CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 398

_id d7eb
authors Bharwani, Seraj
year 1996
title The MIT Design Studio of the Future: Virtual Design Review Video Program
source Proceedings of ACM CSCW'96 Conference on Computer-Supported Cooperative Work 1996 p.10
summary The MIT Design Studio of the Future is an interdisciplinary effort to focus on geographically distributed electronic design and work group collaboration issues. The physical elements of this virtual studio comprise networked computer and videoconferencing connections among electronic design studios at MIT in Civil and Environmental Engineering, Architecture and Planning, Mechanical Engineering, the Lab for Computer Science, and the Rapid Prototyping Lab, with WAN and other electronic connections to industry partners and sponsors to take advantage of non-local expertise and to introduce real design and construction and manufacturing problems into the equation. This prototype collaborative design network is known as StudioNet. The project is looking at aspects of the design process to determine how advanced technologies impact the process. The first experiment within the electronic studio setting was the "virtual design review", wherein jurors for the final design review were located in geographically distributed sites. The video captures the results of that project, as does a paper recently published in the journal Architectural Research Quarterly (Cambridge, UK; Vol. 1, No. 2; Dec. 1995).
series other
last changed 2002/07/07 16:01

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2012/12/04 07:53

_id c0ef
authors Kalay, Yehuda and Séquin, Carlo
year 1995
title Designer-Client Collaboration in Architectural and Software Design
doi https://doi.org/10.52842/conf.acadia.1995.383
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 383-403
summary An upper-level undergraduate architectural design studio and a graduate computer science CAD course were paired to study client-designer interactions. The dual nature of these courses led to two sets of products: building designs compatible with the specifications of the clients, and prototype CAD tool to assist architects in the conceptual design phases. First, the computer scientists acted as clients to the architects, who designed a building for the computer science department. Once the computer science students had become familiar, through observation, with the architectural design process, they began developing tools for the architects' use. In that reversed-role, the architects became the clients of the computer scientists. For both parties this interaction provided an opportunity to experience the social aspects of the design process, in particular, the designer-client relationships, which most often are absent in traditional educational settings. This paper describes the objectives of this integrated pair of courses, the methods and processes used, and some of the results.
keywords Design, Design Process, Design Studio, Design Education, Architectural Design, CAD
series ACADIA
email
last changed 2022/06/07 07:52

_id 1af7
authors Jabi, Wassim M. and Hall, Theodore W.
year 1995
title Beyond the Shared Whiteboard: Issues in Computer Supported Collaborative Design
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 719-725
summary This research focuses on combining the rich representations of computer-aided design systems with current collaboration technologies to support distributed design processes. Our emphasis is not on concurrent multi-user access to integrated databases, but rather on shared protocols of interaction that are independent of implementation and storage schemes. We have developed a prototype for a Synchronous Collaborative Design System (SYCODE) that enables geographically dispersed designers to share common representations even when using different hardware platforms. The limitations of the existing network infrastructure have compelled its to devise a meaningful and parsimonious representation scheme and to semantically define pending and confirmed actions.
keywords Computer Supported Co-operative Work, Collaborative Design, Multi-User Synchronous CAAD, Shared Workspace, Shared Protocols of interaction
series CAAD Futures
email
last changed 2002/02/20 22:01

_id f50a
authors Rutherford, James
year 1995
title A Multi-User Design Workspace
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 673-685
summary Advances in digital media and digital communication has fostered the growth of a new enabling technology that allows geographically displaced individuals to hold group meetings and provides the opportunity to interact in a collaborative venture. The development of computer software to aid remote collaboration has, until recently, focused on the provision of tools that enable two or more people to participate in the shared authoring of a mixed-media (lexi-visual) documents. This paper presents a model of the design process which is founded on the transient nature of collaboration. The model is used to develop a multimedia framework to support remote collaborative design providing transitional support between synchronous and asynchronous design activity. A prototype system is used to illustrate the salient features of the framework.
keywords Collaborative Design
series CAAD Futures
last changed 1999/08/03 17:16

