CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 361

_id 4f13
authors Ronchi, Alfredo M.
year 1994
title A Brief History of CAAD in Italy
doi https://doi.org/10.52842/conf.ecaade.1994.x.f3n
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 227
summary Twenty years of revolution, from the middle '70 to the middle '90. Many things have changed since the origins of computer graphics and computer aided design in architecture. We started teaching drafting on terminals which connected to mini computers, complex procedures or sets of graphics libraries working with keywords, vectors and storage screens. The next step was devoted to the discovery of workstations in the early '80's, where the user sat face on to the whole power of a multitasking system. At that time to use up to 16 time sharing processes running on the same work station seemed to have no practical use at all. Fortunately someone (ie Xerox PARC laboratories) at the same time started to develop the so-called GUI. Graphical user interface started a revolution in human/machine interface (ie Smalltalk). The desktop metaphor, the use of multiple windows and dialogues joined with icons and pop up menus let the user manage more applications and, even more important, created a standard in application/user interface (CUA). In the meantime focus had moved from hardware to software, systems being chosen from the software running. The true revolution we have seen starting from that base and involving an ever increasing number of users was the birth of PC based applications for CAAD. Generally speaking nowadays there are three main technologies concerning teaching: communication, multimedia and virtual reality. The first is the real base for future revolution. In the recent past we have started to learn how to manage information by computers. Now we can start to communicate and share information all over the world in real time. The new age opened by fax, followed by personal communication systems and networks is the entry point for a real revolution. We can work in the virtual office, meet in virtual space and cooperate in workgroups. ATM and ISDN based teleconferencing will provide a real working tool for many. The ever increasing number of e-mail addresses and network connections is carrying us towards the so called 'global village'. The future merger between personal digital assistant and personal communication will be fascinating. Multi & HyperMedia technology is, like a part of VR, a powerful way to share and transfer information in a structured form. We do not need to put things in a serial form removing links because we can transfer knowledge as is. Another interesting and fundamental aspect typical of VR applications is the capability to change cognitive processes from secondary (symbolic - reconstructive) to primary (perceptive - motory). In this way we can learn by direct experience, by experiment as opposed to reading books. All these things will affect not only ways of working but also ways of studying and teaching. Digital communications, multimedia and VR will help students, multimedia titles will provide different kinds of information directly at home using text, images, video clips and sounds. Obviously all those things will not substitute human relationship as a multimedia title does not compete against a book but it helps.

