CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 376

_id 2068
authors Frazer, John
year 1995
title AN EVOLUTIONARY ARCHITECTURE
source London: Architectural Association
summary In "An Evolutionary Architecture", John Frazer presents an overview of his work for the past 30 years. Attempting to develop a theoretical basis for architecture using analogies with nature's processes of evolution and morphogenesis. Frazer's vision of the future of architecture is to construct organic buildings. Thermodynamically open systems which are more environmentally aware and sustainable physically, sociologically and economically. The range of topics which Frazer discusses is a good illustration of the breadth and depth of the evolutionary design problem. Environmental Modelling One of the first topics dealt with is the importance of environmental modelling within the design process. Frazer shows how environmental modelling is often misused or misinterpreted by architects with particular reference to solar modelling. From the discussion given it would seem that simplifications of the environmental models is the prime culprit resulting in misinterpretation and misuse. The simplifications are understandable given the amount of information needed for accurate modelling. By simplifying the model of the environmental conditions the architect is able to make informed judgments within reasonable amounts of time and effort. Unfortunately the simplications result in errors which compound and cause the resulting structures to fall short of their anticipated performance. Frazer obviously believes that the computer can be a great aid in the harnessing of environmental modelling data, providing that the same simplifying assumptions are not made and that better models and interfaces are possible. Physical Modelling Physical modelling has played an important role in Frazer's research. Leading to the construction of several novel machine readable interactive models, ranging from lego-like building blocks to beermat cellular automata and wall partitioning systems. Ultimately this line of research has led to the Universal Constructor and the Universal Interactor. The Universal Constructor The Universal Constructor features on the cover of the book. It consists of a base plug-board, called the "landscape", on top of which "smart" blocks, or cells, can be stacked vertically. The cells are individually identified and can communicate with neighbours above and below. Cells communicate with users through a bank of LEDs displaying the current state of the cell. The whole structure is machine readable and so can be interpreted by a computer. The computer can interpret the states of the cells as either colour or geometrical transformations allowing a wide range of possible interpretations. The user interacts with the computer display through direct manipulation of the cells. The computer can communicate and even direct the actions of the user through feedback with the cells to display various states. The direct manipulation of the cells encourages experimentation by the user and demonstrates basic concepts of the system. The Universal Interactor The Universal Interactor is a whole series of experimental projects investigating novel input and output devices. All of the devices speak a common binary language and so can communicate through a mediating central hub. The result is that input, from say a body-suit, can be used to drive the out of a sound system or vice versa. The Universal Interactor opens up many possibilities for expression when using a CAD system that may at first seem very strange.However, some of these feedback systems may prove superior in the hands of skilled technicians than more standard devices. Imagine how a musician might be able to devise structures by playing melodies which express the character. Of course the interpretation of input in this form poses a difficult problem which will take a great deal of research to achieve. The Universal Interactor has been used to provide environmental feedback to affect the development of evolving genetic codes. The feedback given by the Universal Interactor has been used to guide selection of individuals from a population. Adaptive Computing Frazer completes his introduction to the range of tools used in his research by giving a brief tour of adaptive computing techniques. Covering topics including cellular automata, genetic algorithms, classifier systems and artificial evolution. Cellular Automata As previously mentioned Frazer has done some work using cellular automata in both physical and simulated environments. Frazer discusses how surprisingly complex behaviour can result from the simple local rules executed by cellular automata. Cellular automata are also capable of computation, in fact able to perform any computation possible by a finite state machine. Note that this does not mean that cellular automata are capable of any general computation as this would require the construction of a Turing machine which is beyond the capabilities of a finite state machine. Genetic Algorithms Genetic algorithms were first presented by Holland and since have become a important tool for many researchers in various areas.Originally developed for problem-solving and optimization problems with clearly stated criteria and goals. Frazer fails to mention one of the most important differences between genetic algorithms and other adaptive problem-solving techniques, ie. neural networks. Genetic algorithms have the advantage that criteria can be clearly stated and controlled within the fitness function. The learning by example which neural networks rely upon does not afford this level of control over what is to be learned. Classifier Systems Holland went on to develop genetic algorithms into classifier systems. Classifier systems are more focussed upon the problem of learning appropriate responses to stimuli, than searching for solutions to problems. Classifier systems receive information from the environment and respond according to rules, or classifiers. Successful classifiers are rewarded, creating a reinforcement learning environment. Obviously, the mapping between classifier systems and the cybernetic view of organisms sensing, processing and responding to environmental stimuli is strong. It would seem that a central process similar to a classifier system would be appropriate at the core of an organic building. Learning appropriate responses to environmental conditions over time. Artificial Evolution Artificial evolution traces it's roots back to the Biomorph program which was described by Dawkins in his book "The Blind Watchmaker". Essentially, artificial evolution requires that a user supplements the standard fitness function in genetic algorithms to guide evolution. The user may provide selection pressures which are unquantifiable in a stated problem and thus provide a means for dealing ill-defined criteria. Frazer notes that solving problems with ill-defined criteria using artificial evolution seriously limits the scope of problems that can be tackled. The reliance upon user interaction in artificial evolution reduces the practical size of populations and the duration of evolutionary runs. Coding Schemes Frazer goes on to discuss the encoding of architectural designs and their subsequent evolution. Introducing two major systems, the Reptile system and the Universal State Space Modeller. Blueprint vs. Recipe Frazer points out the inadequacies of using standard "blueprint" design techniques in developing organic structures. Using a "recipe" to describe the process of constructing a building is