CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 344

_id 952f
authors Soloway, E., Guzdial, M. and Hay, K.
year 1994
title Learner-Centered Design: The Challenge for HCI in the 21st Century
source Interactions , no. April (1994): 36-48
summary In the 1980's a major transformation took place in the computing world: attention was finally being paid to making computers easier-to-use. You know the history: in the 1970's folks at Xerox were exploring so-called personal computers and developing graphical, point-and-click interfaces. The goal was to make using computers less cognitively taxing, there- by permitting the user to focus more mental cycles on getting the job done. For some time people had recognized that there would be benefits if users could interact with computers using visual cues and motor movements instead of testu- al/linguistic strings. However, computer cycles were costly; they could hardly be wasted on supporting a non-textual interface. There was barely enough zorch (i.e., computer power, measured in your favorite unit) to simply calculate the payroll.
series journal paper
last changed 2003/04/23 15:50

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
doi https://doi.org/10.52842/conf.acadia.1994.039
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id 1262
authors Alshawi, M.
year 1994
title A run time exchange of component information between CAD and object models: A standard interface
source The Int. Journal of Construction IT 2(2), pp. 37-52
summary Integrated computer aided design could only occur in engineering once CAD systems could represent physical features and components rather than graphical primitives. In most dedicated CAD systems, the knowledge of a complete component exists only for the duration of each drawing command and the data stored in the database is simply a set of graphic primitives. This paper proposes an approach for real time information transfer from and to CAD systems based on a high level object representation of the design drawing. Drawing components are automatically identified and represented in an object hierarchy that reflects the 'part-of' relation between the various components including building spaces. Such hierarchies transfer an industry standard CAD system i.e. AutoCAD, into a high level object oriented system that can communicate with external applications with relative ease.
series journal paper
last changed 2003/05/15 21:45

_id 0e58
authors Campbell, D.A. and Wells, M.
year 1994
title A Critique of Virtual Reality in the Architectural Design Process, R-94-3
source Human Interface Technology Laboratory, University of Washington, Seattle, USA, http://www.hitl.washington.edu/publications/r-94-3/: 23 May 2001
summary An addition to a building was designed using virtual reality (VR). The project was part of a design studio for graduate students of architecture. During the design process a detailed journal of activities was kept. In addition, the design implemented with VR was compared to designs implemented with more traditional methods. Both immersive and non-immersive VR simulations were attempted. Part of the rationale for exploring the use of VR in this manner was to develop insight into how VR techniques can be incorporated into the architectural design process, and to provide guidance for the implementers of future VR systems. This paper describes the role of VR in schematic design, through design development to presentation and evaluation. In addition, there are some comments on the effects of VR on detailed design. VR proved to be advantageous in several phases of the design. However, several shortcomings in both hardware and software became apparent. These are described, and a number of recommendations are provided.
series other
email
last changed 2003/04/23 15:50

_id a378
authors Friedell, M., Kochhar, S., Marks, J., Sistare, S. and Weitzman, L.
year 1994
title Cooperative design, Human-computer interaction, Interaction techniques, Graphical user interfaces, Design automation, Design methodologies, Automated design of graphical displays, Computer-aided design
source Proceedings of ACM CHI'94 Conference on Human Factors in Computing Systems 1994 v.2 pp.187-188
summary Computer-aided-design (CAD) systems are now used to design all kinds of artifacts, from jet fighters to works of art. A major challenge in the design of a CAD system itself is the user interface (UI). Developing the UI to a CAD system raises myriad questions about input devices and techniques, display devices and techniques, and the details of the dialogue that relates the two. But these questions are ancillary to one central question: what is the fundamental nature of the interaction between human and computer in the design process supported by the CAD system? Is the design activity essentially manual, with the computer playing the role of passive tool, like a pen or paintbrush? Or is the computer augmenting the human designer by actively restricting available design choices, or by playing the role of critic or "improver"? Or maybe the interaction paradigm is one of "interactive evolution," in which the computer is responsible for generating design alternatives, with the human merely choosing among choices suggested by the machine. Or perhaps the computer performs the design process completely automatically, with a final acceptance check being the only human contribution? The panelists will describe these different paradigms for human-computer cooperation in a set of related CAD systems and prototypes and discuss the conditions under which each paradigm might be most useful.
series other
last changed 2002/07/07 16:01