series eCAADe
last changed 2022/06/07 07:50

_id caadria2004_k-1
id caadria2004_k-1
authors Kalay, Yehuda E.
year 2004
title CONTEXTUALIZATION AND EMBODIMENT IN CYBERSPACE
doi https://doi.org/10.52842/conf.caadria.2004.005
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 5-14
summary The introduction of VRML (Virtual Reality Markup Language) in 1994, and other similar web-enabled dynamic modeling software (such as SGI’s Open Inventor and WebSpace), have created a rush to develop on-line 3D virtual environments, with purposes ranging from art, to entertainment, to shopping, to culture and education. Some developers took their cues from the science fiction literature of Gibson (1984), Stephenson (1992), and others. Many were web-extensions to single-player video games. But most were created as a direct extension to our new-found ability to digitally model 3D spaces and to endow them with interactive control and pseudo-inhabitation. Surprisingly, this technologically-driven stampede paid little attention to the core principles of place-making and presence, derived from architecture and cognitive science, respectively: two principles that could and should inform the essence of the virtual place experience and help steer its development. Why are the principles of place-making and presence important for the development of virtual environments? Why not simply be content with our ability to create realistically-looking 3D worlds that we can visit remotely? What could we possibly learn about making these worlds better, had we understood the essence of place and presence? To answer these questions we cannot look at place-making (both physical and virtual) from a 3D space-making point of view alone, because places are not an end unto themselves. Rather, places must be considered a locus of contextualization and embodiment that ground human activities and give them meaning. In doing so, places acquire a meaning of their own, which facilitates, improves, and enriches many aspects of our lives. They provide us with a means to interpret the activities of others and to direct our own actions. Such meaning is comprised of the social and cultural conceptions and behaviors imprinted on the environment by the presence and activities of its inhabitants, who in turn, ‘read’ by them through their own corporeal embodiment of the same environment. This transactional relationship between the physical aspects of an environment, its social/cultural context, and our own embodiment of it, combine to create what is known as a sense of place: the psychological, physical, social, and cultural framework that helps us interpret the world around us, and directs our own behavior in it. In turn, it is our own (as well as others’) presence in that environment that gives it meaning, and shapes its social/cultural character. By understanding the essence of place-ness in general, and in cyberspace in particular, we can create virtual places that can better support Internet-based activities, and make them equal to, in some cases even better than their physical counterparts. One of the activities that stands to benefit most from understanding the concept of cyber-places is learning—an interpersonal activity that requires the co-presence of others (a teacher and/or fellow learners), who can point out the difference between what matters and what does not, and produce an emotional involvement that helps students learn. Thus, while many administrators and educators rush to develop webbased remote learning sites, to leverage the economic advantages of one-tomany learning modalities, these sites deprive learners of the contextualization and embodiment inherent in brick-and-mortar learning institutions, and which are needed to support the activity of learning. Can these qualities be achieved in virtual learning environments? If so, how? These are some of the questions this talk will try to answer by presenting a virtual place-making methodology and its experimental implementation, intended to create a sense of place through contextualization and embodiment in virtual learning environments.
series CAADRIA
type normal paper
last changed 2022/06/07 07:52

_id ddss9449
id ddss9449
authors Kendall, Stephen
year 1994
title Control of Parts: Identifying Patterns of Control in Production Chains
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary If we examine the stages of production of complex physical systems, we notice that parts change as they progress along a value chain. Parts are deformed, have parts removed, and are assembled and disassembled, in various sequences. In such processes, production operations (milling, cutting, aligning, attaching, and so on) are of particular interest, as are the sequences of production, since some operations and sequences have been found to be more efficient than others, lead to fewer mistakes and produce higher quality results. Research continues to be produced seeking to optimize production operations, sequences and product quality. The production operations we can observe in the making of artifacts are also of interest because they are by definition the result of action taken by certain agents. Parts are changed or controlled by human beings, employing their own hands or sophisticated machines. Today, we are used to making a distinction among agents involved in production: some agents specify what is to be made, and others make what is specified. One agent can do both, but specialization and division of labour has presented us with this distinction. This is now conventional, aside from whether it is "good" or not. The distinction is the basis for the interest in "concurrent design and production of products", the renewed focus on distribution and coordination of work in teams, and the related interest in understanding the dynamics of building systems in terms of the agents who control them. This paper focuses on the place certain kinds of agents take in complex production flows. Since production of parts is both a technical and a social enterprise, we will discover, when we look closely, complex webs of interactions which can be mapped, showing how agents relate to each other through the parts with which they are concerned. In examining the class of agents who control parts, we can see two patterns of control, termed DISPERSED PATTERNS and OVERLAPPING PATTERNS. These become palpable in a graphic diagramming tool, which is demonstrated in what follows. These diagrams also provide a means to consider the agents whose role is to specify what is to be made. The paper includes notes related studies in other fields.Finally, the paper suggests how this perspective can be useful, and several research topics based on it are sketched.
series DDSS
last changed 2003/08/07 16:36