_id 3f92
authors Saad, Milad and Maher, Mary Lou
year 1995
title Exploring the Possibilities for Computer Support for Collaborative Designing
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 727-737
summary Design projects require a collaboration of individuals and a coordination of information and tasks. Computer support for design, more specifically CAD systems, have been developed to support a single user through a graphical interface and project teams through distributed data. This paper considers recent developments in computer support for synchronous collaborative design. The possibilities for developing a support environment for synchronous collaborative design cover a broad range of technical and personal considerations. We explore these possibilities by presenting several perspectives of the technical considerations and options, followed by a discussion of how such environments have the potential to enable a shared understanding among people as they are designing.
keywords Collaborative Design, Groupware, Shared CAD.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id dfaf
authors Ataman, Osman
year 2000
title Some Experimental Results in the Assessment of Architectural Media
doi https://doi.org/10.52842/conf.acadia.2000.163
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 163-171
summary The relationship between the media and architectural design can be an important factor and can influence the design outcome. However, the nature, direction and magnitude of this relationship are unknown. Consequently, there have been many speculative claims about this relationship and almost none of them are supported with empirical research studies. In order to investigate these claims and to provide a testable framework for their potential contributions to architectural education, this study aims to explore the effects of media on architectural design. During 1995-1997, a total of 90 students enrolling in First Year Design Studio and Introduction to Computing classes at Georgia Tech participated in the study. A set of quantitative measures was developed to assess the differences between the two media and the effects on the architectural design. The results suggested that media influenced certain aspects of students’ designs. It is concluded that there is a strong relationship between the media and architectural design. The type of media not only changes some quantifiable design parameters but also affects the quality of design.
series ACADIA
email
last changed 2022/06/07 07:54

_id ddssar0206
id ddssar0206
authors Bax, M.F.Th. and Trum, H.M.G.J.
year 2002
title Faculties of Architecture
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary In order to be inscribed in the European Architect’s register the study program leading to the diploma ‘Architect’ has to meet the criteria of the EC Architect’s Directive (1985). The criteria are enumerated in 11 principles of Article 3 of the Directive. The Advisory Committee, established by the European Council got the task to examine such diplomas in the case some doubts are raised by other Member States. To carry out this task a matrix was designed, as an independent interpreting framework that mediates between the principles of Article 3 and the actual study program of a faculty. Such a tool was needed because of inconsistencies in the list of principles, differences between linguistic versions ofthe Directive, and quantification problems with time, devoted to the principles in the study programs. The core of the matrix, its headings, is a categorisation of the principles on a higher level of abstractionin the form of a taxonomy of domains and corresponding concepts. Filling in the matrix means that each study element of the study programs is analysed according to their content in terms of domains; thesummation of study time devoted to the various domains results in a so-called ‘profile of a faculty’. Judgement of that profile takes place by committee of peers. The domains of the taxonomy are intrinsically the same as the concepts and categories, needed for the description of an architectural design object: the faculties of architecture. This correspondence relates the taxonomy to the field of design theory and philosophy. The taxonomy is an application of Domain theory. This theory,developed by the authors since 1977, takes as a view that the architectural object only can be described fully as an integration of all types of domains. The theory supports the idea of a participatory andinterdisciplinary approach to design, which proved to be awarding both from a scientific and a social point of view. All types of domains have in common that they are measured in three dimensions: form, function and process, connecting the material aspects of the object with its social and proceduralaspects. In the taxonomy the function dimension is emphasised. It will be argued in the paper that the taxonomy is a categorisation following the pragmatistic philosophy of Charles Sanders Peirce. It will bedemonstrated as well that the taxonomy is easy to handle by giving examples of its application in various countries in the last 5 years. The taxonomy proved to be an adequate tool for judgement ofstudy programs and their subsequent improvement, as constituted by the faculties of a Faculty of Architecture. The matrix is described as the result of theoretical reflection and practical application of a matrix, already in use since 1995. The major improvement of the matrix is its direct connection with Peirce’s universal categories and the self-explanatory character of its structure. The connection with Peirce’s categories gave the matrix a more universal character, which enables application in other fieldswhere the term ‘architecture’ is used as a metaphor for artefacts.
series DDSS
last changed 2003/11/21 15:16

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id 276c
authors Breen, Jack
year 1995
title Dynamic Perspective: The Media Research Programme
source The Future of Endoscopy [Proceedings of the 2nd European Architectural Endoscopy Association Conference / ISBN 3-85437-114-4]
summary This paper focuses on the Research Programme of the Media Sector at the Faculty of Architecture, Delft University of Technology. The media research objectives for the coming years have been brought together with an overall project: “Dynamic Perspective”. The “dynamic” quality may be interpreted both as movement (visual displacement and registration) and as change (the effects of different options).