_id ddss9445
id ddss9445
authors Hillier, B., Penn, A., Dalton, N., Chapman, D. and Redfern, F.
year 1994
title Graphical Knowledge Interfaces: The Extensive and Intensive Useof Precedent Data Bases in Architecture and Urban Planning
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Space syntax' is a family of techniques for the analysis of architectural and urban space which can be used both in research and design mode. This means, for example, that a redevelopment area in an urban context can be researched using space syntax models which can then be turned round and used as the basis for design idea of a 'graphical knowledge interface' (GM) is a further development of this in feeding research into design. It starts from the important role that the analysis and comparison of 'precedents', that is, cases with some similarity of the design problem in hand, often play in design. In a GM, 'precedents' which have already been researched using the space syntax methodology and which are relevant to a particular design problem - say a set of urban areas or a set of housing estates - can be brought into the modelling technique, so that the designer has on hand not simply a space syntax model of the problem in hand but an intelligent 'precedent' in the form of graphical and statistical representations which can be manipulated and interrogated during the design process, in much the same way as discussion of precedent are currently brought into design but with much more complex data and much more powerful theoretical tools. GM can be used as intensive mode, in which many different kinds of data - say on land uses, rents, or crime rates - are added to the model of an area, or in extensive mode where the emphasis is on comparing, say, the structures of a large number of urban areas. The GM will be illustrated through a worked example of a recent major urban design project in which the team has participated.
series DDSS
email
last changed 2003/08/07 16:36

_id a887
authors Kaplan, Nancy and Moulthrop, Stuart
year 1994
title Where No Mind Has Gone Before: Ontological Design for Virtual Spaces Papers
source Proceedings of the ECHT'94 European Conference on Hypermedia Technologies 1994 pp. 206-216
summary Hypermedia designers have tried to move beyond the directed graph concept, which defines hypermedia structures as aggregations of nodes and links. A substantial body of work attempts to describe hypertexts in terms of extended or global spaces. According to this approach, nodes and links acquire meaning in relation to the space in which they are deployed. Some theory of space thus becomes essential for any advance in hypermedia design; but the type of space implied by electronic information systems, from hyperdocuments to "consensual hallucinations," requires careful analysis. Familiar metaphors drawn from physics, architecture, and everyday experience have only limited descriptive or explanatory value for this type of space. As theorists of virtual reality point out, new information systems demand an internal rather than an external perspective. This shift demands a more sophisticated approach to hypermedia space, one that accounts both for stable design properties (architectonic space) and for unforeseen outcomes, or what Winograd and Flores call "breakdowns." Following Wexelblat in cyberspace theory and Dillon, McKnight, and Richardson in hypermedia theory, we call the domain of these outcomes semantic space. In two thought experiments, or brief exercises in interface design, we attempt to reconcile these divergent notions of space within the conceptual system of hypermedia.
keywords Spatial Hypertext; Interface Design; Information Mapping; Navigation
series other
last changed 2002/07/07 16:01

