CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 15 of 15

_id 2068
authors Frazer, John
year 1995
title AN EVOLUTIONARY ARCHITECTURE
source London: Architectural Association
summary In "An Evolutionary Architecture", John Frazer presents an overview of his work for the past 30 years. Attempting to develop a theoretical basis for architecture using analogies with nature's processes of evolution and morphogenesis. Frazer's vision of the future of architecture is to construct organic buildings. Thermodynamically open systems which are more environmentally aware and sustainable physically, sociologically and economically. The range of topics which Frazer discusses is a good illustration of the breadth and depth of the evolutionary design problem. Environmental Modelling One of the first topics dealt with is the importance of environmental modelling within the design process. Frazer shows how environmental modelling is often misused or misinterpreted by architects with particular reference to solar modelling. From the discussion given it would seem that simplifications of the environmental models is the prime culprit resulting in misinterpretation and misuse. The simplifications are understandable given the amount of information needed for accurate modelling. By simplifying the model of the environmental conditions the architect is able to make informed judgments within reasonable amounts of time and effort. Unfortunately the simplications result in errors which compound and cause the resulting structures to fall short of their anticipated performance. Frazer obviously believes that the computer can be a great aid in the harnessing of environmental modelling data, providing that the same simplifying assumptions are not made and that better models and interfaces are possible. Physical Modelling Physical modelling has played an important role in Frazer's research. Leading to the construction of several novel machine readable interactive models, ranging from lego-like building blocks to beermat cellular automata and wall partitioning systems. Ultimately this line of research has led to the Universal Constructor and the Universal Interactor. The Universal Constructor The Universal Constructor features on the cover of the book. It consists of a base plug-board, called the "landscape", on top of which "smart" blocks, or cells, can be stacked vertically. The cells are individually identified and can communicate with neighbours above and below. Cells communicate with users through a bank of LEDs displaying the current state of the cell. The whole structure is machine readable and so can be interpreted by a computer. The computer can interpret the states of the cells as either colour or geometrical transformations allowing a wide range of possible interpretations. The user interacts with the computer display through direct manipulation of the cells. The computer can communicate and even direct the actions of the user through feedback with the cells to display various states. The direct manipulation of the cells encourages experimentation by the user and demonstrates basic concepts of the system. The Universal Interactor The Universal Interactor is a whole series of experimental projects investigating novel input and output devices. All of the devices speak a common binary language and so can communicate through a mediating central hub. The result is that input, from say a body-suit, can be used to drive the out of a sound system or vice versa. The Universal Interactor opens up many possibilities for expression when using a CAD system that may at first seem very strange.However, some of these feedback systems may prove superior in the hands of skilled technicians than more standard devices. Imagine how a musician might be able to devise structures by playing melodies which express the character. Of course the interpretation of input in this form poses a difficult problem which will take a great deal of research to achieve. The Universal Interactor has been used to provide environmental feedback to affect the development of evolving genetic codes. The feedback given by the Universal Interactor has been used to guide selection of individuals from a population. Adaptive Computing Frazer completes his introduction to the range of tools used in his research by giving a brief tour of adaptive computing techniques. Covering topics including cellular automata, genetic algorithms, classifier systems and artificial evolution. Cellular Automata As previously mentioned Frazer has done some work using cellular automata in both physical and simulated environments. Frazer discusses how surprisingly complex behaviour can result from the simple local rules executed by cellular automata. Cellular automata are also capable of computation, in fact able to perform any computation possible by a finite state machine. Note that this does not mean that cellular automata are capable of any general computation as this would require the construction of a Turing machine which is beyond the capabilities of a finite state machine. Genetic Algorithms