The four projects which together make up this research programme deal with perception (understanding) and conception (designing and imaging) of urban space: “the architecture of the city”. Specific aspects are the effects of primary and secondary spatial boundaries and the systematic structuring of simulation of visual information. The programme will further concentrate on the development and implementation of relevant techniques (besides “traditional” ones such as the drawing and the architectural model, on multimedia techniques such as endoscopy, computer visualization and development of virtual reality systems), both in education and in design practice.

By means of analysis, the creation of visual models of choice and the setting up of experiments, the programme aims at the furthering of theoretical knowledge and at acquiring better insights into the effects of design decisions at an urban level, both for designers and for other participants in the design process. Further development of existing laboratory facilities towards a comprehensive Design Simulation Laboratory is an important aspect of the programme.

Within the media research process the Aspern location master plan has been considered as a case study, the findings of which will be presented separately in the workshop sessions.

keywords Architectural Endoscopy, Real Environments
series EAEA
email
more http://info.tuwien.ac.at/eaea/
last changed 2005/09/09 10:43

_id 8625
authors Caneparo, Luca
year 1995
title Simulation of Shape, Light, Color and Material in Design
doi https://doi.org/10.52842/conf.ecaade.1995.417
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 417-426
summary The purpose of this paper is to analyze the role of simulation in architectural design. The concept of simulation is taken over from physics, where analytical relationships are set up between measured phenomena and mathematical models. Computer visualization applies quantitative models to physical phenomena to simulate analytical aspects, and offers to the designer programs to evaluate, in CAD models, the visual qualities and the numerical quantities of the interactions between shape, light, color and material. Regarding the light-matter simulation, the paper presents recent developments in geometry which make it possible to visualize not only the surface appearance but also the in depth structure of building materials.
series eCAADe
email
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_35.htm
last changed 2022/06/07 07:54

_id 0128
authors Engeli, M., Kurmann, D. and Schmitt, G.
year 1995
title A New Design Studio: Intelligent Objects and Personal Agents
doi https://doi.org/10.52842/conf.acadia.1995.155
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 155-170
summary As design processes and products are constantly increasing in complexity, new tools are being developed for the designer to cope with the growing demands. In this paper we describe our research towards a design environment, within which different aspects of design can be combined, elaborated and controlled. New hardware equipment will be combined with recent developments in graphics and artificial intelligence programming to develop appropriate computer based tools and find possible new design techniques. The core of the new design studio comprises intelligent objects in a virtual reality environment that exhibit different behaviours drawn from Artificial Intelligence (AI) and Artificial Life (AL) principles, a part already realised in a tool called 'Sculptor'. The tasks of the architect will focus on preferencing and initiating good tendencies in the development of the design. A first set of software agents, assistants that support the architect in viewing, experiencing and judging the design has also been conceptualised for this virtual design environment. The goal is to create an optimised environment for the designer, where the complexity of the design task can be reduced thanks to the support made available from the machine.
keywords Architectural Design, Design Process, Virtual Reality, Artificial Intelligence, Personal Agents
series ACADIA
email
last changed 2022/06/07 07:55

_id d6d8
authors Flemming, Ulrich and Woodbury, Robert
year 1995
title Software Environment to Support Early Phases in Building Design (SEED): Overview
source Journal of Architectural Engineering -- December 1995 -- Volume 1, Issue 4, pp. 147-152
summary This paper describes the overall goals of SEED, the approach taken by its developers to achieve these goals, and the subprojects that comprise the entire project. SEED aims at providing computational support forthe early design phase in all aspects that can benefit from such support. It addresses specifically architectural programming, schematic layout design, and the generation of a fully three-dimensional configuration ofphysical building components like structure and enclosure. These tasks are handled by three individual modules, SEED-Pro, SEED-Layout, and SEED-Config. A standards processor is under development tosupport standards and code checking in any module, as is an object database to store and retrieve different design versions, alternatives, and past designs that can be reused and adapted in different contexts(case-based design). Usability issues, especially the interfaces to the modules, receive special attention. Subsequent papers elaborate on these efforts in greater detail. The present paper provides an overview of theentire project and introduces shared concepts presumed known in subsequent papers.
series journal paper
email
last changed 2003/05/15 21:45

