CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 382

_id cf2011_p024
id cf2011_p024
authors Tidafi, Temy; Charbonneau Nathalie, Khalili-Araghi Salman
year 2011
title Backtracking Decisions within a Design Process: a Way of Enhancing the Designer's Thought Process and Creativity
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 573-587.
summary This paper proposes a way computer sciences could contribute to stimulate the designer’s reflexive thought. We explore the possibility of making use of backtracking devices in order to formalize the designer’s thought process. Design, as a process of creating an object, cannot be represented by means of a linear timeline. Accordingly, the backtracking processes we are discussing here are not based on a linear model but rather on a non-linear structure. Beyond the notion of undoing and redoing commands within CAD packages, the backtracking process is seen as a way to explore and record several alternate options. The branches of the non-linear model can be seen as pathways made of sequential decisions. The designer creates and explores these pathways while making tentative moves towards an architectural solution. Within the design process, backtracking enables the designer to establish and act on a network of interrelated decisions. This notion is fundamental. It is quite obvious that information, in order to be meaningful, must occupy a specific place within an informational network. A data, separated from its context, is devoid of interest. By the same token, a decision takes on significance solely in combination with other decisions. In this paper, we examine what kinds of decisions are involved within a design process, how they are connected, and what could be the best ways to formalize the relationships. Our goal is to experiment ways that could enable the designer and his/her collaborators to get a clearer mental picture of the network of decisions aforementioned. The non-linear model can be seen as a graph structure. The user moves wherever he/she wants through the branches of the structure to establish the network of decisions or to get reacquainted with a previous design process. As a matter of fact, it can act in both ways: to reassess or to confirm a decision. On the one hand, the designer can go back to previous states, reconsider past choices, and eventually modify them. On the other hand, he/she can move forward and revisit a given sequence of decisions, so as to recapture the essence of a previous design process. It goes without saying that knowledge regarding the design process is constructed by the designer from his/her own experiences. Since the designer’s perception evolves as time goes by, the network of decisions constitutes a model that is continuously questioned and restructured. The designer does not elaborate solely an architectural object, but also an evolving model formalizing the way he/she achieved his/her aim. As Le Moigne (1995) pointed out, the model itself produces knowledge; afterwards, the designer can examine it so as to get a clearer mental picture of his/her own cognitive processes. Furthermore, it can be used by his/her collaborators in order to understand which thread of ideas led the designer to a given visual result, and eventually resume or reorient the design process. In addition to reflecting on the ideological implications inherent to this questioning, we take into account the feasibility of such a research project. From a more technical point of view, in this paper we will describe how we plane to take up the challenge of elaborating a digital environment enabling backtracking processes within graph structures. Furthermore, we will explain how we plane to test the first trial version of the new environment with potential users so as to observe how they respond to it. These experiments will be conducted in order to verify to what extend the methods we are proposing are able to i) enhance the designer’s creativity and ii) increase our understanding of designer’s thought process.
keywords backtracking, design process, digital environments, problem space, network of decisions, graph structure.
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 4bf6
authors Akin, O. and Lin, C.
year 1995
title Design Protocol data and novel design decisions
source Design Studies, 16 (#2, April), 211-236
summary This work is a part of The Delft Protocols Workshop which is an international gathering of experts on design research. The objective is to study the behaviours of designers using techniques of cognitive psychology in general and protocol analysis in particular. The purpose of this paper is to explore the relationship between visual-graphic data processing and novel design ideas. Several analyses dealing with verbal-conceptual and visual-graphic data have been conducted; and the relationships between design activities and design decisions have been explored. The findings indicate that phases of the design process and the activities correlate with key design decisions.
series journal paper
email
last changed 2003/04/23 15:14