presented as an alternative. Recipes for construction are discussed with reference to the analogous process description given by DNA to construct an organism. The Reptile System The Reptile System is an ingenious construction set capable of producing a wide range of structures using just two simple components. Frazer saw the advantages of this system for rule-based and evolutionary systems in the compactness of structure descriptions. Compactness was essential for the early computational work when computer memory and storage space was scarce. However, compact representations such as those described form very rugged fitness landscapes which are not well suited to evolutionary search techniques. Structures are created from an initial "seed" or minimal construction, for example a compact spherical structure. The seed is then manipulated using a series of processes or transformations, for example stretching, shearing or bending. The structure would grow according to the transformations applied to it. Obviously, the transformations could be a predetermined sequence of actions which would always yield the same final structure given the same initial seed. Alternatively, the series of transformations applied could be environmentally sensitive resulting in forms which were also sensitive to their location. The idea of taking a geometrical form as a seed and transforming it using a series of processes to create complex structures is similar in many ways to the early work of Latham creating large morphological charts. Latham went on to develop his ideas into the "Mutator" system which he used to create organic artworks. Generalising the Reptile System Frazer has proposed a generalised version of the Reptile System to tackle more realistic building problems. Generating the seed or minimal configuration from design requirements automatically. From this starting point (or set of starting points) solutions could be evolved using artificial evolution. Quantifiable and specific aspects of the design brief define the formal criteria which are used as a standard fitness function. Non-quantifiable criteria, including aesthetic judgments, are evaluated by the user. The proposed system would be able to learn successful strategies for satisfying both formal and user criteria. In doing so the system would become a personalised tool of the designer. A personal assistant which would be able to anticipate aesthetic judgements and other criteria by employing previously successful strategies. Ultimately, this is a similar concept to Negroponte's "Architecture Machine" which he proposed would be computer system so personalised so as to be almost unusable by other people. The Universal State Space Modeller The Universal State Space Modeller is the basis of Frazer's current work. It is a system which can be used to model any structure, hence the universal claim in it's title. The datastructure underlying the modeller is a state space of scaleless logical points, called motes. Motes are arranged in a close-packing sphere arrangement, which makes each one equidistant from it's twelve neighbours. Any point can be broken down into a self-similar tetrahedral structure of logical points. Giving the state space a fractal nature which allows modelling at many different levels at once. Each mote can be thought of as analogous to a cell in a biological organism. Every mote carries a copy of the architectural genetic code in the same way that each cell within a organism carries a copy of it's DNA. The genetic code of a mote is stored as a sequence of binary "morons" which are grouped together into spatial configurations which are interpreted as the state of the mote. The developmental process begins with a seed. The seed develops through cellular duplication according to the rules of the genetic code. In the beginning the seed develops mainly in response to the internal genetic code, but as the development progresses the environment plays a greater role. Cells communicate by passing messages to their immediate twelve neighbours. However, it can send messages directed at remote cells, without knowledge of it's spatial relationship. During the development cells take on specialised functions, including environmental sensors or producers of raw materials. The resulting system is process driven, without presupposing the existence of a construction set to use. The datastructure can be interpreted in many ways to derive various phenotypes. The resulting structure is a by-product of the cellular activity during development and in response to the environment. As such the resulting structures have much in common with living organisms which are also the emergent result or by-product of local cellular activity. Primordial Architectural Soups To conclude, Frazer presents some of the most recent work done, evolving fundamental structures using limited raw materials, an initial seed and massive feedback. Frazer proposes to go further and do away with the need for initial seed and start with a primordial soup of basic architectural concepts. The research is attempting to evolve the starting conditions and evolutionary processes without any preconditions. Is there enough time to evolve a complex system from the basic building blocks which Frazer proposes? The computational complexity of the task being embarked upon is not discussed. There is an implicit assumption that the "superb tactics" of natural selection are enough to cut through the complexity of the task. However, Kauffman has shown how self-organisation plays a major role in the early development of replicating systems which we may call alive. Natural selection requires a solid basis upon which it can act. Is the primordial soup which Frazer proposes of the correct constitution to support self-organisation? Kauffman suggests that one of the most important attributes of a primordial soup to be capable of self-organisation is the need for a complex network of catalysts and the controlling mechanisms to stop the reactions from going supracritical. Can such a network be provided of primitive architectural concepts? What does it mean to have a catalyst in this domain? Conclusion Frazer shows some interesting work both in the areas of evolutionary design and self-organising systems. It is obvious from his work that he sympathizes with the opinions put forward by Kauffman that the order found in living organisms comes from both external evolutionary pressure and internal self-organisation. His final remarks underly this by paraphrasing the words of Kauffman, that life is always to found on the edge of chaos. By the "edge of chaos" Kauffman is referring to the area within the ordered regime of a system close to the "phase transition" to chaotic behaviour. Unfortunately, Frazer does not demonstrate that the systems he has presented have the necessary qualities to derive useful order at the edge of chaos. He does not demonstrate, as Kauffman does repeatedly, that there exists a "phase transition" between ordered and chaotic regimes of his systems. He also does not make any studies of the relationship of useful forms generated by his work to phase transition regions of his systems should they exist. If we are to find an organic architecture, in more than name alone, it is surely to reside close to the phase transition of the construction system of which is it built. Only there, if we are to believe Kauffman, are we to find useful order together with environmentally sensitive and thermodynamically open systems which can approach the utility of living organisms.
series other
type normal paper
last changed 2004/05/22 14:12