Genetic algorithms were first presented by Holland and since have become a important tool for many researchers in various areas.Originally developed for problem-solving and optimization problems with clearly stated criteria and goals. Frazer fails to mention one of the most important differences between genetic algorithms and other adaptive problem-solving techniques, ie. neural networks. Genetic algorithms have the advantage that criteria can be clearly stated and controlled within the fitness function. The learning by example which neural networks rely upon does not afford this level of control over what is to be learned. Classifier Systems Holland went on to develop genetic algorithms into classifier systems. Classifier systems are more focussed upon the problem of learning appropriate responses to stimuli, than searching for solutions to problems. Classifier systems receive information from the environment and respond according to rules, or classifiers. Successful classifiers are rewarded, creating a reinforcement learning environment. Obviously, the mapping between classifier systems and the cybernetic view of organisms sensing, processing and responding to environmental stimuli is strong. It would seem that a central process similar to a classifier system would be appropriate at the core of an organic building. Learning appropriate responses to environmental conditions over time. Artificial Evolution Artificial evolution traces it's roots back to the Biomorph program which was described by Dawkins in his book "The Blind Watchmaker". Essentially, artificial evolution requires that a user supplements the standard fitness function in genetic algorithms to guide evolution. The user may provide selection pressures which are unquantifiable in a stated problem and thus provide a means for dealing ill-defined criteria. Frazer notes that solving problems with ill-defined criteria using artificial evolution seriously limits the scope of problems that can be tackled. The reliance upon user interaction in artificial evolution reduces the practical size of populations and the duration of evolutionary runs. Coding Schemes Frazer goes on to discuss the encoding of architectural designs and their subsequent evolution. Introducing two major systems, the Reptile system and the Universal State Space Modeller. Blueprint vs. Recipe Frazer points out the inadequacies of using standard "blueprint" design techniques in developing organic structures. Using a "recipe" to describe the process of constructing a building is presented as an alternative. Recipes for construction are discussed with reference to the analogous process description given by DNA to construct an organism. The Reptile System The Reptile System is an ingenious construction set capable of producing a wide range of structures using just two simple components. Frazer saw the advantages of this system for rule-based and evolutionary systems in the compactness of structure descriptions. Compactness was essential for the early computational work when computer memory and storage space was scarce. However, compact representations such as those described form very rugged fitness landscapes which are not well suited to evolutionary search techniques. Structures are created from an initial "seed" or minimal construction, for example a compact spherical structure. The seed is then manipulated using a series of processes or transformations, for example stretching, shearing or bending. The structure would grow according to the transformations applied to it. Obviously, the transformations could be a predetermined sequence of actions which would always yield the same final structure given the same initial seed. Alternatively, the series of transformations applied could be environmentally sensitive resulting in forms which were also sensitive to their location. The idea of taking a geometrical form as a seed and transforming it using a series of processes to create complex structures is similar in many ways to the early work of Latham creating large morphological charts. Latham went on to develop his ideas into the "Mutator" system which he used to create organic artworks. Generalising the Reptile System Frazer has proposed a generalised version of the Reptile System to tackle more realistic building problems. Generating the seed or minimal configuration from design requirements automatically. From this starting point (or set of starting points) solutions could be evolved using artificial evolution. Quantifiable and specific aspects of the design brief define the formal criteria which are used as a standard fitness function. Non-quantifiable criteria, including aesthetic judgments, are evaluated by the user. The proposed system would be able to learn successful strategies for satisfying both formal and user criteria. In doing so the system would become a personalised tool of the designer. A personal assistant which would be able to anticipate aesthetic judgements and other criteria by employing previously successful strategies. Ultimately, this is a similar concept to