_id a8f0
authors Goel, V.
year 1995
title Sketches of thought
source MA: MIT Press, Cambridge
summary Much of the cognitive lies beyond articulate, discursive thought, beyond the reach of current computational notions. In Sketches of Thought, Vinod Goel argues that the cognitive computational conception of the world requires our thought processes to be precise, rigid, discrete, and unambiguous; yet there are dense, ambiguous, and amorphous symbol systems, like sketching, painting, and poetry, found in the arts and much of everyday discourse that have an important, nontrivial place in cognition. Goel maintains that while on occasion our thoughts do conform to the current computational theory of mind, they often are -- indeed must be - vague, fluid, ambiguous, and amorphous. He argues that if cognitive science takes the classical computational story seriously, it must deny or ignore these processes, or at least relegate them to the realm of the nonmental. As a cognitive scientist with a design background, Goel is in a unique position to challenge cognitive science on its own territory. He introduces design problem solving as a domain of cognition that illustrates these inarticulate, nondiscursive thought processes at work through the symbol system of sketching. He argues not that such thoughts must remain noncomputational but that our current notions of computation and representation are not rich enough to capture them. Along the way, Goel makes a number of significant and controversial interim points. He shows that there is a principled distinction between design and nondesign problems, that there are standard stages in the solution of design problems, that these stages correlate with the use of different types of external symbol systems; that these symbol systems are usefully individuated in Nelson Goodman's syntactic and semantic terms, and that different cognitive processes are facilitated by different types of symbol systems.
series other
last changed 2003/04/23 15:14

_id 2115
authors Ingram, R. and Benford, S.
year 1995
title Improving the legibility of virtual environments
source Second Euro graphics Workshop on Virtual Environments
summary Years of research into hyper-media systems have shown that finding one's way through large electronic information systems can be a difficult task. Our experiences with virtual reality suggest that users will also suffer from the commonly experienced "lost in hyperspace" problem when trying to navigate virtual environments. The goal of this paper is to propose and demonstrate a technique which is currently under development with the aim of overcoming this problem. Our approach is based upon the concept of legibility, adapted from the discipline of city planning. The legibility of an urban environment refers to the ease with which its inhabitants can develop a cognitive map over a period of time and so orientate themselves within it and navigate through it [Lynch60]. Research into this topic since the 1960s has argued that, by carefully designing key features of urban environments planners can significantly influence their legibility. We propose that these legibility features might be adapted and applied to the design of a wide variety of virtual environments and that, when combined with other navigational aids such as the trails, tours and signposts of the hyper-media world, might greatly enhance people's ability to navigate them. In particular, the primary role of legibility would be to help users to navigate more easily as a result of experiencing a world for some time (hence the idea of building a cognitive map). Thus, we would see our technique being of most benefit when applied to long term, persistent and slowly evolving virtual environments. Furthermore, we are particularly interested in the automatic application of legibility techniques to information visualisations as opposed to their relatively straight forward application to simulations of the real-word. Thus, a typical future application of our work might be in enhancing visualisations of large information systems such the World Wide Web. Section 2 of this paper summarises the concept of legibility as used in the domain of city planning and introduces some of the key features that have been adapted and applied in our work. Section 3 then describes in detail the set of algorithms and techniques which are being developed for the automatic creation or enhancement of these features within virtual data spaces. Next, section 4 presents two example applications based on two different kinds of virtual data space. Finally, section 5 presents some initial reflections on this work and discusses the next steps in its evolution.
series other
last changed 2003/04/23 15:50