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id 8991
authors Danahy, John and Hoinkes, Rodney
year 1995
title Polytrim: Collaborative Setting for Environmental Design
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 647-658
summary This paper begins with a review of the structuring values and questions the Centre for Landscape Research (CLR) is interested in answering with its testbed software system Polytrim (and its derivatives; CLRview, CLRpaint, CLRmosaic available via anonymous ftp over the internet). The mid section of the paper serves as a guide to Polytrim's structure and implementation issues. Some of the most enduring and significant principles learned from Polytrim's use over the last six years of use in research, teaching and professional practice are introduced. The paper will end with an overview of characteristics that we believe our next generation of software should achieve. The CLR's digital library on the World-Wide Web provides an extensive Set of illustrations and detailed descriptions of the ideas and figures presented in this paper. Endnotes provide specific internet addresses for those that wish to read, see or use the system.
keywords Dialogue, Interaction, Collaboration, Integration, Setting
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 4aae
authors Day, Alan K. and Radford, Antony D.
year 1995
title Imaging Change: The Computer City Model as a Laboratory for Urban Design Research
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 495-506
summary The use of an extensive and detailed computer model of the city of Bath, UK, as a laboratory for urban design research is discussed. Bath is a small predominantly Georgian historic city that has been designated a World Heritage Site. Examples are drawn from four kinds of work: the representation of Bathís historic growth (including unbuilt plans), the prediction of the urban design impact of individual development proposals, the study and development of explicit and implicit urban design Çrulesë for the form of existing and new development, and the impact on city form and appearance of policy proposals for urban sustainability.
keywords 3D City Modeling, Urban Modelling, Planning, Public Consultation
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 47c7
authors Fasse, Isabelle and Paul, Jean Claude
year 1995
title Realistic Rendering and Computer-Aided Lighting Design in Architecture
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 241-255
summary This paper presents an application of realistic rendering to computer aided design in architecture. The application concerns lighting design of buildings. We describe a library of algorithms which allows the simulation of the light sources emittance, surfaces reflectance/transmittance, and light propagation laws. Our general algorithm can compute a physically based simulation of illumination in complex geometric models and offers the capability to change the inputs without recalculating the entire global physical solution. Since the solution is view independent, hardware graphic accelerations are then used to generate the images. Two industrial experimentations have proved that our system can help designers to evaluate small iterations in the design, as well as compare global alternative solutions. Therefore, design quality improvement can be obtained while saving the costly full scale trials that are necessary when conventional methods are used.
keywords Computer-Aided Design, Computer Graphics, Synthesis Images, Architectural Design, Lighting Engineering
series CAAD Futures
last changed 1999/08/03 17:16