Negroponte's "Architecture Machine" which he proposed would be computer system so personalised so as to be almost unusable by other people. The Universal State Space Modeller The Universal State Space Modeller is the basis of Frazer's current work. It is a system which can be used to model any structure, hence the universal claim in it's title. The datastructure underlying the modeller is a state space of scaleless logical points, called motes. Motes are arranged in a close-packing sphere arrangement, which makes each one equidistant from it's twelve neighbours. Any point can be broken down into a self-similar tetrahedral structure of logical points. Giving the state space a fractal nature which allows modelling at many different levels at once. Each mote can be thought of as analogous to a cell in a biological organism. Every mote carries a copy of the architectural genetic code in the same way that each cell within a organism carries a copy of it's DNA. The genetic code of a mote is stored as a sequence of binary "morons" which are grouped together into spatial configurations which are interpreted as the state of the mote. The developmental process begins with a seed. The seed develops through cellular duplication according to the rules of the genetic code. In the beginning the seed develops mainly in response to the internal genetic code, but as the development progresses the environment plays a greater role. Cells communicate by passing messages to their immediate twelve neighbours. However, it can send messages directed at remote cells, without knowledge of it's spatial relationship. During the development cells take on specialised functions, including environmental sensors or producers of raw materials. The resulting system is process driven, without presupposing the existence of a construction set to use. The datastructure can be interpreted in many ways to derive various phenotypes. The resulting structure is a by-product of the cellular activity during development and in response to the environment. As such the resulting structures have much in common with living organisms which are also the emergent result or by-product of local cellular activity. Primordial Architectural Soups To conclude, Frazer presents some of the most recent work done, evolving fundamental structures using limited raw materials, an initial seed and massive feedback. Frazer proposes to go further and do away with the need for initial seed and start with a primordial soup of basic architectural concepts. The research is attempting to evolve the starting conditions and evolutionary processes without any preconditions. Is there enough time to evolve a complex system from the basic building blocks which Frazer proposes? The computational complexity of the task being embarked upon is not discussed. There is an implicit assumption that the "superb tactics" of natural selection are enough to cut through the complexity of the task. However, Kauffman has shown how self-organisation plays a major role in the early development of replicating systems which we may call alive. Natural selection requires a solid basis upon which it can act. Is the primordial soup which Frazer proposes of the correct constitution to support self-organisation? Kauffman suggests that one of the most important attributes of a primordial soup to be capable of self-organisation is the need for a complex network of catalysts and the controlling mechanisms to stop the reactions from going supracritical. Can such a network be provided of primitive architectural concepts? What does it mean to have a catalyst in this domain? Conclusion Frazer shows some interesting work both in the areas of evolutionary design and self-organising systems. It is obvious from his work that he sympathizes with the opinions put forward by Kauffman that the order found in living organisms comes from both external evolutionary pressure and internal self-organisation. His final remarks underly this by paraphrasing the words of Kauffman, that life is always to found on the edge of chaos. By the "edge of chaos" Kauffman is referring to the area within the ordered regime of a system close to the "phase transition" to chaotic behaviour. Unfortunately, Frazer does not demonstrate that the systems he has presented have the necessary qualities to derive useful order at the edge of chaos. He does not demonstrate, as Kauffman does repeatedly, that there exists a "phase transition" between ordered and chaotic regimes of his systems. He also does not make any studies of the relationship of useful forms generated by his work to phase transition regions of his systems should they exist. If we are to find an organic architecture, in more than name alone, it is surely to reside close to the phase transition of the construction system of which is it built. Only there, if we are to believe Kauffman, are we to find useful order together with environmentally sensitive and thermodynamically open systems which can approach the utility of living organisms.
series other
type normal paper
last changed 2004/05/22 14:12