_id 22cd
authors Wojtowicz, Jerzy and Gilliard, Jeff
year 1995
title Purist Lessons: Constructing the Unrealized Villas of Le Corbusier
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 507-516
summary The villas of Le Corbusier from his Purist Corpus (1923-1929) are appropriate for reconstruction using computational tools for how their inherent logic is revealed by this process. Conceived but never built, the following seven design examples are inferred from incomplete and fragmentary original documentation and rebuilt as three-dimensional computer models. The analytic process of reconstruction depends upon available descriptive information, but more significant is the assumption of a design methodology based in geometry and elemental volumes. Understanding the basis of this method and its rules begins the systematic geometric reconstruction of the villas. The record of this process and the role of the machine in representing the object and its cognitive aspects is supported by the syntactic organization of images.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 06e1
authors Keul, Alexander
year 1996
title LOST IN SPACE? ARCHITECTURAL PSYCHOLOGY - PAST, PRESENT, FUTURE
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary A methodological review by Kaminski (1995) summed up five perspectives in environmental psychology - patterns of spatial distribution, everyday “jigsaw puzzles”, functional everyday action systems, sociocultural change and evolution of competence. Architectural psychology (named so at the Strathclyde conference 1969; Canter, 1973) as psychology of built environments is one leg of environmental psychology, the second one being psychology of environmental protection. Architectural psychology has come of age and passed its 25th birthday. Thus, a triangulation of its position, especially in Central Europe, seems interesting and necessary. A recent survey mainly on university projects in German-speaking countries (Kruse & Trimpin, 1995) found a marked decrease of studies in psychology of built environments. 1994, 25% of all projects were reported in this category, which in 1975 had made up 40% (Kruse, 1975). Guenther, in an unpublished survey of BDP (association of professional German psychologists) members, encountered only a handful active in architectural psychology - mostly part-time, not full-time. 1996, Austria has two full-time university specialists. The discrepancy between the general interest displayed by planners and a still low institutionalization is noticeable.

How is the research situation? Using several standard research data banks, the author collected articles and book(chapter)s on architectural psychology in German- and English-language countries from 1990 to 1996. Studies on main architecture-psychology interface problems such as user needs, housing quality evaluations, participatory planning and spatial simulation / virtual reality did not outline an “old, settled” discipline, but rather the sketchy, random surface of a field “always starting anew”. E.g., discussions at the 1995 EAEA-Conference showed that several architectural simulation studies since 1973 caused no major impact on planner's opinions (Keul&Martens, 1996). “Re-inventions of the wheel” are caused by a lack of meetings (except this one!) and of interdisciplinary infrastructure in German-language countries (contrary to Sweden or the United States). Social pressures building up on architecture nowadays by inter-European competition, budget cuts and citizen activities for informed consent in most urban projects are a new challenge for planners to cooperate efficiently with social scientists. At Salzburg, the author currently manages the Corporate Design-process for the Chamber of Architecture, Division for Upper Austria and Salzburg. A “working group for architectural psychology” (Keul-Martens-Maderthaner) has been active since 1994.

keywords Model Simulation, Real Environments
series EAEA
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2005/09/09 10:43

_id f4d7
authors Madrazo, L.
year 1995
title The Concept of Type in Architecture: An Inquiry into the Nature of Architectural Form
source Swiss Federal Institute of Technology, ETH Zurich
summary The purpose of this dissertation is to investigate the meaning of the concept of Type in the field of architectural theory. Even though the use of the term type by architectural theorists is a relatively recent phenomenon, which can be traced back to Quatremère de Quincy in the early nineteenth century, the idea of Type, as opposed to the explicit use of this term by theorists, has pervaded much of architectural theory ever since Vitruvius. In fact, many theorists have been concerned with issues which convey a notion of Type, like the origins of architectural form, the systematization of architectural knowledge and the understanding of the process of creativity. A basic premise of this work is that to understand the true significance of the idea of Type in architecture, it is necessary to overcome certain traditional views that have associated Type with the work of specific authors at a given time like, for example, Quatremère de Quincy and Semper in the nineteenth century, or Rossi in the twentieth. Only a comprehensive study of the most relevant ideas formulated in the field of architectural theory -beginning with Vitruvius and finishing with contemporary design methodologists- can reveal the essential meaning, or meanings, of Type. This work attempts to provide such a comprehensive study. To derive the fundamental meanings of the concept of Type from the body of the architectural tradition, it has been necessary to proceed, simultaneously, along two different lines: one diachronic, the other synchronic. From a diachronic point of view, the aim has been to trace the evolution of the theories of Type from one author to another, for example from Laugier to Quatremère de Quincy. From a synchronic point of view, the goal has been to disclose the common ideas that lie behind theories formulated at different times, for instance, between Vitruvius' theory of the origins of architectural form and the artistic theory developed after the advent of Gestalt psychology. In recent times, the term type has been used by architectural writers as synonymous with typology. Unfortunately, establishing this identity between type and typology has served to undermine some of the essential meanings conveyed by Type. In the overall context of the architectural tradition, the idea of Type has much deeper implications than those that are confined to the classification and study of building forms. Type embraces transcendental issues of aesthetic, epistemological and metaphysical character; issues that have to do with the most generic problem of Form. Certainly, the essential meaning of Type is intimately related with the more transcendental problem of Form. To explore the relation between the idea of Type and the historical evolution of architectural form, has also been the purpose of this research. As this work attempts to show, the variety of meanings that Type has adopted through history are inseparably connected to the evolution undergone by architectural form. For that reason, this work, although primarily a study of the concept of Type, it is, at the same time, an investigation on the nature of architectural form.
series thesis:PhD
email
last changed 2003/05/10 05:42