_id 2068
authors Frazer, John
year 1995
title AN EVOLUTIONARY ARCHITECTURE
source London: Architectural Association
summary In "An Evolutionary Architecture", John Frazer presents an overview of his work for the past 30 years. Attempting to develop a theoretical basis for architecture using analogies with nature's processes of evolution and morphogenesis. Frazer's vision of the future of architecture is to construct organic buildings. Thermodynamically open systems which are more environmentally aware and sustainable physically, sociologically and economically. The range of topics which Frazer discusses is a good illustration of the breadth and depth of the evolutionary design problem. Environmental Modelling One of the first topics dealt with is the importance of environmental modelling within the design process. Frazer shows how environmental modelling is often misused or misinterpreted by architects with particular reference to solar modelling. From the discussion given it would seem that simplifications of the environmental models is the prime culprit resulting in misinterpretation and misuse. The simplifications are understandable given the amount of information needed for accurate modelling. By simplifying the model of the environmental conditions the architect is able to make informed judgments within reasonable amounts of time and effort. Unfortunately the simplications result in errors which compound and cause the resulting structures to fall short of their anticipated performance. Frazer obviously believes that the computer can be a great aid in the harnessing of environmental modelling data, providing that the same simplifying assumptions are not made and that better models and interfaces are possible. Physical Modelling Physical modelling has played an important role in Frazer's research. Leading to the construction of several novel machine readable interactive models, ranging from lego-like building blocks to beermat cellular automata and wall partitioning systems. Ultimately this line of research has led to the Universal Constructor and the Universal Interactor. The Universal Constructor The Universal Constructor features on the cover of the book. It consists of a base plug-board, called the "landscape", on top of which "smart" blocks, or cells, can be stacked vertically. The cells are individually identified and can communicate with neighbours above and below. Cells communicate with users through a bank of LEDs displaying the current state of the cell. The whole structure is machine readable and so can be interpreted by a computer. The computer can interpret the states of the cells as either colour or geometrical transformations allowing a wide range of possible interpretations. The user interacts with the computer display through direct manipulation of the cells. The computer can communicate and even direct the actions of the user through feedback with the cells to display various states. The direct manipulation of the cells encourages experimentation by the user and demonstrates basic concepts of the system. The Universal Interactor The Universal Interactor is a whole series of experimental projects investigating novel input and output devices. All of the devices speak a common binary language and so can communicate through a mediating central hub. The result is that input, from say a body-suit, can be used to drive the out of a sound system or vice versa. The Universal Interactor opens up many possibilities for expression when using a CAD system that may at first seem very strange.However, some of these feedback systems may prove superior in the hands of skilled technicians than more standard devices. Imagine how a musician might be able to devise structures by playing melodies which express the character. Of course the interpretation of input in this form poses a difficult problem which will take a great deal of research to achieve. The Universal Interactor has been used to provide environmental feedback to affect the development of evolving genetic codes. The feedback given by the Universal Interactor has been used to guide selection of individuals from a population. Adaptive Computing Frazer completes his introduction to the range of tools used in his research by giving a brief tour of adaptive computing techniques. Covering topics including cellular automata, genetic algorithms, classifier systems and artificial evolution. Cellular Automata As previously mentioned Frazer has done some work using cellular automata in both physical and simulated environments. Frazer discusses how surprisingly complex behaviour can result from the simple local rules executed by cellular automata. Cellular automata are also capable of computation, in fact able to perform any computation possible by a finite state machine. Note that this does not mean that cellular automata are capable of any general computation as this would require the construction of a Turing machine which is beyond the capabilities of a finite state machine. Genetic Algorithms Genetic algorithms were first presented by Holland and since have become a important tool for many researchers in various areas.Originally developed for problem-solving and optimization problems with clearly stated criteria and goals. Frazer fails to mention one of the most important differences between genetic algorithms and other adaptive problem-solving techniques, ie. neural networks. Genetic algorithms have the advantage that criteria can be clearly stated and controlled within the fitness function. The learning by example which neural networks rely upon does not afford this level of control over what is to be learned. Classifier Systems Holland went on to develop genetic algorithms into classifier systems. Classifier systems are more focussed upon the problem of learning appropriate responses to stimuli, than searching for solutions to problems. Classifier systems receive information from the environment and respond according to rules, or classifiers. Successful classifiers are rewarded, creating a reinforcement learning environment. Obviously, the mapping between classifier systems and the cybernetic view of organisms sensing, processing and responding to environmental stimuli is strong. It would seem that a central process similar to a classifier system would be appropriate at the core of an organic building. Learning appropriate responses to environmental conditions over time. Artificial Evolution Artificial evolution traces it's roots back to the Biomorph program which was described by Dawkins in his book "The Blind Watchmaker". Essentially, artificial evolution requires that a user supplements the standard fitness function in genetic algorithms to guide evolution. The user may provide selection pressures which are unquantifiable in a stated problem and thus provide a means for dealing ill-defined criteria. Frazer notes that solving problems with ill-defined criteria using artificial evolution seriously limits the scope of problems that can be tackled. The reliance upon user interaction in artificial evolution reduces the practical size of populations and the duration of evolutionary runs. Coding Schemes Frazer goes on to discuss the encoding of architectural designs and their subsequent evolution. Introducing two major systems, the Reptile system and the Universal State Space Modeller. Blueprint vs. Recipe Frazer points out the inadequacies of using standard "blueprint" design techniques in developing organic structures. Using a "recipe" to describe the process of constructing a building is presented as an alternative. Recipes