_id b9c4
authors Kim, Inhan
year 1994
title Data representations in an integrated architectural design environment
source University of Strathclyde, Dept. of Architecture and Building Science
summary The architectural design process is very complex and involves cross-disciplinary communication among many related fields. Given the further problems arising from the technological advances in building materials and construction methods, an integrated design environment becomes a central design issue. There have been many attempts to analyse and structure the design process as a uniform hierarchical framework. Most of the attempts resulted in a vague and inappropriate outcome due to the lack of understanding of architectural design complexity and inconsistent design data control sequence. A design problem cannot be comprehensively stated because the design problem has a multi-disciplinary nature and the design problem itself evolves as solutions are attempted by the designer. Therefore, an ideal CAAD system should have the capability to accommodate the multi-disciplinary nature of design and should not prescribe or restrict design concepts and design knowledge. A well designed integrated design environment provides more information and invokes creative imagination for each design stage, and therefore creative decision making by the designer can be achieved. This thesis proposes a prototype architectural design environment, Hybrid Integrated Design Environment [HIDE], which aims to integrate all applications for designing a building. Within the object-oriented design environment, a unified data model and a data management system have been implemented to seamlessly connect all applications. Development of the environment needs to consider the fundamental interaction between each module. Devising a data structure that is appropriate to an effective data communication among the various design stages is essential in a totally integrated CAAD system. The suggested unified data model organizes the structure of the design data to keep the design consistent throughout the design and construction process. By means of the unified data model, integrated CAAD systems could represent and exchange design information at a semantic level, i.e. the user’s way of thinking, such as exchanging components and features of a building rather than graphical primitives. In consequence, the unified data model reduces the misunderstandings and communication problems among the multiple disciplines of architectural design. The suggested data management system supports the consistent and straight forward mechanisms for controlling the data representation through the inter-connected modules. It is responsible for creating, maintaining, and viewing a consistent database of the design description. It also helps to perform effective data communication among the various design stages to ensure quality and time saving in the final construction of the building. To support inter-disciplinary communication of design concepts and decisions, the integrating of relevant CAAD tools is essential. In the environment, the integration of CAAD tools has been performed on the basis of how well computerized design tools can assist designers to develop better solutions, enabling them to manipulate and appraise varying solutions quickly and with a minimum of effort in an environment conducive to creative design. A well designed user interface system can also benefit the seamless working environment. The proposed user friendly interface system allows a user to explore the environment in a highly interactive manner. From the development of the early data model to the final design, a user could benefit from the prototypes and methods of the user interface system. The ultimate goal of the prototype environment is to suggest a future design environment which helps the architect to have minimum discontinuity in his creativity and make the design process similar to the natural design process with the help of a set of design assistance modules. A prototype version of HIDE has been implemented and a demonstration of the environment is part of this thesis.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id ad0e
authors Mullet, Kevin E. and Sano, Darrell K.
year 1994
title Applying Visual Design: Trade Secrets for Elegant Interfaces TUTORIALS
source Proceedings of ACM CHI'94 Conference on Human Factors in Computing Systems 1994 v.2 pp. 353-354
summary This tutorial describes a number of fundamental techniques applied routinely in communication-oriented visual design. The orientation, process, training, and culture of the visual design disciplines (graphic design, industrial design, interior design, architecture) are essential components of effective interface design. Unfortunately, few software developers or human factors engineers receive any training in these disciplines. This tutorial describes important design rules and techniques internalized by every visual designer through coursework and studio experience. While mastery will indeed require extended practice, the techniques we describe are not difficult to understand and can be immediately applied to real-world problems. We draw our background, training, and influence from the rational, functional, information oriented perspective of the Modernist design ethic. Because all graphical user interfaces are communication systems, we believe their design should reflect these same values. Our tutorial is organized not along the traditional subdisciplines of color, typography, or ideation, but along the problems of graphical interface design as experienced in commercial software development. We describe basic design principles (the what and why), common errors, and practical techniques (the how) for each of the six major areas outlined below. (1) Elegance and Simplicity (2) Scale, Contrast and Proportion (3) Organization and Visual Structure (4) Module and Programme (5) Image and Representation (6) So What About Style?
series other
last changed 2002/07/07 16:01

