CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 376

_id 2068
authors Frazer, John
year 1995
title AN EVOLUTIONARY ARCHITECTURE
source London: Architectural Association
summary In "An Evolutionary Architecture", John Frazer presents an overview of his work for the past 30 years. Attempting to develop a theoretical basis for architecture using analogies with nature's processes of evolution and morphogenesis. Frazer's vision of the future of architecture is to construct organic buildings. Thermodynamically open systems which are more environmentally aware and sustainable physically, sociologically and economically. The range of topics which Frazer discusses is a good illustration of the breadth and depth of the evolutionary design problem. Environmental Modelling One of the first topics dealt with is the importance of environmental modelling within the design process. Frazer shows how environmental modelling is often misused or misinterpreted by architects with particular reference to solar modelling. From the discussion given it would seem that simplifications of the environmental models is the prime culprit resulting in misinterpretation and misuse. The simplifications are understandable given the amount of information needed for accurate modelling. By simplifying the model of the environmental conditions the architect is able to make informed judgments within reasonable amounts of time and effort. Unfortunately the simplications result in errors which compound and cause the resulting structures to fall short of their anticipated performance. Frazer obviously believes that the computer can be a great aid in the harnessing of environmental modelling data, providing that the same simplifying assumptions are not made and that better models and interfaces are possible. Physical Modelling Physical modelling has played an important role in Frazer's research. Leading to the construction of several novel machine readable interactive models, ranging from lego-like building blocks to beermat cellular automata and wall partitioning systems. Ultimately this line of research has led to the Universal Constructor and the Universal Interactor. The Universal Constructor The Universal Constructor features on the cover of the book. It consists of a base plug-board, called the "landscape", on top of which "smart" blocks, or cells, can be stacked vertically. The cells are individually identified and can communicate with neighbours above and below. Cells communicate with users through a bank of LEDs displaying the current state of the cell. The whole structure is machine readable and so can be interpreted by a computer. The computer can interpret the states of the cells as either colour or geometrical transformations allowing a wide range of possible interpretations. The user interacts with the computer display through direct manipulation of the cells. The computer can communicate and even direct the actions of the user through feedback with the cells to display various states. The direct manipulation of the cells encourages experimentation by the user and demonstrates basic concepts of the system. The Universal Interactor The Universal Interactor is a whole series of experimental projects investigating novel input and output devices. All of the devices speak a common binary language and so can communicate through a mediating central hub. The result is that input, from say a body-suit, can be used to drive the out of a sound system or vice versa. The Universal Interactor opens up many possibilities for expression when using a CAD system that may at first seem very strange.However, some of these feedback systems may prove superior in the hands of skilled technicians than more standard devices. Imagine how a musician might be able to devise structures by playing melodies which express the character. Of course the interpretation of input in this form poses a difficult problem which will take a great deal of research to achieve. The Universal Interactor has been used to provide environmental feedback to affect the development of evolving genetic codes. The feedback given by the Universal Interactor has been used to guide selection of individuals from a population. Adaptive Computing Frazer completes his introduction to the range of tools used in his research by giving a brief tour of adaptive computing techniques. Covering topics including cellular automata, genetic algorithms, classifier systems and artificial evolution. Cellular Automata As previously mentioned Frazer has done some work using cellular automata in both physical and simulated environments. Frazer discusses how surprisingly complex behaviour can result from the simple local rules executed by cellular automata. Cellular automata are also capable of computation, in fact able to perform any computation possible by a finite state machine. Note that this does not mean that cellular automata are capable of any general computation as this would require the construction of a Turing machine which is beyond the capabilities of a finite state machine. Genetic Algorithms Genetic algorithms were first presented by Holland and since have become a important tool for many researchers in various areas.Originally developed for problem-solving and optimization problems with clearly stated criteria and goals. Frazer fails to mention one of the most important differences between genetic algorithms and other adaptive problem-solving techniques, ie. neural networks. Genetic algorithms have the advantage that criteria can be clearly stated and controlled within the fitness function. The learning by example which neural networks rely upon does not afford this level of control over what is to be learned. Classifier Systems Holland went on to develop genetic algorithms into classifier systems. Classifier systems are more focussed upon the problem of learning appropriate responses to stimuli, than searching for solutions to problems. Classifier systems receive information from the environment and respond according to rules, or classifiers. Successful classifiers are rewarded, creating a reinforcement learning environment. Obviously, the mapping between classifier systems and the cybernetic view of organisms sensing, processing and responding to environmental stimuli is strong. It would seem that a central process similar to a classifier system would be appropriate at the core of an organic building. Learning appropriate responses to environmental conditions over time. Artificial Evolution Artificial evolution traces it's roots back to the Biomorph program which was described by Dawkins in his book "The Blind Watchmaker". Essentially, artificial evolution requires that a user supplements the standard fitness function in genetic algorithms to guide evolution. The user may provide selection pressures which are unquantifiable in a stated problem and thus provide a means for dealing ill-defined criteria. Frazer notes that solving problems with ill-defined criteria using artificial evolution seriously limits the scope of problems that can be tackled. The reliance upon user interaction in artificial