for construction are discussed with reference to the analogous process description given by DNA to construct an organism. The Reptile System The Reptile System is an ingenious construction set capable of producing a wide range of structures using just two simple components. Frazer saw the advantages of this system for rule-based and evolutionary systems in the compactness of structure descriptions. Compactness was essential for the early computational work when computer memory and storage space was scarce. However, compact representations such as those described form very rugged fitness landscapes which are not well suited to evolutionary search techniques. Structures are created from an initial "seed" or minimal construction, for example a compact spherical structure. The seed is then manipulated using a series of processes or transformations, for example stretching, shearing or bending. The structure would grow according to the transformations applied to it. Obviously, the transformations could be a predetermined sequence of actions which would always yield the same final structure given the same initial seed. Alternatively, the series of transformations applied could be environmentally sensitive resulting in forms which were also sensitive to their location. The idea of taking a geometrical form as a seed and transforming it using a series of processes to create complex structures is similar in many ways to the early work of Latham creating large morphological charts. Latham went on to develop his ideas into the "Mutator" system which he used to create organic artworks. Generalising the Reptile System Frazer has proposed a generalised version of the Reptile System to tackle more realistic building problems. Generating the seed or minimal configuration from design requirements automatically. From this starting point (or set of starting points) solutions could be evolved using artificial evolution. Quantifiable and specific aspects of the design brief define the formal criteria which are used as a standard fitness function. Non-quantifiable criteria, including aesthetic judgments, are evaluated by the user. The proposed system would be able to learn successful strategies for satisfying both formal and user criteria. In doing so the system would become a personalised tool of the designer. A personal assistant which would be able to anticipate aesthetic judgements and other criteria by employing previously successful strategies. Ultimately, this is a similar concept to Negroponte's "Architecture Machine" which he proposed would be computer system so personalised so as to be almost unusable by other people. The Universal State Space Modeller The Universal State Space Modeller is the basis of Frazer's current work. It is a system which can be used to model any structure, hence the universal claim in it's title. The datastructure underlying the modeller is a state space of scaleless logical points, called motes. Motes are arranged in a close-packing sphere arrangement, which makes each one equidistant from it's twelve neighbours. Any point can be broken down into a self-similar tetrahedral structure of logical points. Giving the state space a fractal nature which allows modelling at many different levels at once. Each mote can be thought of as analogous to a cell in a biological organism. Every mote carries a copy of the architectural genetic code in the same way that each cell within a organism carries a copy of it's DNA. The genetic code of a mote is stored as a sequence of binary "morons" which are grouped together into spatial configurations which are interpreted as the state of the mote. The developmental process begins with a seed. The seed develops through cellular duplication according to the rules of the genetic code. In the beginning the seed develops mainly in response to the internal genetic code, but as the development progresses the environment plays a greater role. Cells communicate by passing messages to their immediate twelve neighbours. However, it can send messages directed at remote cells, without knowledge of it's spatial relationship. During the development cells take on specialised functions, including environmental sensors or producers of raw materials. The resulting system is process driven, without presupposing the existence of a construction set to use. The datastructure can be interpreted in many ways to derive various phenotypes. The resulting structure is a by-product of the cellular activity during development and in response to the environment. As such the resulting structures have much in common with living organisms which are also the emergent result or by-product of local cellular activity. Primordial Architectural Soups To conclude, Frazer presents some of the most recent work done, evolving fundamental structures using limited raw materials, an initial seed and massive feedback. Frazer proposes to go further and do away with the need for initial seed and start with a primordial soup of basic architectural concepts. The research is attempting to evolve the starting conditions and evolutionary processes without any preconditions. Is there enough time to evolve a complex system from the basic building blocks which Frazer proposes? The computational complexity of the task being embarked upon is not discussed. There is an implicit assumption that the "superb tactics" of natural selection are enough to cut through the complexity of the task. However, Kauffman has shown how self-organisation plays a major role in the early development of replicating systems which we may call alive. Natural selection requires a solid basis upon which it can act. Is the primordial soup which Frazer proposes of the correct constitution to support self-organisation? Kauffman suggests that one of the most important attributes of a primordial soup to be capable of self-organisation is the need for a complex network of catalysts and the controlling mechanisms to stop the reactions from going supracritical. Can such a network be provided of primitive architectural concepts? What does it mean to have a catalyst in this domain? Conclusion Frazer shows some interesting work both in the areas of evolutionary design and self-organising systems. It is obvious from his work that he sympathizes with the opinions put forward by Kauffman that the order found in living organisms comes from both external evolutionary pressure and internal self-organisation. His final remarks underly this by paraphrasing the words of Kauffman, that life is always to found on the edge of chaos. By the "edge of chaos" Kauffman is referring to the area within the ordered regime of a system close to the "phase transition" to chaotic behaviour. Unfortunately, Frazer does not demonstrate that the systems he has presented have the necessary qualities to derive useful order at the edge of chaos. He does not demonstrate, as Kauffman does repeatedly, that there exists a "phase transition" between ordered and chaotic regimes of his systems. He also does not make any studies of the relationship of useful forms generated by his work to phase transition regions of his systems should they exist. If we are to find an organic architecture, in more than name alone, it is surely to reside close to the phase transition of the construction system of which is it built. Only there, if we are to believe Kauffman, are we to find useful order together with environmentally sensitive and thermodynamically open systems which can approach the utility of living organisms.
series other
type normal paper
last changed 2004/05/22 14:12