_id c681
authors Gero, J.S. and Kazakov, V.
year 1995
title Evolving building blocks for design using genetic engineering: A formal approach
source J.S. Gero and F. Sudweeks (eds), Advances in Formal Design Methods for CAD , IFIP-University of Sydney, Sydney, pp. 29-48
summary This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks is evolved into a set of complex genes representing targeted building blocks. These targeted building blocks have been evolved because they are more likely to produce designs which exhibit desired characteristics than the commencing elementary building blocks. The targeted building blocks can then be used in a design process. The paper presents a formal evolutionary model of design representations based on genetic algorithms and uses pattern recognition techniques to execute aspects of the genetic engineering. The paper describes how the state space of possible designs changes over time and illustrates the model with an example from the domain of two-dimensional layouts. It concludes with a discussion of style in design.
series other
email
last changed 2003/04/06 07:29

_id 1778
authors Jo, Jun H. and Gero, John S.
year 1995
title Representation and Use of Design Knowledge in Evolutionary Design
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 189-203
summary This paper describes an approach to knowledge representation for an evolutionary design process. The concept of design schemas is introduced to provide the representational framework for design knowledge. Two kinds of design schemas, the design rule schema and the design gene schema, are proposed to formulate design knowledge and interpret the knowledge into genetic codes. A design problem which is used to exemplify this approach is that of a large office layout planning problem.
keywords Representation, Design Knowledge, Genetic Codes
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 2005_787
id 2005_787
authors Veikos, Cathrine
year 2005
title The Post-Medium Condition
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 787-794
doi https://doi.org/10.52842/conf.ecaade.2005.787
summary Theorists in art, architecture and visual media have described the digital world as a world of mediumlessness and proclaimed that the medium of a work, once the ontological determinant for the classification of the arts, is rendered meaningless by recent technological and cultural developments (Krauss, 2000; Negroponte, 1995; Manovich, 2001). Although indebted to specific media-based techniques and their attendant ideologies, software removes the material reality of techniques to an immaterial condition where the effects of material operations are reproduced abstractly. This paper asserts that a productive approach for digital design can be found in the acknowledgement that the importance of the digital format is not that it de-materializes media, but that it allows for the maximum intermingling of media. A re-conceptualization of media follows from this, defined now as, a set of conventions derived from the material conditions of a given technical support, conventions out of which to develop a form of expressiveness that can be both projective and mnemonic (Krauss, 2000). The paper will focus on the identification of these conventions towards the development of new forms of expressiveness in architecture. Further demonstration of the intermingling of materially-based conventions is carried out in the paper through a comparative analysis of contemporary works of art and architecture, taking installation art as a particular example. A new design approach based on the maximum intermingling of media takes account of integrative strategies towards the digital and the material and sees them as inextricably linked. In the digital “medium” different sets of conventions derived from different material conditions transfer their informational assets producing fully formed, material-digital ingenuity.
keywords Expanded Architecture, Art Practice, Material, Information, ParametricTechniques, Evolutionary Logics
series eCAADe
email
last changed 2022/06/07 07:58

_id 41e5
authors Abendroth, M., Decock, J. and Mestaoui, N.
year 2000
title O_1:// the hypertextu(r)al matrix
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 75-76
summary Founded in 1995 LAB[au], laboratory for architecture and urbanism, links theoretic research LAB[a+u] to concrete works of conception and realisations LA.BAU. LAB[au] elaborates a “hyperdesign” investigating the implications of new technologies of communication and computation in spatiotemporal and social processes and their forms of representation as architecture and urbanism. The transposition of the hypertext model to architectural and urban concepts question the mutation of the spatial and semantic construct of space. The definition of architecture as a code is based on “glocal” systems according to the processes of computation and communication.
series SIGRADI
email
last changed 2016/03/10 09:47

_id c2bd
authors Belblidia, Salim and Perrin, Jean-Pierre
year 1995
title Multi-Resolution Rendering of Architectural Models
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 231-239
summary This paper presents a method for representing complex models with various levels of detail. It is based on a geometric simplification algorithm and is applied to a scene described by a rooted-tree structure. In order to control the restuting image quality and the computation time, we propose two algorithms which allow to choose one representation of the scene.
keywords Computer Graphics, Image Synthesis, Realistic Rendering, Real-Time Rendering, Computer Aided Architectural Design
series CAAD Futures
email
last changed 2003/11/21 15:16

_id c6b2
authors Fenves, S.J., Garrett, J.H., Kiliccote, H., Law, K.H. and Reed, K.A.
year 1995
title Computer representations of design standards and building codes: a U.S. perspective
source The Int. Journal of Construction IT3(1), pp.13-34
summary Standards representation and processing in the United States has had a long and interesting history of development. The work in the past has focused primarily on representing a standard, evaluating the intrinsic properties of that represented standard, and evaluating designs for conformance to that standard. To date, for a variety of reasons, standards writing organizations and computer-aided design software vendors have not adopted much of the results of this research. The failure of the approach so far in the U.S. can be traced to two distinct areas. One major cluster of causes is methodological: the initial concepts were not backed up by usable, persistent computer tools; and the initial application and model were not representative. The second cluster of causes of failure is professional, and has a lot to do with the dynamics of interaction of individuals and organizations. Future research must address the inadequacies of the current representations and create models that are able to represent all, or almost all, of the different types of provisions in any given standard; investigate and deliver a much richer set of processing functionality's, such as more support for use of design standards in earlier phases of design; support the treatment of multiple, heterogeneous standards available from distributed sources; and determine what type of support is needed to go from the textual versions of design standards to the formal models that can support sophisticated computation.
series journal paper
last changed 2003/05/15 21:45