_id 4f13
authors Ronchi, Alfredo M.
year 1994
title A Brief History of CAAD in Italy
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 227
doi https://doi.org/10.52842/conf.ecaade.1994.x.f3n
summary Twenty years of revolution, from the middle '70 to the middle '90. Many things have changed since the origins of computer graphics and computer aided design in architecture. We started teaching drafting on terminals which connected to mini computers, complex procedures or sets of graphics libraries working with keywords, vectors and storage screens. The next step was devoted to the discovery of workstations in the early '80's, where the user sat face on to the whole power of a multitasking system. At that time to use up to 16 time sharing processes running on the same work station seemed to have no practical use at all. Fortunately someone (ie Xerox PARC laboratories) at the same time started to develop the so-called GUI. Graphical user interface started a revolution in human/machine interface (ie Smalltalk). The desktop metaphor, the use of multiple windows and dialogues joined with icons and pop up menus let the user manage more applications and, even more important, created a standard in application/user interface (CUA). In the meantime focus had moved from hardware to software, systems being chosen from the software running. The true revolution we have seen starting from that base and involving an ever increasing number of users was the birth of PC based applications for CAAD. Generally speaking nowadays there are three main technologies concerning teaching: communication, multimedia and virtual reality. The first is the real base for future revolution. In the recent past we have started to learn how to manage information by computers. Now we can start to communicate and share information all over the world in real time. The new age opened by fax, followed by personal communication systems and networks is the entry point for a real revolution. We can work in the virtual office, meet in virtual space and cooperate in workgroups. ATM and ISDN based teleconferencing will provide a real working tool for many. The ever increasing number of e-mail addresses and network connections is carrying us towards the so called 'global village'. The future merger between personal digital assistant and personal communication will be fascinating. Multi & HyperMedia technology is, like a part of VR, a powerful way to share and transfer information in a structured form. We do not need to put things in a serial form removing links because we can transfer knowledge as is. Another interesting and fundamental aspect typical of VR applications is the capability to change cognitive processes from secondary (symbolic - reconstructive) to primary (perceptive - motory). In this way we can learn by direct experience, by experiment as opposed to reading books. All these things will affect not only ways of working but also ways of studying and teaching. Digital communications, multimedia and VR will help students, multimedia titles will provide different kinds of information directly at home using text, images, video clips and sounds. Obviously all those things will not substitute human relationship as a multimedia title does not compete against a book but it helps.

series eCAADe
last changed 2022/06/07 07:50

_id ddss9492
id ddss9492
authors Tae, Won Jin
year 1994
title A Visualization Model for External Shading Devices Performance at the Early Design Stage
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Windows are used for the visual connection between indoors and outdoors, ventilation and daylight of our interiors and for the reduction of our heating energy through solar energy utilization. This solar energy, however, is often so intense that counter measures should be taken in order to maintain comfortable indoor conditions. Air conditioning is one counteraction. In order to reduce the cooling loads, it is highly recommended to use shading devices. When shading devices are applied in combination with the glass they can modify the thermal effect of windows to a very great extent. The most effective shading devices are exterior types such as overhang, fins and exterior venetian blind. The effectiveness of an external shading device depends on its geometry, sun path, and the orientation of the building. These factors are interrelated dynamically, it is extremely difficult to predict intuitively how the shadow is cast by the external shading device on the window. Due to the inherent complexity of calculation for shadow casting, building designers to fail often integrate them into energy-efficient building design. Since computer graphics can be a powerful visual communication tool, the above problem might be solved through a computerized graphical interface in the early design stage. The research described in this paper involves the development of a computer program which aims the following objectives: (1) to facilitate the description of a external shading device's geometry through an integrated graphic input model, (ii) to simulate the relationship of external shading devices and shadows based on sun path, the orientation of building, (iii) to visualize the shadow casting by shading devices, and (iv) to provide designers with possible solutions to create energy-efficient external shading device for a specific building.
series DDSS
last changed 2003/08/07 16:36