_id d6d8
authors Flemming, Ulrich and Woodbury, Robert
year 1995
title Software Environment to Support Early Phases in Building Design (SEED): Overview
source Journal of Architectural Engineering -- December 1995 -- Volume 1, Issue 4, pp. 147-152
summary This paper describes the overall goals of SEED, the approach taken by its developers to achieve these goals, and the subprojects that comprise the entire project. SEED aims at providing computational support forthe early design phase in all aspects that can benefit from such support. It addresses specifically architectural programming, schematic layout design, and the generation of a fully three-dimensional configuration ofphysical building components like structure and enclosure. These tasks are handled by three individual modules, SEED-Pro, SEED-Layout, and SEED-Config. A standards processor is under development tosupport standards and code checking in any module, as is an object database to store and retrieve different design versions, alternatives, and past designs that can be reused and adapted in different contexts(case-based design). Usability issues, especially the interfaces to the modules, receive special attention. Subsequent papers elaborate on these efforts in greater detail. The present paper provides an overview of theentire project and introduces shared concepts presumed known in subsequent papers.
series journal paper
email
last changed 2003/05/15 21:45

_id 33f3
authors Fujii, Haruyuki
year 1995
title Incorporation of Natural Language Processing and a Generative System - An Interactive System that Constructs Topological Models from Spatial Descriptions in Natural Language
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 205-218
summary The natural language processing technique and the spatial reasoning technique are incorporated to create a computational model representing the process of updating and maintaining the knowledge about spatial relations. An algorithm for the spatial reasoning is proposed. An interactive system that understands sentences describing spatial relations is implemented. The system determines the reference of an anaphoric or deictic expression from the literal meaning of the input and the implicit meaning derived from the literal meaning. The consistency of the spatial relations is maintained. The correct topological representations of the spatial relations are generated from well-formed descriptions.
keywords Natural Language Processing, Discourse Analysis, Artificial Intelligence, Architecture, CAD
series CAAD Futures
email
last changed 2003/05/16 20:58

_id ac5e
authors Hirschberg, Urs and Streilein, André
year 1995
title CAAD Meets Digital Photogrammetry: Modeling "Weak Forms" for Computer Measurement
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 299-313
doi https://doi.org/10.52842/conf.acadia.1995.299
summary The integration of state-of-the-art photogrammetric methods with the capabilities of CAAD has great potential for a variety of architectural applications. This paper describes the current status of an ongoing research project which aims to develop an easy to use tool for the photogrammetric generation of accurate, reliable and well structured 3D CAAD models of architectural objects. The project adresses the whole range of issues that arise from the digital image acquisition to the data processing, the data integration between photogrammetry and CAAD and the architectural structuring of the geometric data. While also giving a brief overview of the project, the paper concentrates on one central aspect of the system: a method to model what we will define as "weak forms" as the basis for qualitatively controlled computer measurement.
keywords Digital Architectural Photogrammetry, Constraint-Based Modelling
series ACADIA
email
last changed 2022/06/07 07:50