_id ddss9476
id ddss9476
authors Porada, Mikhael and Porada, Sabine
year 1994
title "To See Ideas" or The Visualizing of Programmatic Data Reading Examples in Architecture and Town Planning
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Whether images are still in the mind, metaphors, sketches or icons, they play a crucial role. They have always been the heuristic pivot around which the process of artefact design organizes itself, particularly in architecture and town-planning. "To see ideas" through computer ideograms is to experiment an interesting and new direction for "pictural approach" supported design. Cognitive psychology emphasizes the important part played by mental images in reasoning, imagination in the working of human intelligence and the construction of mental images as cognitive factors underlying reasoning. It also points out how close computerized objects and mental schemata are. "To reason over a situation is first to remember or build some mental models of this situation; second to make those models work or simulate them in order to observe what would happen in different circumstances and then verify whether they fit the experiment data; third to select the best model, a tool meant to sustain and amplify the elaboration of mental models, which is a spontaneous activity". We introduce our exploration of the direct transmission of mental models through computer ideograms. We study the "operative" and the "expressive" aspects, and this allows us to analyze how some aspects in a field of knowledge are represented by ideograms, schemata, icons, etc. Aid to imagination, reasoning and communication by means of a graphic language must be limited to some figurative relevant aspects of the domain considered; it should not aim at a realistic simulation. Therefore, the important role played by icons and the spatial schematic representation of knowledge is emphasized. Our hypothesis is that an architectural concept does not result from an inductive process, but rather is built to solve problems through the direct representation of ideas with ideograms. An experiment was conducted with a graphic language, a dynamic scenography and actor-objects. The language allows one to build and visualize models from the various domains of knowledge of the object. The dynamic scenography can explore and simulate kinetically those models by means of staging various narrations and visual scenarios. The actor-objects play various and complementary parts in order to make the image explicit and link it with the concept. We distinguish between two parallel levels of reality in computer ideographics: one concerns the model, it represents the visualization of a graphic model at a particular moment and according to a particular representation, the other concerns the ideogram.
series DDSS
last changed 2003/08/07 16:36

_id 8fb2
id 8fb2
authors McCall, Raymond, Bennett, Patrick and Johnson, Erik
year 1994
title An Overview of the PHIDIAS II HyperCAD System
doi https://doi.org/10.52842/conf.acadia.1994.063
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 63-74
summary The PHIDIAS II HyperCAD system combines the functionality of CAD graphics, hypermedia, database management and knowledge-based computation in a single, highly integrated design environment. The CAD functionality includes both 3-D and 2-D vector graphics. The hypermedia includes support for text, raster images, video and sound. The database management enables persistent storage and interlinking of large collections of text, images, video, sound and vector graphics, i.e., thousands of vector graphic objects and drawings in a single database. Retrieval is provided both through use of "associative indexing" based on hyperlinks and through use of an advanced query language. The knowledge- based computation includes both inference and knowledgebased critiquing.

A highly unusual feature of PHIDIAS II is that it implements all of its functions using only hypermedia mechanisms. Complex vector graphic drawings and objects are represented as composite hypermedia nodes. Inference and critiquing are implemented through use of what are known as virtual structures [Halasz 1988], including virtual links and virtual nodes. These nodes and links are dynamic (computed) rather than static (constant). They are defined as expressions in the same language used for queries and are computed at display time. The implementation of different kinds of functions using a common set of mechanisms makes it easy to use them in combination, thus further augmenting the system's functionality.

PHIDIAS supports design by informing architects as they develop a solution's form. The idea is thus not to make the design process faster or cheaper but rather to improve the quality of the things designed. We believe that architects can create better buildings for their users if they have better information. This includes information about buildings of given types, user populations, historical and modern precedents, local site and climate conditions, the urban and natural context and its historical development, as well as local, state and federal regulations.