_id ddssup9604
id ddssup9604
authors Boelen, A.J.
year 1996
title Impact-Analysis of Urban Design Realtime impact-analysis models for urban designers
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary The past five years Prof Dr Jr T.M. de Jong, professor in environmental planning and sustainability at the Technical University of Delft, has developed a theoretical foundation for the analysis of urban design on the ecological, technical, economical, cultural and political impacts of morphologic interventions on different levels of scale. From september 1994 Jr AJ. Boelen (Urban Design Scientist and Knowledge Engineer) started a research project at the same university to further explore the possibilities of these theories and to develop impact evaluation models for urban design and development with the theoretical work of De Jong as a starting point. The paper discusses the development of a design and decision support system based on these theories. For the development of this system, techniques like object-orientation, genetic algorithms and knowledge engineering are used. The user interface, the relation between the real world, paper maps and virtual maps and the presentation of design-interventions and impacts caused by the interventions are important issues. The development-process is an interactive step by step process. It consists of the making of a prototype of the system, testing the theory and hypothe-sisses the system is based on, by applying tests end adjusting the theory and hypothesisses where needed. Eventually the system must be able to act as an integrator of many different models already developed or still to be developed. The structure of the system will allow easy future expansion and adjustment to changing insights. The logic used to develop the basic theory on which this system is founded makes it possible to even introduce and maintain rather subjective aspects like quality or appraisal as impacts that can be evaluated. In a previously developed system "Momentum" this was proved to work effectively for the national level. In this project we will - amongst other things - try to prove the effectiveness of impact-evaluation for other levels of scale.
series DDSS
email
last changed 2003/11/21 15:16

_id diss_brewster
id diss_brewster
authors Brewster, S.A.
year 1994
title Providing a Structured Method for Integrating Non-Speech Audio into Human-Computer Interfaces
source Heslington, York: University of York
summary This thesis provides a framework for integrating non-speech sound into human-computer interfaces. Previously there was no structured way of doing this, it was done in an ad hoc manner by individual designers. This led to ineffective uses of sound. In order to add sounds to improve usability two questions must be answered: What sounds should be used and where is it best to use them? With these answers a structured method for adding sound can be created. An investigation of earcons as a means of presenting information in sound was undertaken. A series of detailed experiments showed that earcons were effective, especially if musical timbres were used. Parallel earcons were also investigated (where two earcons are played simultaneously) and an experiment showed that they could increase sound presentation rates. From these results guidelines were drawn up for designers to use when creating usable earcons. These formed the first half of the structured method for integrating sound into interfaces. An informal analysis technique was designed to investigate interactions to identify situations where hidden information existed and where non-speech sound could be used to overcome the associated problems. Interactions were considered in terms of events, status and modes to find hidden information. This information was then categorised in terms of the feedback needed to present it. Several examples of the use of the technique were presented. This technique formed the second half of the structured method. The structured method was evaluated by testing sonically-enhanced scrollbars, buttons and windows. Experimental results showed that sound could improve usability by increasing performance, reducing time to recover from errors and reducing workload. There was also no increased annoyance due to the sound. Thus the structured method for integrating sound into interfaces was shown to be effective when applied to existing interface widgets.
series thesis:PhD
email
more http://www.dcs.gla.ac.uk/~stephen/publications.shtml
last changed 2003/11/28 07:34

_id 5dff
authors Bricken, M.
year 1994
title Virtual Worlds: No Interface to Design
source Cyberspace - First Steps, M.Benedikt ed, MIT Press
summary In a virtual world, we are inside an environment of pure information that we can see, hear, and touch. The technology itself is invisible, and carefully adapted to human activity so that we can behave naturally in this artificial world. We can create any imaginable environment and we can experience entirely new perspectives and capabilities within it. A virtual world can be informative, useful, and fun; it can also be boring and uncomfortable. The difference is in the design. The platform and the interactive devices we use, the software tools and the purpose of the environment are all elements in the design of virtual worlds. But the most important component in designing comfortable, functional worlds is the person inside them. Cyberspace technology couples the functions of the computer with human capabilities. This requires that we tailor the technology to people, and refine the fit to individuals. We then have customized interaction with personalized forms of information that can amplify our individual intelligence and broaden our experience. Designing virtual worlds is a challenging departure from traditional interface design. In the first section of this chapter I differentiate between paradigms for screen-based interface design and paradigms for creating virtual worlds. The engineer, the designer, and the participant co-create cyberspace. Each role carries its own set of goals and expectations, its own model of the technology's salient features. In the second section of the chapter I address these multiple perspectives, and how they interrelate in the cooperative design process. In conclusion, I consider broader design issues, including control, politics, and emergent phenomena in cyberspace.
series other
last changed 2003/11/21 15:16