_id d7f7
authors Jeng, Hoang-Ell
year 1995
title A Dialogical Model for Participatory Design; A Computational Approach to Group Planning
source Delft University of Technology
summary In participatory design, design concepts are generated collectively through discussion, dialogical interactions, in which the interchange of normative and supporting factual descriptions builds a collective design discourse. The goal of this research is to develop a method for participatory design to support this collective, face-to-face design problem-solving, in order to increase the acceptability of the design product. Since the mid-1960s, there has been an important movement towards increasing the participation of citizens in determining their built environment. At first, the movement was associated with social-political ideologies and rhetoric. By the end of the 1970s, participatory design had become an accepted component of professional practice. The objectives of the movement became more pragmatically and more modestly focused on exchanging practical information, resolving conflicts, and supplementing design. Today, participatory design is in a new phase. Traditional participatory design methods are seen as insufficient to fulfill an increasing demand for dialogue. The point of departure of the study is the assumption that new information technologies can satisfy this demand. The method includes: (1) a group-reasoning model, (2) a dialogical system and (3) a framework for participation-based design guidelines. The group-reasoning model formulates the process of knowledge acquisition, the learning and sharing of belief systems, the generation of design alternatives and design evaluations--by which reasoning takes place dialogically. The dialogical system provides a clear description of how the information should be processed, what aspects should be paid attention to, what results can be anticipated, and when and how to control the process. The framework for participation-based design guidelines guides and structures the design process. It facilitates a reconstruction of the implicit cognitive structure which underlines dialogue and is generated through the discussion of a group.
series thesis:PhD
last changed 2003/02/12 22:37

_id a79b
authors Junge, Richard and Liebich, Thomas
year 1995
title New Generation CAD in an Integrated Design Environment: A Path towards Multi-Agent Collaboration
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 277-290
summary Product Modeling is considered to be an established concept not only for semantically based data exchange, but also for the specification of models, dealing with specific application requirements. The product model approach is regarded to be one step towards a new generation of Computer Aided Architectural Design, and to provide underlying means for enabling communication between different applications on a semantic level. After on overview about the background and the basis principles of product modeling, the authors discuss how product models can be used in commercial developments and in applied research projects.
keywords Product Modeling, STEP, Computer-Aided Design, Data Integration
series CAAD Futures
last changed 1999/08/03 17:16

_id cc8b
authors Koutamanis, Alexander
year 1995
title Background Information Systems
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 231-242
doi https://doi.org/10.52842/conf.ecaade.1995.231
summary Information systems increasingly appear as core elements of computer-aided architectural design environments. They provide the input and accommodate the output of automated and interactive procedures. The paper proposes the development of architectural information systems as an unobstrusive multimedia infrastructure in the background of specialized programs used for performing specific design t.asks. Background multimedia systems facilitate communication between specialized programs by means of their compound representations. These combine different types of information and provide an overview of the overall system and of the processes implemented in it.
series eCAADe
email
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_29.htm
last changed 2022/06/07 07:51

_id d8ea
authors Kumar, Subodh and Manocha, Dinesh
year 1995
title Efficient rendering of trimmed NURBS surfaces
source Computer-Aided Design, Vol. 27 (7) (1995) pp. 509-521
summary An algorithm for the interactive display of trimmed nurbs surfaces is presented. The algorithm converts the nurbs surfaces to Bézier surfaces, and nurbs trimming curves toBézier curves. It tessellates each trimmed Bézier surface into triangles, and renders them using the triangle rendering capabilities common in current graphics systems. Itmakes use of tight bounds for the uniform tessellation of Bézier surfaces into cells and it traces the trimming curves to compute the trimmed regions of each cell. Thisoperation is based on the tracing of trimming curves, intersection computation with the cells, and triangulation of the cells. The resulting technique also makes use of spatialand temporal coherence between successive frames for cell computation and triangulation. Polygonization anomalies such as cracks and angularities are avoided as well. Thealgorithm can display trimmed models described using thousands of Bézier surfaces at interactive frame rates on high end graphics systems.
keywords Trimmed Nurbs, Bezier Surfaces, Rendering
series journal paper
last changed 2003/05/15 21:33