_id c681
authors Gero, J.S. and Kazakov, V.
year 1995
title Evolving building blocks for design using genetic engineering: A formal approach
source J.S. Gero and F. Sudweeks (eds), Advances in Formal Design Methods for CAD , IFIP-University of Sydney, Sydney, pp. 29-48
summary This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks is evolved into a set of complex genes representing targeted building blocks. These targeted building blocks have been evolved because they are more likely to produce designs which exhibit desired characteristics than the commencing elementary building blocks. The targeted building blocks can then be used in a design process. The paper presents a formal evolutionary model of design representations based on genetic algorithms and uses pattern recognition techniques to execute aspects of the genetic engineering. The paper describes how the state space of possible designs changes over time and illustrates the model with an example from the domain of two-dimensional layouts. It concludes with a discussion of style in design.
series other
email
last changed 2003/04/06 07:29

_id ddssup9609
id ddssup9609
authors Hall, A.C.
year 1996
title Assessing the Role of Computer Visualisation in Planning Control: a recent case study
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary In papers to previous DDSS Conferences, and elsewhere, the author has developed an argument concerning the use of computer visualisation in the planning process. In essence, it proposes that: • visualisation can enable lay persons to play a more effective role and this can result in different and more effective decisions; • the level of realism employed should result from the basic requirements necessary to resolve the issue minimising the cost of production of the images. These points have been tested in repeated examples. The latest one concerns a new site that Anglia Polytechnic University has established in the centre of Chelmsford, UK. A computer model of the new campus showing both the existing and proposed buildings was commissioned from the author by the University for a visit by HM the Queen in June 1995. This model was subsequently adapted for use in the process of obtaining planning consent and the marketing of floorspace for the next building to be constructed. For this purpose, a higher level of realism was requested. The experience of achieving it confirmed the results of the previous research indicating the strong link between realism and cost. It also contributed new insights into the varying expectations of different professionals concerning the role of such a visualisation. The requirement of the architect for demonstrating all aspects of the design required a high level of realism than that required for planning and marketing purposes and was considerably more expensive. The low cost of use for planning purposes should be stressed but surprisingly, the lower level of realism implied may be easier for the lay person than the professional to accept.
series DDSS
last changed 2003/08/07 16:36