_id 1bb0
authors Russell, S. and Norvig, P.
year 1995
title Artificial Intelligence: A Modern Approach
source Prentice Hall, Englewood Cliffs, NJ
summary Humankind has given itself the scientific name homo sapiens--man the wise--because our mental capacities are so important to our everyday lives and our sense of self. The field of artificial intelligence, or AI, attempts to understand intelligent entities. Thus, one reason to study it is to learn more about ourselves. But unlike philosophy and psychology, which are also concerned with AI strives to build intelligent entities as well as understand them. Another reason to study AI is that these constructed intelligent entities are interesting and useful in their own right. AI has produced many significant and impressive products even at this early stage in its development. Although no one can predict the future in detail, it is clear that computers with human-level intelligence (or better) would have a huge impact on our everyday lives and on the future course of civilization. AI addresses one of the ultimate puzzles. How is it possible for a slow, tiny brain{brain}, whether biological or electronic, to perceive, understand, predict, and manipulate a world far larger and more complicated than itself? How do we go about making something with those properties? These are hard questions, but unlike the search for faster-than-light travel or an antigravity device, the researcher in AI has solid evidence that the quest is possible. All the researcher has to do is look in the mirror to see an example of an intelligent system. AI is one of the newest disciplines. It was formally initiated in 1956, when the name was coined, although at that point work had been under way for about five years. Along with modern genetics, it is regularly cited as the ``field I would most like to be in'' by scientists in other disciplines. A student in physics might reasonably feel that all the good ideas have already been taken by Galileo, Newton, Einstein, and the rest, and that it takes many years of study before one can contribute new ideas. AI, on the other hand, still has openings for a full-time Einstein. The study of intelligence is also one of the oldest disciplines. For over 2000 years, philosophers have tried to understand how seeing, learning, remembering, and reasoning could, or should, be done. The advent of usable computers in the early 1950s turned the learned but armchair speculation concerning these mental faculties into a real experimental and theoretical discipline. Many felt that the new ``Electronic Super-Brains'' had unlimited potential for intelligence. ``Faster Than Einstein'' was a typical headline. But as well as providing a vehicle for creating artificially intelligent entities, the computer provides a tool for testing theories of intelligence, and many theories failed to withstand the test--a case of ``out of the armchair, into the fire.'' AI has turned out to be more difficult than many at first imagined, and modern ideas are much richer, more subtle, and more interesting as a result. AI currently encompasses a huge variety of subfields, from general-purpose areas such as perception and logical reasoning, to specific tasks such as playing chess, proving mathematical theorems, writing poetry{poetry}, and diagnosing diseases. Often, scientists in other fields move gradually into artificial intelligence, where they find the tools and vocabulary to systematize and automate the intellectual tasks on which they have been working all their lives. Similarly, workers in AI can choose to apply their methods to any area of human intellectual endeavor. In this sense, it is truly a universal field.
series other
last changed 2003/04/23 15:14

