:36

_id da35
authors Liu, Y.T.
year 1994
title Some Phenomena of seeing shapes in design
source Design Studies, v 16, n 3, pp. 367-385
summary This paper is a look at some of the pyschological results that suggest how shape emergence manifest itself in the human mind. The first interesting result goes back to top down expectation guiding recognition. Some experimental suggest that it is easier (quicker) to recognize shapes which we have some alternate mental familiarity. (I.E. verbal, structural descriptions). So if we can easily say a shape then we can easily discern it as an emergent shape. The paper then goes on to discuss the definition of emergent subshapes and gives various authors definitions of what makes up and emergent shape. One interesting classification is the difference between explicit and implicit emergent shapes made by Mitchell. This difference amounts to a fine line between imagination and emergence. The results of an experiment between experienced and in-experienced designers is discussed. The results suggest that experienced designers are able to find more emergent shape than non experienced designers. From these results and from the opinions of others, the author goes on to specify 3 phenomena related to emergent recognition. The first is as above that it is easier to see shapes with which we are familiar. Second from this, the harder shapes are found after the initial period. Third, from the first two, time is required to find more subshapes. The author then searches for an explanation of this phenomena. He suggests that the underlying cause is related to an experience person having a lower threshold of what it is to be a member of a shape. When seeing an L shape the experienced design is likely to consider it also a square, because his requirement for the set of features which must be present for some object to be a considered a square is a smaller set than the inexperienced. While the author suggests that this is a phenomena it is actually an hypothesis. An alternate hypothesis may be that top down inhibitions effect the bottom up performance of the inexperienced design more because of different representation.
series journal paper
email
last changed 2003/04/23 15:14

_id 6f6a
authors Lyons, Arthur and Doidge, Charles
year 1994
title The Animation of Dynamic Architecture
doi https://doi.org/10.52842/conf.ecaade.1994.x.q6a
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 233
summary The most valuable resource in education is student time and the greatest asset is the ingenuity of student minds. CAD technology now offers enormous potential to education, but limitations in time and funding, prevent its use to the extent possible within practice. Therefore, after dealing with 'awareness', 'attitude' and 'limited applications', our most important role in education is to encourage innovation. The third year of the honours option course at De Montfort University takes this as its theme and challenges students to explore and exploit innovative applications. One particular area of development has been exploring the dynamic aspects of architectural design which go much further than the well-established 'fly-through' sequences. A great deal of architectural design and design development depends upon dynamic issues which range from movement joints to construction sequence. A visual understanding of these dynamic issues drawn from appropriate computer animations can now be an effective factor in design.
series eCAADe
last changed 2022/06/07 07:50

_id ad0e
authors Mullet, Kevin E. and Sano, Darrell K.
year 1994
title Applying Visual Design: Trade Secrets for Elegant Interfaces TUTORIALS
source Proceedings of ACM CHI'94 Conference on Human Factors in Computing Systems 1994 v.2 pp. 353-354
summary This tutorial describes a number of fundamental techniques applied routinely in communication-oriented visual design. The orientation, process, training, and culture of the visual design disciplines (graphic design, industrial design, interior design, architecture) are essential components of effective interface design. Unfortunately, few software developers or human factors engineers receive any training in these disciplines. This tutorial describes important design rules and techniques internalized by every visual designer through coursework and studio experience. While mastery will indeed require extended practice, the techniques we describe are not difficult to understand and can be immediately applied to real-world problems. We draw our background, training, and influence from the rational, functional, information oriented perspective of the Modernist design ethic. Because all graphical user interfaces are communication systems, we believe their design should reflect these same values. Our tutorial is organized not along the traditional subdisciplines of color, typography, or ideation, but along the problems of graphical interface design as experienced in commercial software development. We describe basic design principles (the what and why), common errors, and practical techniques (the how) for each of the six major areas outlined below. (1) Elegance and Simplicity (2) Scale, Contrast and Proportion (3) Organization and Visual Structure (4) Module and Programme (5) Image and Representation (6) So What About Style?
series other
last changed 2002/07/07 16:01