series ACADIA
last changed 2022/06/07 07:59

_id 0465
authors Szövényi-Lux, Miklós
year 1994
title Virtual Future!?
doi https://doi.org/10.52842/conf.ecaade.1994.x.o0h
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 215
summary Architecture was born long, long ago with the help of those people who first realised that they are not only building houses but, what is more important, thrilling and has been the focus of many debates, creating space. In the beginning man created space by adding and combining different volumes of masses. They thought that space can be perceived as determined by different points of orientation placed around us. Later people started to realise that perception of space is a little bit more sophisticated. Perhaps everybody has smiled at a baby who standing up for the first time in his life in his playpen, extending his hands towards objects on the nearby table physically unreachable for him. If he was an adult, people would think perhaps something is wrong with him, when he extends his hands towards things we surely know are impossible to reach from his actual position. So how come we can judge with exactitude the place of different objects in space? Maybe by the time needed for the movement to get there. Let us not forget that the baby's first real movement is when he starts to walk and then he starts to get the feeling of this three dimensional world, around which can be only realised simultaneously in space and time. Anyone can say that this is an interesting theory, but who cares? It is said that most of the architects, who are real designers have a keen sense of creating and perceiving space. They are far more interested in the perfection of the created space with all its details than anything else. And here is where a CAD program can come into the picture. Talking about a real CAD program that means from the point of view of a designer, a silent friend who never cheats or boasts, who takes him in SPACE wherever he wants to go and shows him his CREATION as an extending arm between his imagination and the reality.
series eCAADe
last changed 2022/06/07 07:50

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
doi https://doi.org/10.52842/conf.acadia.1994.039
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id ddss9403
id ddss9403
authors Arentze, T., Borgers, A., Dellaert, B. and Timmermans, H.
year 1994
title A Multi-Purpose Multi-Stop Model Describing Consumers' Choices of Shopping Centres
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Recently, a number of interesting extensions to traditional decompositional and discrete choice models has been introduced that allow one to combine parameters estimated in different phases ofcomplex choice processes. These extensions offer new possibilities to model combinations of choices consumers make if they select shopping centres to visit. This paper will introduce a modelling approach that describes consumer choices of shopping centres involving multiple shopping functions (multi purpose) as well as locations (multi stop). The approach extends traditional decompositional models of single choices to a model of combinations of choices. It uses a recursive scaling procedure that combines attributes related to different shopping functions and to shopping centres at different locations. The model will be tested on data collected on shopping behaviour in Maastricht, the Netherlands.
series DDSS
email
last changed 2003/08/07 16:36

_id a378
authors Friedell, M., Kochhar, S., Marks, J., Sistare, S. and Weitzman, L.
year 1994
title Cooperative design, Human-computer interaction, Interaction techniques, Graphical user interfaces, Design automation, Design methodologies, Automated design of graphical displays, Computer-aided design
source Proceedings of ACM CHI'94 Conference on Human Factors in Computing Systems 1994 v.2 pp.187-188
summary Computer-aided-design (CAD) systems are now used to design all kinds of artifacts, from jet fighters to works of art. A major challenge in the design of a CAD system itself is the user interface (UI). Developing the UI to a CAD system raises myriad questions about input devices and techniques, display devices and techniques, and the details of the dialogue that relates the two. But these questions are ancillary to one central question: what is the fundamental nature of the interaction between human and computer in the design process supported by the CAD system? Is the design activity essentially manual, with the computer playing the role of passive tool, like a pen or paintbrush? Or is the computer augmenting the human designer by actively restricting available design choices, or by playing the role of critic or "improver"? Or maybe the interaction paradigm is one of "interactive evolution," in which the computer is responsible for generating design alternatives, with the human merely choosing among choices suggested by the machine. Or perhaps the computer performs the design process completely automatically, with a final acceptance check being the only human contribution? The panelists will describe these different paradigms for human-computer cooperation in a set of related CAD systems and prototypes and discuss the conditions under which each paradigm might be most useful.
series other
last changed 2002/07/07 16:01