_id 41e5
authors Abendroth, M., Decock, J. and Mestaoui, N.
year 2000
title O_1:// the hypertextu(r)al matrix
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 75-76
summary Founded in 1995 LAB[au], laboratory for architecture and urbanism, links theoretic research LAB[a+u] to concrete works of conception and realisations LA.BAU. LAB[au] elaborates a “hyperdesign” investigating the implications of new technologies of communication and computation in spatiotemporal and social processes and their forms of representation as architecture and urbanism. The transposition of the hypertext model to architectural and urban concepts question the mutation of the spatial and semantic construct of space. The definition of architecture as a code is based on “glocal” systems according to the processes of computation and communication.
series SIGRADI
email
last changed 2016/03/10 09:47

_id eccf
authors Herbert, Daniel M.
year 1995
title Models, Scanners, Pencils, and CAD: Interactions Between Manual and Digital Media
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 21-34
doi https://doi.org/10.52842/conf.acadia.1995.021
summary This paper discusses new approaches to the relation between handmade and computer aided media in design. The discussion focuses on two advanced studio projects in which graduate student designers incorporated interactions between physical models, a digital scanner, handmade drawings, and the manipulation of images in the computer. These interactions provide a valuable supplement to traditional means -- both manual and digital -- for generating, developing, and representing architectural form. Features of the student’s work that other designers will find significant are its focus on multiple interactions, its setting within a realistic design process, and its use of low levels of computer technology. After describing details of the designer’s media techniques, the paper discusses the practical and theoretical implications of the work.
series ACADIA
last changed 2022/06/07 07:49

_id 4b78
authors Piccolotto, Moreno and Rio, Olga
year 1995
title Structural Design Education with Computers
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 285-298
doi https://doi.org/10.52842/conf.acadia.1995.285
summary In this paper, we discuss the importance of computer based simulation tools for the education of architects and civil engineers. We present our efforts to develop a program for the simulation of structures (CASDET). CASDET forms a microworld for planar structures. The program enables students to compose structures and to experiment interactively the effects of different geometry and load configurations. It tries to identify the proposed structure and controls its stability. Upon request of the student, it also processes displacements, internal forces (moments, shear forces etc.) and reaction forces on supports. The students can then visualise the desired information by interacting directly with the structure or member(s) of interest (see fig.1). We present different methods, with which students can visualise the results of their actions and discuss their implications in the educational context.
keywords Structural Design Education, Microworlds, Learning Environment, CAI
series ACADIA
email
last changed 2022/06/07 08:00

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2007_659
id caadria2007_659
authors Chen, Zi-Ru
year 2007
title The Combination of Design Media and Design Creativity _ Conventional and Digital Media
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
doi https://doi.org/10.52842/conf.caadria.2007.x.w5x
summary Creativity is always interested in many fields, in particular, creativity and design creativity have many interpretations (Boden, 1991; Gero and Maher, 1992, 1993; Kim, 1990; Sternberg, 1988; Weisberg, 1986). In early conceptual design process, designers used large number of sketches and drawings (Purcell and Gero, 1998). The sketch can inspire the designer to increase the creativity of the designer’s creations(Schenk, 1991; Goldschmidt, 1994; Suwa and Tversky, 1997). The freehand sketches by conventional media have been believed to play important roles in processes of the creative design thinking(Goldschmidt, 1991; Schon and Wiggins, 1992; Goel, 1995; Suwa et al., 2000; Verstijnen et al., 1998; Elsas van and Vergeest, 1998). Recently, there are many researches on inspiration of the design creativity by digital media(Liu, 2001; Sasada, 1999). The digital media have been used to apply the creative activities and that caused the occurrenssce of unexpected discovery in early design processes(Gero and Maher, 1993; Mitchell, 1993; Schmitt, 1994; Gero, 1996, 2000; Coyne and Subrahmanian, 1993; Boden, 1998; Huang, 2001; Chen, 2001; Manolya et al. 1998; Verstijinen et al., 1998; Lynn, 2001). In addition, there are many applications by combination of conventional and digital media in the sketches conceptual process. However, previous works only discussed that the individual media were related to the design creativity. The cognitive research about the application of conceptual sketches design by integrating both conventional and digital media simultaneously is absent.
series CAADRIA
email
last changed 2022/06/07 07:50