_id 051a
authors Ng, Edward and Mori, Stefano
year 1994
title The Electronic Hartlib Project
doi https://doi.org/10.52842/conf.ecaade.1994.108
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 108-114
summary One of the many criticisms of early efforts in multimedia based teaching, learning and information systems is that most of the development is focused on constructing closed systems, and that once they are completed, altering their content, especially by third party users, is next to impossible. This leads to two problems. Firstly, in the current funding environment, it is almost impossible to sustain the system. Secondly, the system thereby developed is not very flexible and hence can be difficult to use. In Sheffield, we are trying to address this problem by constructing an open system. Using an interface-less data structuring system, an object oriented technique has been developed to separate the interface from the generic files thereby allowing unlimited posthumous alteration and adaptation. A prototype has been developed in Hypercard and in Director, but the beauty of the system is that it can be adapted to run on almost anything.

series eCAADe
last changed 2022/06/07 07:58

_id 9377
authors Nowacki, Aleksander
year 1995
title Gothic Cathedral in the Virtual Reality
source CAD Space [Proceedings of the III International Conference Computer in Architectural Design] Bialystock 27-29 April 1995, pp. 43-56
summary Everyone who once visited Beauvais, small town placed 100 km from Paris, certainly asked himself: "how would have this highest gothic cathedral, that was started here, looked like if it had been completed?". I attempted to answer this question in my diploma work in 1994. However, the task wouldn't be done without power of contemporary computers. They made it possible to create the entire three-dimensional model of this magnificent building in the virtual reality. Cathedral Saint-Pierre in Beauvais, which was started in 1225, partly collapsed in 1284 and 1573. Finally, in 1600, when only choir and transept were finished, the works had been interrupted. The height of this highest gothic interior in the world is 48.5m. To my disposition I had the drawings of plan and cross- section of the existing part of the building, photographic specification and detailed description of the construction of the cathedral. I used PC 486DX/33, 16 MB RAM, HD 170 MB and software: Autodesk AutoCAD r.12 and AccuRender r.1.10. The work was divided into three stages. The first one was "building" the model of existing part of the cathedral in the threedimensional CAD-space. The next one was trying "to finish" the temple based on theoretical reflections and comparative analyses of existing French gothic cathedrals. The last stage included the performance of the series of pseudorealistic pictures showing the "finished" cathedral in Beauvais from the outside, inside and with illumination by night.
series plCAD
last changed 2000/01/24 10:08

_id 6b1d
authors Porada, Mikhael
year 1994
title Architectural Briefing Data Representation and Sketch Simulation Computer Environment
doi https://doi.org/10.52842/conf.ecaade.1994.055
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, pp. 55-59
summary Reflection about the architectural programme starts with the analysis of its writing, its "style" which bears not only the "griffe" of the programmer but as well the structure, methodology, codes of reading, etc. particular to a programming approach. The programme structure corresponds in most cases to the different levels in the text's format and the composition modes of representing data and their relations. The choice made can either facilitate or impede the reading as interpretation of the programme. The programmer’s aim should be to open the text to reading towards a "synthetic schematic" summary, a sort of cognitive threshold which allows the reader to understand both the client's objectives and the designer's intentions enhanced by his experience. Articulating a designer's experience means focusing on his knowhow and memory. The designer's recollected knowledge and heuristic approaches to the solution of a basic design problem - types, his readings and spatial evaluations permanently feed the knowhow. It is important for the architect to have access to past examples, to the collective memory of his workplace, and a repertoire of readings, notes, sketches, influences and citations. It is therfore equally important that a computer environment also have a multimodal "architect's memory" or "project memory" module in which different forms of representation are classified, and made accessible as memory components. It is also necessary to have the possibility to access at any moment in an interactive manner to the recomposition, addition and adaptation of these mnemonic components. The information coming from the programme, classified as descriptive, prescriptive and quantitative types of data, must be able to be interrogated in different modes of representation : text, matrices, nets, diagrams, and so on, so that the pertinent information can be extraded at any given design process stage. Analysis of competition programmes show that often the description of an activity, for example, the Great Stadium competition in Paris, is described by several pages of text, a circulation diagram with arrows and legend, a topological proximity diagram with legend and as table activity - areas . These different representations, which are supposed to be complementary and give the most pertinent view of the client needs, show in fact after analysis, many description problems, incoherance, and which result in a reading difficulty.

series eCAADe
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 17HOMELOGIN (you are user _anon_438137 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002