_id acadia21_100
id acadia21_100
authors Ghandi, Mona; Ismail, Mohamed; Blaisdell, Marcus
year 2021
title Parasympathy
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 100-109.
doi https://doi.org/10.52842/conf.acadia.2021.100
summary Parasympathy is an interactive spatial experience operating as an extension of visitors’ minds. By integrating Artificial Intelligence (AI), wearable technologies, affective computing (Picard 1995; Picard 2003), and neuroscience, this project blurs the lines between the physical, digital, and biological spheres and empowers users’ brains to solicit positive changes from their spaces based on their real-time biophysical reactions and emotions.

The objective is to deploy these technologies in support of the wellbeing of the community especially when related to social matters such as inclusion and social justice in our built environment. Consequently, this project places the users’ emotions at the very center of its space by performing real-time responses to the emotional state of the individuals within the space.

series ACADIA
type project
email
last changed 2023/10/22 12:06

_id a8f0
authors Goel, V.
year 1995
title Sketches of thought
source MA: MIT Press, Cambridge
summary Much of the cognitive lies beyond articulate, discursive thought, beyond the reach of current computational notions. In Sketches of Thought, Vinod Goel argues that the cognitive computational conception of the world requires our thought processes to be precise, rigid, discrete, and unambiguous; yet there are dense, ambiguous, and amorphous symbol systems, like sketching, painting, and poetry, found in the arts and much of everyday discourse that have an important, nontrivial place in cognition. Goel maintains that while on occasion our thoughts do conform to the current computational theory of mind, they often are -- indeed must be - vague, fluid, ambiguous, and amorphous. He argues that if cognitive science takes the classical computational story seriously, it must deny or ignore these processes, or at least relegate them to the realm of the nonmental. As a cognitive scientist with a design background, Goel is in a unique position to challenge cognitive science on its own territory. He introduces design problem solving as a domain of cognition that illustrates these inarticulate, nondiscursive thought processes at work through the symbol system of sketching. He argues not that such thoughts must remain noncomputational but that our current notions of computation and representation are not rich enough to capture them. Along the way, Goel makes a number of significant and controversial interim points. He shows that there is a principled distinction between design and nondesign problems, that there are standard stages in the solution of design problems, that these stages correlate with the use of different types of external symbol systems; that these symbol systems are usefully individuated in Nelson Goodman's syntactic and semantic terms, and that different cognitive processes are facilitated by different types of symbol systems.
series other
last changed 2003/04/23 15:14

_id 807c
authors Kellett, Ronald
year 1996
title MEDIA MATTERS: NUDGING DIGITAL MEDIA INTO A MANUAL DESIGN PROCESS (AND VICE VERSA)
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 31-43
doi https://doi.org/10.52842/conf.acadia.1996.031
summary This paper reports on a media class offered during the 1995-96 academic year at the University of Oregon. This course, a renovation of an existing 'manual' media offering targeted intermediate Ievel graduate and undergraduate students who, while relatively experienced design students, were relatively inexperienced users of digital media for design. This course maintained a pedagogical emphasis on design process, a point of view that media are powerful influences on design thinking, and an attitude toward experimentation (and reflection) in matters of media and design process. Among the experiments explored were fitting together digital with manual media, and using digital media to collaborate in an electronic workspace. The experience offers opportunity to consider how digital media might be more widely integrated with what remains a predominantly 'manual' design process and media context for many architecture schools and practices.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id d8ea
authors Kumar, Subodh and Manocha, Dinesh
year 1995
title Efficient rendering of trimmed NURBS surfaces
source Computer-Aided Design, Vol. 27 (7) (1995) pp. 509-521
summary An algorithm for the interactive display of trimmed nurbs surfaces is presented. The algorithm converts the nurbs surfaces to Bézier surfaces, and nurbs trimming curves toBézier curves. It tessellates each trimmed Bézier surface into triangles, and renders them using the triangle rendering capabilities common in current graphics systems. Itmakes use of tight bounds for the uniform tessellation of Bézier surfaces into cells and it traces the trimming curves to compute the trimmed regions of each cell. Thisoperation is based on the tracing of trimming curves, intersection computation with the cells, and triangulation of the cells. The resulting technique also makes use of spatialand temporal coherence between successive frames for cell computation and triangulation. Polygonization anomalies such as cracks and angularities are avoided as well. Thealgorithm can display trimmed models described using thousands of Bézier surfaces at interactive frame rates on high end graphics systems.
keywords Trimmed Nurbs, Bezier Surfaces, Rendering
series journal paper
last changed 2003/05/15 21:33