_id eb51
authors Coyne, Richard
year 1996
title CAAD, Curriculum and Controversy
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 121-130
doi https://doi.org/10.52842/conf.ecaade.1996.121
summary This paper brings some of the debate within educational theory to bear on CAAD teaching, outlining the contributions of conservatism, critical theory, radical hermeneutics and pragmatism. The paper concludes by recommending that CAAD teaching move away from conservative concepts of teaching, design and technology to integrate it into the studio. In a highly illuminating book on education theory, Shaun Gallagher (1991) outlines four current views on education that correspond to four major positions in contemporary social theory and philosophy. I will extend these categories to a consideration of attitudes to information technology, and the teaching of computing in architecture. These four positions are conservatism, critical theory, radical hermeneutics, and pragmatism. I will show how certain issues cluster around them, how each position provides the focus of various discursive practices, or intellectual conversations in contemporary thinking, and how information technology is caught up in those conversations. These four positions are not "cognitive styles," but vigorously argued domains of debate involving writers such as Gadamer, Habermas and Derrida about the theory of interpretation. The field of interpretation is known as hermeneutics, which is concerned less with epistemology and knowledge than with understanding. Interpretation theory applies to reading texts, interpreting the law, and appreciating art, but also to the application of any practical task, such as making art, drawing, defining and solving problems, and design (Coyne and Snodgrass, 1995). Hermeneutics provides a coherent focus for considering many contemporary issues and many domains of practice. I outline what these positions in education mean in terms of CAAD (computer-aided architectural design) in the curriculum.

series eCAADe
email
more http://www.caad.ac.uk/~richard
last changed 2022/06/07 07:56

_id d7f7
authors Jeng, Hoang-Ell
year 1995
title A Dialogical Model for Participatory Design; A Computational Approach to Group Planning
source Delft University of Technology
summary In participatory design, design concepts are generated collectively through discussion, dialogical interactions, in which the interchange of normative and supporting factual descriptions builds a collective design discourse. The goal of this research is to develop a method for participatory design to support this collective, face-to-face design problem-solving, in order to increase the acceptability of the design product. Since the mid-1960s, there has been an important movement towards increasing the participation of citizens in determining their built environment. At first, the movement was associated with social-political ideologies and rhetoric. By the end of the 1970s, participatory design had become an accepted component of professional practice. The objectives of the movement became more pragmatically and more modestly focused on exchanging practical information, resolving conflicts, and supplementing design. Today, participatory design is in a new phase. Traditional participatory design methods are seen as insufficient to fulfill an increasing demand for dialogue. The point of departure of the study is the assumption that new information technologies can satisfy this demand. The method includes: (1) a group-reasoning model, (2) a dialogical system and (3) a framework for participation-based design guidelines. The group-reasoning model formulates the process of knowledge acquisition, the learning and sharing of belief systems, the generation of design alternatives and design evaluations--by which reasoning takes place dialogically. The dialogical system provides a clear description of how the information should be processed, what aspects should be paid attention to, what results can be anticipated, and when and how to control the process. The framework for participation-based design guidelines guides and structures the design process. It facilitates a reconstruction of the implicit cognitive structure which underlines dialogue and is generated through the discussion of a group.
series thesis:PhD
last changed 2003/02/12 22:37