_id ddss9415
id ddss9415
authors Cajati, Claudio
year 1994
title Innovative Expert Systems With Hypertextual User Interfaces: A Special Support for the Building Recovering Project
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary In this paper, first of all a short account on the peculiarity of knowledge in the domain of Architectural and Building Project, particularly in the Building Recovering Project is given. Thatmeans to focus the concept of "degree of authority" of different types of knowledge with regard to project: regulations; specialist literature having in practice the value of self-regulation; technical updating; exemplary design cases; warnings; analysis methods; heuristics; orientating references. Consequently, the different roles of two basic design & decision support systems, that is expert systems and hypertexts, are considered. The former seem to be quite fit for representing information and knowledge linked to a clear "authority", the one of experts in a certain domain; the latter seem to be quite fit for illustrating the interdisciplinary complexity, different historicinterpretations, various analogous references, and so on. Afterwards, the limits of expert systems based on the logic "true-false" are underlined, and the perspective of expert systems based on more sophisticated and appropriate rules and metarules is proposed. At last, the possible structure of such an innovative expert system, with a hypertextual interface, in the domain of Building Recovering Project is exemplified.
series DDSS
email
last changed 2003/08/07 16:36

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2012/12/04 07:53

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ddss9420
id ddss9420
authors Christie, Colin Ian
year 1994
title User Interfaces and Systems for Remote Design Working on ISDN Systems
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary This paper will discuss the requirements and possible configurations of user interfaces suitable for remote working multi-disciplinary design practices. Telecom companies throughout Europe are making heavy investments in digital communication technology (ISDN). The networks being created will form a standard method of high speed data transfer which can be readily accessed by any computer hardware platform. There are great opportunities for remote working by design groups, not simply sharing data but also interactive working and video communications. Digital communications provide the electronic arterial system to the new field of remote computing,whilst cheap and effective hardware and software support systems provide readily usable platforms on which to build remote multi-disciplinary design practices where the exploitation of specialistknowledge and skills is not limited by traditional methods of communication. ISDN networks allow real time video, voice and design software interaction - indeed, everything except the designer's physical presence. However as with all computer technology and indeed communications technology the user interface which gives access and control is vitally important. The user interface should provide the following features: be transparent to the user and simple and reliable to operate; allow an interactive window/s into the remote site's design information whatever the type of application being dealt with; carry out data compression, file transfer and file management procedures with minimum input from the user; cause no conflicts with design software or secondary applications;be able to access different platforms.
series DDSS
last changed 2003/08/07 16:36

_id 45f0
authors Coleman, Kim
year 1994
title Synergism and Contingency: Design Collaboration with the Computer
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 209-217
doi https://doi.org/10.52842/conf.acadia.1994.209
summary The outcome of an architectural project is always contingent, dependent upon conditions or events that are not established at the outset. A university design studio does not easily replicate the state of flux which occurs as an architectural commission proceeds. In developing an architectural project, each new situation, whether it be a building code issue, an engineering issue, or a client reaction, must be viewed as an opportunity to further refine and develop the design rather than a hindrance to the outcome. In the design studio I describe in this paper, students test processes which attempt to take advantage of contingent conditions, opening up the design solutions to new possibilities. As a means to open up the design process to new possibilities, this studio introduces the computer as the primary tool for design exploration. Through the computer interface, the work speculates on the possibilities of synergism, defined as the actions of two or more substances or organisms to achieve an effect of which each is individually incapable.' Three synergetic conditions are explored: that between the designer and the computer, that between the designer with computer and designers of previous works of art or architecture, and that between two or more designers working together with the computer. The lack of a predictable result, one that may be obvious or superficial, is a positive byproduct of the synergetic and contingent circumstances under which the designs are developed.

series ACADIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 17HOMELOGIN (you are user _anon_100672 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002