_id 2ccd
authors Kalisperis, Loukas N.
year 1994
title 3D Visualization in Design Education
doi https://doi.org/10.52842/conf.acadia.1994.177
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 177-184
summary It has been said that "The beginning of architecture is empty space." (Mitchell 1990) This statement typifies a design education philosophy in which the concepts of space and form are separated and defined respectively as the negative and positive of the physical world, a world where solid objects exist and void-the mere absence of substance-is a surrounding atmospheric emptiness. Since the beginning of the nineteenth century, however, there has been an alternative concept of space as a continuum: that there is a continuously modified surface between the pressures of form and space in which the shape of the space in our lungs is directly connected to the shape of the space within which we exist. (Porter 1979). The nature of the task of representing architecture alters to reflect the state of architectural understanding at each period of time. The construction of architectural space and form represents a fundamental achievement of humans in their environment and has always involved effort and materials requiring careful planning, preparation, and forethought. In architecture there is a necessary conversion to that which is habitable, experiential, and functional from an abstraction in an entirely different medium. It is often an imperfect procedure that centers on the translation rather than the actual design. Design of the built environment is an art of distinctions within the continuum of space, for example: between solid and void, interior and exterior, light and dark, or warm and cold. It is concerned with the physical organization and articulation of space. The amount and shape of the void contained and generated by the building create the fabric and substance of the built environment. Architecture as a design discipline, therefore, can be considered as a creative expression of the coexistence of form and space on a human scale. As Frank Ching writes in Architecture: Form, Space, and Order, "These elements of form and space are the critical means of architecture. While the utilitarian concerns of function and use can be relatively short lived, and symbolic interpretations can vary from age to age, these primary elements of form and space comprise timeless and fundamental vocabulary of the architectural designer." (1979)

series ACADIA
email
last changed 2022/06/07 07:52

_id ddssup9610
id ddssup9610
authors Krafta, Romulo
year 1996
title Built form and urban configuration development simulation
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary The "centrality/potential" model, proposed by Krafta (1994), for configurational development, aims at the simulation of inner city built form growth. This is generally achieved by simulating the uneven distribution of floor area increments, resulting from replacement of old buildings, considered "devalued capital" form new ones. The model considers two main variables - public urban space system and built form - and treats them unevenly; the former is extensively disaggregated whereas the latter is not. This feature enables the model to make just a rough account of intra-urban built form development. The issue of built form simulation is then taken further in the following way: a) Urban built form is disaggregated by types. Buildings are classified by a cross combination of scale, purpose, age and quality standard; b) The city is itself considered as a set of intertwined typologic cities. This means that each unit of public space is identified by its dominant built form type, producing a multilayered-discontinuous city. Each one has its own market characteristics: rentability, technological availability and demand size; c) The market constraints determine which layer-city has priority over the others, as well as each one's size of growth. References to rentability and demand size gives each built form type priorities for development d) Spatial conditions, in the form of particular evaluation of centrality and spatial opportunity measures, regulates the distribution of built form increments and typological succession. Locational values, denoted by centrality and spatial opportunity measures, area differently accounted for in each layer-city simulation. e) Simulation is obtained by "running" the model recursively. Each built form type is simulated separately and in hyerarquical order, so that priority and replacement of built form types is acknowledged properly.
series DDSS
email
last changed 2003/08/07 16:36

_id 6058
authors Smulevich, Gerard
year 1994
title The Electronic Bauhaus
doi https://doi.org/10.52842/conf.acadia.1994.197
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 197-208
summary This paper describes the use of electronic space in a fourth year undergraduate architectural design studio. It attempts to address the importance of developing a design process that is redefined by the use of computing, integrating concept and perception. This goal is set in the studio exercise, an international student design competition to design an addition to the school of architecture at the original Bauhaus/Weimar. The studio involved re-evaluating the Bauhaus principles of integrating the artist and the craftsman, but in contemporary or post-industrial terms. In 1989 the Wall came down. Seamless access of western telecommunications and media became greatly responsible for the crumbling of the rigid machine-age soviet technocracy; and with it, the former east German city of Weimar, home to the first Bauhaus, was once again a living part of architectural history. When the Association of Collegiate Schools of Architecture announced an international student competition to design a new addition to the school of architecture at the original Bauhaus/Weimar, we immediately decided that this should be an Electronic Bauhaus.
series ACADIA
email
last changed 2022/06/07 07:56