_id e655
authors Paoluzzi, A., Pascucci, V. and Vicentino, M.
year 1995
title Geometric programming: A programming approach to geometric design
source ACM Transactions on Graphics
summary This article presents a functional programming approach to geometric design with embedded polyhedral complexes. Its main goals are to show the expressive power of the language as well as its usefulness for geometric design. The language, named PLASM (the Programming LAnguage for Solid Modeling), introduces a very high level approach to "constructive" or "generative" modeling. Geometrical objects are generated by evaluating some suitable language expressions. Because generating expressions can be easily combined, the language also extends the standard variational geometry approach by supporting classes of geometric objects with varying topology and shape. The design language PLASM can be roughly considered as a geometry-oriented extension of a subset of the functional language FL. The language takes a dimension-independent approach to geometry representation and algorithms. In particular it implements an algebraic calculus over embedded polyhedra of any dimension. The generated objects are always geometrically consistent because the validity of geometry is guaranteed at a syntactical level. Such an approach allows one to use a representation scheme which is weaker than those usually adopted in solid modelers, thus encompassing a broader geometric domain, which contains solids, surfaces, and wire-frames, as well as higher-dimensional objects.
series journal paper
last changed 2003/04/23 15:50

_id ecaadesigradi2019_102
id ecaadesigradi2019_102
authors Passsaro, Andres Martin, Henriques, Gonçalo Castro, Sans?o, Adriana and Tebaldi, Isadora
year 2019
title Tornado Pavilion - Simplexity, almost nothing, but human expanded abilities
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 305-314
doi https://doi.org/10.52842/conf.ecaade.2019.1.305
summary In the context of the fourth industrial revolution, not all regions have the same access to technology for project development. These technological limitations do not necessarily result in worst projects and, on the contrary, can stimulate creativity and human intervention to overcome these shortcomings. We report here the design of a small pavilion with scarce budget and an ambitious goal to qualify a space through tactical urbanism. We develop the project in a multidisciplinary partnership between academy and industry, designing, manufacturing and assembling Tornado Pavilion, a complex structure using combined HIGH-LOW technologies, combining visual programming with analog manufacture and assembly. The design strategy uses SIMPLEXITY with ruled surfaces strategy to achieve a complex geometry. Due to the lack of automated mechanical cutting or assembly, we used human expanded abilities for the construction; instead of a swarm of robots, we had a motivated and synchronized swarm of students. The pavilion became a reference for local population that adopted it. This process thus shows that less or almost nothing (Sola-Morales 1995), need not to be boring (Venturi 1966) but less can be much more (Kolarevic 2017).
keywords Simplexity; CAD-CAM; Ruled Surfaces; expanded abilities; pavilion
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id 990b
authors Pree, W.
year 1995
title Design Patterns for Object-Oriented Software Development
source ACM Press, Addison-Wesley
summary Provides an overview of state-of-the-art approaches in object-oriented technology as well as practical guidance for their use in software design. Covers forming class hierarchies and interaction relationships between objects, software architectures that allow for reuse of code and design, and documenting object-oriented design on an adequate abstraction level. Includes examples and a case study.
series other
last changed 2003/04/23 15:14