_id ab3c
authors Kramer, G.
year 1996
title Mapping a Single Data Stream to Multiple Auditory Variables: A Subjective Approach to Creating a Compelling Design
source Proceedings of the Third International Conferenceon Auditory Display, Santa FO Institute
summary Representing a single data variable changing in time via sonification, or using that data to control a sound in some way appears to be a simple problem but actually involves a significant degree of subjectivity. This paper is a response to my own focus on specific sonification tasks (Kramer 1990, 1993) (Fitch & Kramer, 1994), on broad theoretical concerns in auditory display (Kramer 1994a, 1994b, 1995), and on the representation of high-dimensional data sets (Kramer 1991a & Kramer & Ellison, 1991b). The design focus of this paper is partly a response to the others who, like myself, have primarily employed single fundamental acoustic variables such as pitch or loudness to represent single data streams. These simple representations have framed three challenges: Behavioral and Cognitive Science-Can sonifications created with complex sounds changing simultaneously in several dimensions facilitate the formation of a stronger internal auditory image, or audiation, than would be produced by simpler sonifications? Human Factors and Applications-Would such a stronger internal image of the data prove to be more useful from the standpoint of conveying information? Technology and Design-How might these richer displays be constructed? This final question serves as a starting point for this paper. After years of cautious sonification research I wanted to explore the creation of more interesting and compelling representations.
series other
last changed 2003/04/23 15:50

_id ca47
authors Lee, Shu Wan
year 1996
title A Cognitive Approach to Architectural Style Several Characteristics of Design Thinking in Architecture
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 223-226
doi https://doi.org/10.52842/conf.caadria.1996.223
summary Designing is a complicated human behaviour and method, and is often treated as a mysterious "black box” operation in human mind. In the early period as for theory-studying of design thinking, the way of thinking that the researchers took were mostly descriptive discussions. Therefore, they lacked direct and empirical evidence although those studies provided significant exploration of design thinking (Wang, 1995). In recent years as for the study of cognitive science, they have tried to make design "glass box”. That is to try to make the thinking processes embedded in designers publicized. That is also to externalize the design procedure which provided the design studies another theoretical basis of more accurate and deeply researched procedure (Jones, 1992). Hence the studying of design thinking has become more important and the method of designing has also progressed a lot. For example, the classification of the nature of design problem such as ill-defined and well-defined (Newell, Shaw, and Simon, 1967), and different theoretical procedure modes for different disciplines, such as viewing architectural models as conjecture-analysis models and viewing engineering models as analysis-synthesis (Cross, 1991).
series CAADRIA
last changed 2022/06/07 07:52

_id ebbf
authors Ohno, Ryozo
year 1995
title Street-scape and Way-finding Performance
source The Future of Endoscopy [Proceedings of the 2nd European Architectural Endoscopy Association Conference / ISBN 3-85437-114-4]
summary In this study, it was hypothesized that people’s performance of way-finding depends on the characteristics of street-scapes, i.e., the more visual information exists the easier people find their own ways. This relationship was investigated by an experiment using an environmental simulator and analysis of the subject’s behavioral data recorded by the simulation system. Three scale models (1/150) of identical maze patterns (300m x 300m) which have different street-scapes were created and set in the simulator, in which an endoscope connected to CCD color TV camera controlled by a system operated by a personal computer. Three types of streets are: (1) having no characteristics with monotonous surface, (2) having characteristics on each corner with different buildings, (3) having characteristics along the streets with trees, columns or fences. The simulator allows a subject to move through the scale models and looking around, using a “joy-stick“ for viewing the scene as projected on 100-inch CCTV screen. The control system of the simulator records all signals generated by the “joy-stick“ every 0.01 second, and thus exact position within the model space and the viewing direction at given moment can be stored in the computer memory, which can be used to analyze the subject’s behavior. The task of a subject was to find the way which was previously shown by the screen. Three male and three female subjects for each of three street types, for a total of eighteen subjects participated in the experiment. An analysis of the trace of movements and viewing directions generally supported the hypothesis that the street with visual characteristics were easier to memorize the route although there was a large difference in performance among subjects. It was also noted that there were three different strategies of way-finding according to the subject: one group of subjects seemed to rely on well structured knowledge of the route, i.e., the cognitive map, and the other group seemed to rely on incoming visual information of the changing scenes, and the last group seemed to find the way using both the cognitive map and visual information depending on the situations.
keywords Architectural Endoscopy, Real Environments
series EAEA
more http://info.tuwien.ac.at/eaea/
last changed 2005/09/09 10:43