_id ascaad2006_paper11
id ascaad2006_paper11
authors Stanton, Michael
year 2006
title Redemptive Technologies II: the sequel (A Decade Later)
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary Nearly ten years ago I published an article in the Dutch journal ARCHIS called "Redemptive Technologies." It derived from comments I made during a conference held in New Orleans in 1994. At that point the machine aesthetic associated with the "new technologies" generated by the computer had not established a precise formal vocabulary but were generating great excitement among the architectural avant-garde. It addressed the limits of the imagery and data produced by this machine and the simple but very political problem of cost and obsolescence. Now the millennium is well past and the somewhat apostolic fervor that accompanied the interaction of a very expensive consumer device with architecture has cooled. Discussion has generally moved from the titillating possibilities opened up by the device, many of which have so far not come to pass, to the sorts of hard and software available. An architectural language closely associated with the imagistic potential of new programs, biomorphism, has now come and gone on the runways of architectural taste. And yet, in recent articles rejecting the direct political effect of architectural work, the potential of new programs and virtual environments are proposed as alternative directions that our perpetually troubled profession may pursue. This paper will assess the last decade regarding the critical climate that surrounds cyber/technology. In the economic context of architectural education in which computers are still a central issue, the political issues that evolve will form a backdrop to any discussion. Furthermore, the problem of the "new" language of biomorphism will be reiterated as an architectural grammar with a 100-year history - from Catalan Modernismo and Art Nouveau, through Hermann Finsterlin and Eric Mendelsohn's projects of the 1920s, to Giovanni Michelucci and Italian work of the post-war, to Frederick Kiesler's Endless House of the late '50s, continuing through moments of Deconstructivism and Architectural Association salients, etc. These forms continue to be semantically simplistic and hard to make. Really the difference is the neo-avant-garde imagery and rhetoric involved in their continuing resurrection. Computer images, but also the ubiquitous machine itself, are omnipresent and often their value is assumed without question or proposed as a remedy for issues they cannot possibly address. This paper will underline the problem of the computer, of screens and the insistent imagistic formulas encourage by their use, and the ennui that is beginning to pervade the discipline after initial uncritical enthusiasm for this very powerful and expensive medium. But it will also propose other very valuable directions, those relating to reassessing the processes rather than the images that architecture engages, that this now aging "new" technology can much more resolutely and successfully address.
series ASCAAD
email
last changed 2007/04/08 19:47

_id ddss9496
id ddss9496
authors Veenendaal, Martin H.
year 1994
title Optimalization of Visualization: Graphical Diagonalization andClustering of Combinatorial Data
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary The analysis of combinatorial data is common to many disciplines as diverse as ethology, mathematics, computer science, psychology, demography, and architecture. Combinatorial data concern single relations that exist between the element pairs within one single pool of elements. TRI is a computer program that enables users to manually order combinatorial OTdangular) data matrices. "Ordering" in this context means placing high cell entries, coded as large dots, close together in clusters and close to the matrix's diagonal. Ordering, however, constitutes a very complex task. In order to support the ordering process, a straightforward measure has been developed which weighs the "amount" of clustering and diagonalization. The measure's value can be projected onto the monitor and perhaps serve as a "success indicator". A first experiment assessing the usefulness of the measure revealed that it does not consistently reflect subjective judgements of perceptual "order'. People may discern salient (although task irrelevant) patterns and regularities in dot configurations, for which the measure's cold calculus is insensitive [1]. In ongoing "human factors" experiments, the capability of experimental subjects to see through such "would be" order will be tested. One group will be amply instructed as to what the measure measures and how, and a second group will receive extensive visual instruction, using example matrices. The results of these and other experiments will help us decide whether or not to implement the measure in 1'RI, and how we can otherwise improve TRI as a powerful design and decision support tool.
series DDSS
email
last changed 2003/08/07 16:36