_id 7670
authors Sawicki, Bogumil
year 1995
title Ray Tracing – New Chances, Possibilities and Limitations in AutoCAD
source CAD Space [Proceedings of the III International Conference Computer in Architectural Design] Bialystock 27-29 April 1995, pp. 121-136
summary Realistic image synthesis is nowadays widely used in engineering applications. Some of these applications, such as architectural, interior, lighting and industrial design demand accurate visualization of non-existent scenes as they would look to us, when built in reality. This can only be archived by using physically based models of light interaction with surfaces, and simulating propagation of light through an environment. Ray tracing is one of the most powerful techniques used in computer graphics, which can produce such very realistic images. Ray tracing algorithm follows the paths of light rays backwards from observer into the scene. It is very time consuming process and as such one could not be developed until proper computers appeared, In recent years the technological improvements in computer industry brought more powerful machines with bigger storage capacities and better graphic devices. Owing to increasing these hardware capabilities successful implementation of ray tracing in different CAD software became possible also on PC machines. Ray tracing in AutoCAD r.12 - the most popular CAD package in the world - is the best of that example. AccuRender and AutoVision are an AutoCAD Development System (ADS) applications that use ray tracing to create photorealistic images from 3D AutoCAD models. These ,internal"' applications let users generate synthetic images of threedimensional models and scenes entirely within AutoCAD space and show effects directly on main AutoCAD screen. Ray tracing algorithm accurately calculates and displays shadows, transparency, diffusion, reflection, and refraction from surface qualities of user-defined materials. The accurate modelling of light lets produce sophisticated effects and high-quality images, which these ray tracers always generates at 24-bit pixel depth,"providing 16,7 million colours. That results can be quite impressive for some architects and are almost acceptable for others but that coloured virtual world, which is presented by ray tracing in AutoCAD space in such convincing way, is still not exactly the same as the real world. Main limitations of realism are due to the nature of ray tracing method Classical ray tracing technique takes into account the effects of light reflection from neighbouring surfaces but, leaves out of account the ambient and global illumination arising out of complex interreflections in an environment. So models generated by ray tracing belong to an "ideal" world where real materials and environment can't find their right place. We complain about that fact and say that ray tracing shows us "too specular world", but (...) (...) there is anything better on the horizon? It should be concluded, that typical abilities of today's graphics software and hardware are far from exploited. As was observed in literature there have been various works carried along with the explicit intention of overcoming all these ray tracing limitations, These researches seem to be very promising and let us hope that their results will be seen in CAD applications soon. As it happens with modelling, perhaps the answer will come from a variety of techniques that can be combined together with ray tracing depending on the case we are dealing with. Therefore from the point of view of an architects that try to keep alive some interest on the nature of materials and their interaction with form, "ray tracing" seems to be right path of research and development that we can still a long way follow, From the point of view of the school, a critical assimilation of "ray tracing" processes is required and one that might help to determinate exactly their distortions and to indicate the correct way of its development and right place in CAAD education. I trust that ray tracing will become standard not only in AutoCAD but in all architectural space modelling CAD applications and will be established as a powerful and real tool for experimental researches in architectural design process. Will be the technological progress so significant in the nearest future as it is anticipated?
series plCAD
last changed 2000/01/24 10:08

_id 07da
authors Wohlers, T.
year 1995
title 3D Digitizers for Engineering
source Computer Graphics World, (March 1995), p. 112-115
summary 3D digitizing systems permit you to create a digital model from a physical part. The process is appealing because it can be difficult to create models of complex objects using computer tools without the aid of a 3D input device. Recreating an existing part from scratch, even with a computer, is like copying a printed page by retyping it. Although 3D digitizers are not as straightforward as a photocopy machine, the intent is the same. You can render and print a digitized model to communicate shape information, extract dimensions from it to show size information, and use the 3D database to manufacture a replica using rapid prototyping (RP) and CNC machines. You can also include the 3D model in multimedia or animation software as a learning or assembly aid. The challenge of the digitization process in manufacturing is to capture adequate detail and resolution. Adding a digitized model to a Hollywood film is often much easier than reverse engineering a part for prototyping or manufacturing. The only criteria for a movie or TV commercial is whether or not it looks good. No one from the audience measures the object to see if it meets a given tolerance. In manufacturing, RP and CNC machines require clean, complete, and accurate information. If areas on the model are incomplete or missing, it may be difficult or impossible to build the part. If edges, grooves, and features of the part are not fine and crisp, the results may be less than satisfactory. Most 3D digitizing systems are best at digitizing organic shapes such as free-form sculpted surfaces. When you see an advertisement or a catalog from companies offering digitized models, often you see objects such as human anatomy, animals, bones, skeletons, and so on. You may also see cars, trucks, motorcycles and airplanes, although they can be more difficult to digitize. Highly engineered parts, such as enclosures for electronic devices are usually the most difficult for 3D digitizers. That's why these systems aren't used widely for the reverse engineering of precision mechanical parts.
series journal paper
last changed 2003/04/23 15:50