_id c7ef
authors Huang, Jeffrey
year 1995
title Dynamic Urban Information Model: Integrated Approach to Strategic Urban Redevelopment
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 399-408
summary This paper describes a prototype Dynamic Urban Information Model (DUIM) designed to facilitate strategic urban redevelopment, that is, the process of determining precise architectural interventions to set off, guide and condition redevelopment activities. The idea of the DUIM is based on the notion that in order to attain effective strategic redevelopment, an integrated approach addressing the complex interactions of the factors involved in urban life and growth is required. Accordingly, an urban model for this purpose must include not only spatial and formal considerations, but also social, political, economical and ecological aspects. Through a case-study involving the redevelopment of a post-industrial site, this paper explains the rationale of the DUIM in terms of its formal structure, its database, and its application.
keywords Geographic Information Systems, Urban Design, Integrated Environments, Simulation, Real-Time Animation
series CAAD Futures
last changed 1999/08/03 17:16

_id d7f7
authors Jeng, Hoang-Ell
year 1995
title A Dialogical Model for Participatory Design; A Computational Approach to Group Planning
source Delft University of Technology
summary In participatory design, design concepts are generated collectively through discussion, dialogical interactions, in which the interchange of normative and supporting factual descriptions builds a collective design discourse. The goal of this research is to develop a method for participatory design to support this collective, face-to-face design problem-solving, in order to increase the acceptability of the design product. Since the mid-1960s, there has been an important movement towards increasing the participation of citizens in determining their built environment. At first, the movement was associated with social-political ideologies and rhetoric. By the end of the 1970s, participatory design had become an accepted component of professional practice. The objectives of the movement became more pragmatically and more modestly focused on exchanging practical information, resolving conflicts, and supplementing design. Today, participatory design is in a new phase. Traditional participatory design methods are seen as insufficient to fulfill an increasing demand for dialogue. The point of departure of the study is the assumption that new information technologies can satisfy this demand. The method includes: (1) a group-reasoning model, (2) a dialogical system and (3) a framework for participation-based design guidelines. The group-reasoning model formulates the process of knowledge acquisition, the learning and sharing of belief systems, the generation of design alternatives and design evaluations--by which reasoning takes place dialogically. The dialogical system provides a clear description of how the information should be processed, what aspects should be paid attention to, what results can be anticipated, and when and how to control the process. The framework for participation-based design guidelines guides and structures the design process. It facilitates a reconstruction of the implicit cognitive structure which underlines dialogue and is generated through the discussion of a group.
series thesis:PhD
last changed 2003/02/12 22:37

_id 3c8c
authors Kadysz, Andrzej
year 1995
title CAAD Space – Incompatible Space
source CAD Space [Proceedings of the III International Conference Computer in Architectural Design] Bialystock 27-29 April 1995, pp. 147-158
summary In this paper computer is considered as the "hypertool" - union of technical and methodological aspects of a tool. CAAD and its space is a microcosmos incompatible with our real world. CAAD performs the role of electronic modeller that redefines space and substance of our model by structure of the CAAD software and reduces the range of possible operations, transformations of a model. The environment that is internally wild opened - everything is an information easy to exchange, but externally is excluded from direct influences and manual access. I try to discover typical and unique features of this virtual environment of CAAD, substance of virtual model and computer as the tool of architectural creation. Medium that redefines" architects" imagination.
series plCAD
last changed 2000/01/24 10:08

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 19HOMELOGIN (you are user _anon_269199 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002