_id ddssup9604
id ddssup9604
authors Boelen, A.J.
year 1996
title Impact-Analysis of Urban Design Realtime impact-analysis models for urban designers
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary The past five years Prof Dr Jr T.M. de Jong, professor in environmental planning and sustainability at the Technical University of Delft, has developed a theoretical foundation for the analysis of urban design on the ecological, technical, economical, cultural and political impacts of morphologic interventions on different levels of scale. From september 1994 Jr AJ. Boelen (Urban Design Scientist and Knowledge Engineer) started a research project at the same university to further explore the possibilities of these theories and to develop impact evaluation models for urban design and development with the theoretical work of De Jong as a starting point. The paper discusses the development of a design and decision support system based on these theories. For the development of this system, techniques like object-orientation, genetic algorithms and knowledge engineering are used. The user interface, the relation between the real world, paper maps and virtual maps and the presentation of design-interventions and impacts caused by the interventions are important issues. The development-process is an interactive step by step process. It consists of the making of a prototype of the system, testing the theory and hypothe-sisses the system is based on, by applying tests end adjusting the theory and hypothesisses where needed. Eventually the system must be able to act as an integrator of many different models already developed or still to be developed. The structure of the system will allow easy future expansion and adjustment to changing insights. The logic used to develop the basic theory on which this system is founded makes it possible to even introduce and maintain rather subjective aspects like quality or appraisal as impacts that can be evaluated. In a previously developed system "Momentum" this was proved to work effectively for the national level. In this project we will - amongst other things - try to prove the effectiveness of impact-evaluation for other levels of scale.
series DDSS
email
last changed 2003/11/21 15:16

_id ddss9439
id ddss9439
authors Halin, G., Bignon, J.C. and Leonard, D.
year 1994
title Contributions of a Complex Object Retrieval Model to a Dynamical Architectural Design Process
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary When a new Architectural Construction Project starts, all the steps of the technical design are completely redefined. The experience gained in old projects is not easily reusable. Only personal experience of each project member is relevant. The global experience of a project is difficult to manage and to define. The designers of new project have many things to learn from previous experiences that may or not be good. The use of experiences may avoid either looking for asolution to previously resolved problems or making the same mistakes. To realise experience reuse during an architectural technical design we proposed to combine two actual research works:(i) a Dynamical Architectural Construction Process (DACP), (ii) a Complex Object Management System (COMS). The first work puts forward an original construction process based on a model that uses a geometrical definition of an architectural object to produce the constructive definition of this same object. The original features of this model are: (i) the insertion of a logic level between the volume level of an architectural object and its element level, (ii) dynamic management of the different representations of an architectural object during its technical life cycle. The COMS capabilities concern memorisation and retrieval of complex objects. The use of classicalData Management Systems to store these objects is either impossible or unusable due to data dispersion. In our approach, an architectural experience is viewed as an complex object. The COMS manages an Object Base which contains different Architectural Construction Experiences in previous projects forms. At any time during the DACP, the designer can asked the COMS to retrieve a part or a whole of a previous project that illustrates its current technical state. Thearticle presents two research projects and a study of the contribution of experience reuse in a construction process.
series DDSS
email
last changed 2003/08/07 16:36

_id 480c
authors Hornyánszky Dalholm, Elisabeth and Rydberg Mitchell, Birgitta
year 1994
title Full-Scale Modelling - A Tool with Many Forms and Applications
source Beyond Tools for Architecture [Proceedings of the 5th European Full-scale Modeling Association Conference / ISBN 90-6754-375-6] Wageningen (The Netherlands) 6-9 September 1994, pp. 59-70
summary The significance of the full-scale mock-up as a tool depends, among other things, on the type and finish of the mock-up, the purpose of its use and the user. The qualities of the tool effect the way it can be used. By working with a new group of users, architecture students, and by supplementing our building system with blocks we now have gained new experience. In the first part of this paper we present the projects that we carried out in teaching, partly inspired by the collaboration with EFA-members. In the second part, we try to compare this experience with our previous work with lay-people. Since the outcome of full-scale modelling means different things to these two categories of users, it affects their relationship to the mock-up. A consequence of this is that the mock-up has to fulfil various demands and it is important to be aware of these and adjust the mock-up and the full-scale modelling procedure according to them.
keywords Model Simulation, Real Environments
series other
email
last changed 2003/08/25 10:12