_id 2e3b
authors Kvan, Thomas and Kvan, Erik
year 1997
title Is Design Really Social
source Creative Collaboration in Virtual Communities 1997, ed. A. Cicognani. VC'97. Sydney: Key Centre of Design Computing, Department of Architectural and Design Science, University of Sydney, 8 p.
summary There are many who will readily agree with Mitchell’s assertion that “the most interesting new directions (for computer-aided design) are suggested by the growing convergence of computation and telecommunication. This allows us to treat designing not just as a technical process... but also as a social process.” [Mitchell 1995]. The assumption is that design was a social process until users of computer-aided design systems were distracted into treating it as a merely technical process. Most readers will assume that this convergence must and will lead to increased communication between design participants; that better social interaction leads to be better design. The unspoken assumption appears to be that putting the participants into an environment with maximal communication channels will result in design collaboration. The tools provided; therefore; must permit the best communication and the best social interaction. We think it essential to examine the foundations and assumptions on which software and environments are designed to support collaborative design communication. Of particular interest to us in this paper is the assumption about the “social” nature of design. Early research in computer-assisted design collaborations has jumped immediately into conclusions about communicative models which lead to high-bandwidth video connections as the preferred channel of collaboration. The unstated assumption is that computer-supported design environments are not adequate until they replicate in full the sensation of being physically present in the same space as the other participants (you are not there until you are really there). It is assumed that the real social process of design must include all the signals used to establish and facilitate face-to-face communication; including gestures; body language and all outputs of drawing (e.g. Tang [1991]). In our specification of systems for virtual design communities; are we about to fall into the same traps as drafting systems did?
keywords CSCW; Virtual Community; Architectural Design; Computer-Aided Design
series other
email
last changed 2002/11/15 18:29

_id ab9c
authors Kvan, Thomas and Kvan, Erik
year 1999
title Is Design Really Social
source International Journal of Virtual Reality, 4:1
summary There are many who will readily agree with Mitchell's assertion that "the most interesting new directions (for computer-aided design) are suggested by the growing convergence of computation and telecommunication. This allows us to treat designing not just as a technical process... but also as a social process." [Mitchell 1995]. The assumption is that design was a social process until users of computer-aided design systems were distracted into treating it as a merely technical process. Most readers will assume that this convergence must and will lead to increased communication between design participants, that better social interaction leads to be better design. The unspoken assumption appears to be that putting the participants into an environment with maximal communication channels will result in design collaboration. The tools provided, therefore, must permit the best communication and the best social interaction. We see a danger here, a pattern being repeated which may lead us into less than useful activities. As with several (popular) architectural design or modelling systems already available, however, computer system implementations all too often are poor imitations manual systems. For example, few in the field will argue with the statement that the storage of data in layers in a computer-aided drafting system is an dispensable approach. Layers derive from manual overlay drafting technology [Stitt 1984] which was regarded as an advanced (manual) production concept at the time many software engineers were specifying CAD software designs. Early implementations of CAD systems (such as RUCAPS, GDS, Computervision) avoided such data organisation, the software engineers recognising that object-based structures are more flexible, permitting greater control of data editing and display. Layer-based systems, however, are easier to implement in software, more familiar to the user and hence easier to explain, initially easier to use but more limiting for an experienced and thoughtful user, leading in the end to a lesser quality in resultant drawings and significant problems in output control (see Richens [1990], pp. 31-40 for a detailed analysis of such features and constraints). Here then we see the design for architectural software faithfully but inappropriately following manual methods. So too is there a danger of assuming that the best social interaction is that done face-to-face, therefore all collaborative design communications environments must mimic face-to-face.
series journal paper
email
last changed 2003/05/15 10:29