_id eff2
authors Sinclair, Brian
year 1995
title Architecture in the Environment: A Technology-Centered Model for Priomary, Secondary & Post-Secondary Educational Partnership
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 357-370
doi https://doi.org/10.52842/conf.acadia.1995.357
summary Societal appreciation of architecture, the environment and the role of design & planning professionals should begin early in the educational stream. Working from this premise, a model was developed which relied on a combination of learning strategies: Cognitive, Psychomotor and Affective. The project’s primary goal was to build knowledge of architecture and the environment in K-12 children, with particular emphasis on primary levels. More specifically, the ARCH was selected thematically as a strong architectonic element through which to promote a better connection with and responsibility for the environment. The educational experience comprised three sequential forms: visual history of the ARCH, physical construction using foam blocks, and finally "construction” in the computer using a multi-media interactive three-dimensionally focused program. Pedagogically the sequencing provided explanation and context, built awareness through making, and finally reinforced the lessons of the previous steps while highlighting the potential of information technology. To deliver the curriculum an installation was built at a local museum, with primary grade children arriving on field trips. Architecture faculty and students designed the curriculum and installation, including the computer modules. Secondary school students were trained, with the intention that they would in turn educate primary school students at the installation. In disseminating knowledge downwards through the various educational levels, awareness was promoted concerning the architects role, architectural elements, and the broader built environment. Using the ARCH as the theme, realization of the inter-connectedness of the environment was advanced. Through linking and learning, participants came to better understand the value of their individual contributions and the critical need for collaboration.

series ACADIA
email
last changed 2022/06/07 07:56

_id acadia16_424
id acadia16_424
authors Twose, Simon; du Chatenier, Rosa
year 2016
title Experimental Material Research - Digital Chocolate
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 424-431
doi https://doi.org/10.52842/conf.acadia.2016.424
summary This research investigates the aesthetics of a shared agency between humans, computation and physical material. ‘Chocolate’ is manipulated in physical and virtual space simultaneously to extract aesthetic conditions that are a sum of human and non-human relations. This is an attempt to further the knowledge of designing, giving physical and digital materials force in determining their own aesthetics. The research springs from work in speculative aesthetics, particularly N. Katherine Hayles’s OOI (object-oriented inquiry) and Graham Harman’s OOO (object-oriented ontology) and explores how these ideas impact contemporary computational architectural design. To study this, a simple material has been chosen, chocolate, and used as a vehicle to investigate the dynamics of physical and digital materials and their shared/differing ‘resistances to human manipulation’ (Pickering 1995). Digital chocolate is ‘melted’ through virtual heat, and the results printed and cast in real chocolate, to be further manipulated in real space. The resistances and feedback of physical and digital chocolate to human ‘prodding’ (Hayles 2014) are analyzed in terms of a material’s qualities and tendencies in digital space versus those in physical space. Observations from this process are used to speculate on an aesthetics where humans, computation and physical material are mutually agential. This research is a pilot for a larger study taking on more complex conditions, such as building and cities, with a view to broadening how aesthetics is understood in architectural design. The contribution of this research to the field of architectural computation is thus in areas of aesthetic speculation and human/non-human architectural authorship.
keywords object-oriented inquiry, speculative aesthetics, mutual agency, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 19HOMELOGIN (you are user _anon_219499 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002