_id 401c
authors Hornyánszky Dalholm, Elisabeth and Rydberg Mitchell, Birgitta
year 1994
title FULL-SCALE MODELLING - A TOOL WITH MANY FORMS AND APPLICATIONS
source Beyond Tools for Architecture [Proceedings of the 5th European Full-scale Modeling Association Conference / ISBN 90-6754-375-6] Wageningen (The Netherlands) 6-9 September 1994, pp. 83-94
summary The significance of the full-scale mock-up as a tool depends, among other things, on the type and finish of the mock-up, the purpose of its use and the user. The qualities of the tool effect the way it can be used. By working with a new group of users, architecture students, and by supplementing our building system with blocks we now have gained new experience. In the first part of this paper we present the projects that we carried out in teaching, partly inspired by the collaboration with EFA-members. In the second part, we try to compare this experience with our previous work with lay-people. Since the outcome of full-scale modelling means different things to these two categories of users, it affects their relationship to the mock-up. A consequence of this is that the mock-up has to fulfil various demands and it is important to be aware of these and adjust the mock-up and the full-scale modelling procedure according to them.
keywords Model Simulation, Real Environments
series other
type normal paper
email
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 11:01

_id 8822
authors Jakimowicz, Adam
year 1994
title Abstract Modelling - Forming and Exploring
doi https://doi.org/10.52842/conf.ecaade.1994.x.o5l
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 214
summary Architectural design is always concerned with form to things. It is the sphere or action where meanings are to be expressed and further on - received (by a receiver), felt, understood. "Meanings" mean not only rational information. The matter is to reach the essence and to master ways appropriate to expose and interprete it. Quality of the form decides whether architectural or any work is worth attention or not and to what degree. Form is an attribute of a thing. It is form that "speaks". This linguistic metaphore shows one of natural, inborn features of things and states. However, questions appear: 1. Does everything have form? 2. Is the form an objective term? 3. What limitations of the definition of the form to accept- if any? The friendly environment for creating form consists of conscious intentions plus open mind. Rules are certain, but liquid. Every formal communication system may be widened individually. The only limitation is to be received according to intentions. So, incredibly, the infinite number of combinations, even within one system, may be possible.

series eCAADe
email
last changed 2022/06/07 07:50

_id 7475
authors Laurel, B., Strickland, R. and Tow, R.
year 1994
title Placeholder: Landscape and Narrative In Virtual Environments
source ACM Computer Graphics Quarterly Volume 28 Number 2 May
summary The idea of using virtual reality for entertainment purposes is actually quite recent in the history of VR technology. Early VR entertainment applications, appearing in the late 1980s, were extensions of the existing "serious" application of flight simulation training. The other branch of flight - simulator technology - motion platforms used in synchronization with motion video or animation - was much more amenable to the theme park environment. These systems, of which Star Tours is the best known, trade off individual viewpoint control and the sense of agency for thrilling, finely calibrated effects and the optimization of "throughput" - that is, getting the most people through the ride in the least time. Second to motion-platform rides in this regard are networked pods, as used in Virtual World Entertainment systems (previously Battletech). "Classic" virtual reality, with head-mounted displays and various forms of body tracking, are especially problematic in theme park environments for several reasons. It takes time to get the gear onto the participants. Only a handful of people can experience the attraction simultaneously (although a much larger audience might watch what the people "inside" the VR are doing). A hard-driving plot with distinct beginning, middle, and end is a great way to control how long an experience takes, but "classic" VR is inimical to this kind of authorial control - it works best when people can move about and do things in virtual environments in a relatively unconstrained way.
series journal paper
last changed 2003/04/23 15:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 18HOMELOGIN (you are user _anon_793735 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002