_id c777
authors Bach, Fr.-W., Rachkov, M., Seevers, J. and Hahn, M.
year 1995
title High tractive power wall-climbing robot
source Automation in Construction 4 (3) (1995) pp. 213-224
summary There are a lot of tasks in building construction and maintenance which demand either the carriage of heavy technological equipment along vertical and sloping surfaces and/or provision for force technological operations on such surfaces For example, surface cleaning or grinding by automatic equipment, the mounting of expansion bolts and anchors by drilling or by driving in. Additionally surface inspection by heavy measuring devices and the painting of big construction areas are difficult and expensive to perform manually. It is therefore expedient to apply climbing robots to automate these tractive power operations. The climbing robot was developed for such purposes. The design of the robot with increased load capacity and improved gripper system was carefully considered. The robot has a video camera for orientation and for the monitoring of processes. A sensor-based computer control system is used. This paper contains a brief overview of the technical parameters and experimental characteristics of the robot's transport module, control system with video camera unit, and the different schemes of the robot's application.
keywords Climbing robot; Two-staged gripper system Monitoring Sensor-based computer control system; Automatic Technological equipment
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/06/02 09:36

_id e75d
authors Achten, H., Dijkstra, J., Oxman, R. and Bax, Th.
year 1995
title Knowledge-Based Systems Programming for Knowledge Intensive Teaching
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 139-148
doi https://doi.org/10.52842/conf.ecaade.1995.139
summary Typological design implies extensive knowledge of building types in order to design a building belonging to a building type. It facilitates the design process, which can be considered us a sequence of decisions. The paper gives an outline of a new approach in a course teaching typological knowledge through the medium of Knowledge-Based Systems programming. It demonstrates how Knowledge-Based Systems offer an appropriate structure for analysing the knowledge required to implement typological design. The class consists of third-year undergraduate students with no extensive previous programming experience. The implementation language is AutoLISP which operates in the AutoCAD environment. The building type used in the course is the office building. in order to become acquainted with both building type and programming in AutoLISP, information and instructions have been gathered and prestructured, including a worked out analysis and AutoLISP code. Office plans are generated through use of the Knowledge-Based System. They are encoded in the form of frames. At the end of the course the students will have learned the basics of Knowledge-Based Systems, have been introduced to programming these systems, have analysed and reflected upon the design process, and gained insight into a specific building type.
series eCAADe
email
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_18.htm
last changed 2022/06/07 07:54

_id 0c8e
authors Ager, Mark Thomas and Sinclair, Brian R.
year 1995
title StereoCAD: Three Dimensional Representation
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 343-355
summary Concepts of stereoscopic vision have been around for more than two thousand years. Despite this long history, its application to the field to architecture and design seems relatively unexplored. Synthesis of two technologies, the stereoscope and the computer, was the focus of the present study. The goal of the research was to determine if computer-generated stereoscopic pairs hold value for architectural design. Using readily available computer technology (Apple Macintosh) the research team modelled and rendered an existing project to verify the degree of correlation between the physical construct, the computer 3D model and resultant correlation between the physical construct, the computer 3D model and resultant rendered stereo-paired representation. The experiments performed in this study have shown that producing stereo-paired images that highly correlate to reality is possible using technology that is readily available in the marketplace. Both the technology required to produce (i.e., personal computer and modelling/rendering software) and view (i.e., modified stereoscope) the images is unimposing. Both devices can easily fit in a studio or a boardroom and together can be utilized effectively to permit designers, clients and end-users to experience proposed spaces and projects. Furthermore, these technologies are familiar (clients and end-users have already experienced them in other applications and settings) and assume a fraction of the cost of more dynamic, immersive virtual reality systems. Working from this base, limitations of the process as well as future applications of computer-generated stereoscopic images are identified.
keywords Stereovision, Representation, Computers, Architects, Design
series CAAD Futures
last changed 2003/11/21 15:15

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 18HOMELOGIN (you are user _anon_611976 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002