_id ascaad2022_099
id ascaad2022_099
authors Sencan, Inanc
year 2022
title Progeny: A Grasshopper Plug-in that Augments Cellular Automata Algorithms for 3D Form Explorations
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 377-391
summary Cellular automata (CA) is a well-known computation method introduced by John von Neumann and Stanislaw Ulam in the 1940s. Since then, it has been studied in various fields such as computer science, biology, physics, chemistry, and art. The Classic CA algorithm is a calculation of a grid of cells' binary states based on neighboring cells and a set of rules. With the variation of these parameters, the CA algorithm has evolved into alternative versions such as 3D CA, Multiple neighborhood CA, Multiple rules CA, and Stochastic CA (Url-1). As a rule-based generative algorithm, CA has been used as a bottom-up design approach in the architectural design process in the search for form (Frazer,1995; Dinçer et al., 2014), in simulating the displacement of individuals in space, and in revealing complex relations at the urban scale (Güzelci, 2013). There are implementations of CA tools in 3D design software for designers as additional scripts or plug-ins. However, these often have limited ability to create customized CA algorithms by the designer. This study aims to create a customizable framework for 3D CA algorithms to be used in 3D form explorations by designers. Grasshopper3D, which is a visual scripting environment in Rhinoceros 3D, is used to implement the framework. The main difference between this work and the current Grasshopper3D plug-ins for CA simulation is the customizability and the real-time control of the framework. The parameters that allow the CA algorithm to be customized are; the initial state of the 3D grid, neighborhood conditions, cell states and rules. CA algorithms are created for each customizable parameter using the framework. Those algorithms are evaluated based on the ability to generate form. A voxel-based approach is used to generate geometry from the points created by the 3D cellular automata. In future, forms generated using this framework can be used as a form generating tool for digital environments.
series ASCAAD
email
last changed 2024/02/16 13:38

_id acadia16_424
id acadia16_424
authors Twose, Simon; du Chatenier, Rosa
year 2016
title Experimental Material Research - Digital Chocolate
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 424-431
doi https://doi.org/10.52842/conf.acadia.2016.424
summary This research investigates the aesthetics of a shared agency between humans, computation and physical material. ‘Chocolate’ is manipulated in physical and virtual space simultaneously to extract aesthetic conditions that are a sum of human and non-human relations. This is an attempt to further the knowledge of designing, giving physical and digital materials force in determining their own aesthetics. The research springs from work in speculative aesthetics, particularly N. Katherine Hayles’s OOI (object-oriented inquiry) and Graham Harman’s OOO (object-oriented ontology) and explores how these ideas impact contemporary computational architectural design. To study this, a simple material has been chosen, chocolate, and used as a vehicle to investigate the dynamics of physical and digital materials and their shared/differing ‘resistances to human manipulation’ (Pickering 1995). Digital chocolate is ‘melted’ through virtual heat, and the results printed and cast in real chocolate, to be further manipulated in real space. The resistances and feedback of physical and digital chocolate to human ‘prodding’ (Hayles 2014) are analyzed in terms of a material’s qualities and tendencies in digital space versus those in physical space. Observations from this process are used to speculate on an aesthetics where humans, computation and physical material are mutually agential. This research is a pilot for a larger study taking on more complex conditions, such as building and cities, with a view to broadening how aesthetics is understood in architectural design. The contribution of this research to the field of architectural computation is thus in areas of aesthetic speculation and human/non-human architectural authorship.
keywords object-oriented inquiry, speculative aesthetics, mutual agency, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:58

No more hits.

HOMELOGIN (you are user _anon_641227 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002