evolution reduces the practical size of populations and the duration of evolutionary runs. Coding Schemes Frazer goes on to discuss the encoding of architectural designs and their subsequent evolution. Introducing two major systems, the Reptile system and the Universal State Space Modeller. Blueprint vs. Recipe Frazer points out the inadequacies of using standard "blueprint" design techniques in developing organic structures. Using a "recipe" to describe the process of constructing a building is presented as an alternative. Recipes for construction are discussed with reference to the analogous process description given by DNA to construct an organism. The Reptile System The Reptile System is an ingenious construction set capable of producing a wide range of structures using just two simple components. Frazer saw the advantages of this system for rule-based and evolutionary systems in the compactness of structure descriptions. Compactness was essential for the early computational work when computer memory and storage space was scarce. However, compact representations such as those described form very rugged fitness landscapes which are not well suited to evolutionary search techniques. Structures are created from an initial "seed" or minimal construction, for example a compact spherical structure. The seed is then manipulated using a series of processes or transformations, for example stretching, shearing or bending. The structure would grow according to the transformations applied to it. Obviously, the transformations could be a predetermined sequence of actions which would always yield the same final structure given the same initial seed. Alternatively, the series of transformations applied could be environmentally sensitive resulting in forms which were also sensitive to their location. The idea of taking a geometrical form as a seed and transforming it using a series of processes to create complex structures is similar in many ways to the early work of Latham creating large morphological charts. Latham went on to develop his ideas into the "Mutator" system which he used to create organic artworks. Generalising the Reptile System Frazer has proposed a generalised version of the Reptile System to tackle more realistic building problems. Generating the seed or minimal configuration from design requirements automatically. From this starting point (or set of starting points) solutions could be evolved using artificial evolution. Quantifiable and specific aspects of the design brief define the formal criteria which are used as a standard fitness function. Non-quantifiable criteria, including aesthetic judgments, are evaluated by the user. The proposed system would be able to learn successful strategies for satisfying both formal and user criteria. In doing so the system would become a personalised tool of the designer. A personal assistant which would be able to anticipate aesthetic judgements and other criteria by employing previously successful strategies. Ultimately, this is a similar concept to Negroponte's "Architecture Machine" which he proposed would be computer system so personalised so as to be almost unusable by other people. The Universal State Space Modeller The Universal State Space Modeller is the basis of Frazer's current work. It is a system which can be used to model any structure, hence the universal claim in it's title. The datastructure underlying the modeller is a state space of scaleless logical points, called motes. Motes are arranged in a close-packing sphere arrangement, which makes each one equidistant from it's twelve neighbours. Any point can be broken down into a self-similar tetrahedral structure of logical points. Giving the state space a fractal nature which allows modelling at many different levels at once. Each mote can be thought of as analogous to a cell in a biological organism. Every mote carries a copy of the architectural genetic code in the same way that each cell within a organism carries a copy of it's DNA. The genetic code of a mote is stored as a sequence of binary "morons" which are grouped together into spatial configurations which are interpreted as the state of the mote. The developmental process begins with a seed. The seed develops through cellular duplication according to the rules of the genetic code. In the beginning the seed develops mainly in response to the internal genetic code, but as the development progresses the environment plays a greater role. Cells communicate by passing messages to their immediate twelve neighbours. However, it can send messages directed at remote cells, without knowledge of it's spatial relationship. During the development cells take on specialised functions, including environmental sensors or producers of raw materials. The resulting system is process driven, without presupposing the existence of a construction set to use. The datastructure can be interpreted in many ways to derive various phenotypes. The resulting structure is a by-product of the cellular activity during development and in response to the environment. As such the resulting structures have much in common with living organisms which are also the emergent result or by-product of local cellular activity. Primordial Architectural Soups To conclude, Frazer presents some of the most recent work done, evolving fundamental structures using limited raw materials, an initial seed and massive feedback. Frazer proposes to go further and do away with the need for initial seed and start with a primordial soup of basic architectural concepts. The research is attempting to evolve the starting conditions and evolutionary processes without any preconditions. Is there enough time to evolve a complex system from the basic building blocks which Frazer proposes? The computational complexity of the task being embarked upon is not discussed. There is an implicit assumption that the "superb tactics" of natural selection are enough to cut through the complexity of the task. However, Kauffman has shown how self-organisation plays a major role in the early development of replicating systems which we may call alive. Natural selection requires a solid basis upon which it can act. Is the primordial soup which Frazer proposes of the correct constitution to support self-organisation? Kauffman suggests that one of the most important attributes of a primordial soup to be capable of self-organisation is the need for a complex network of catalysts and the controlling mechanisms to stop the reactions from going supracritical. Can such a network be provided of primitive architectural concepts? What does it mean to have a catalyst in this domain? Conclusion Frazer shows some interesting work both in the areas of evolutionary design and self-organising systems. It is obvious from his work that he sympathizes with the opinions put forward by Kauffman that the order found in living organisms comes from both external evolutionary pressure and internal self-organisation. His final remarks underly this by paraphrasing the words of Kauffman, that life is always to found on the edge of chaos. By the "edge of chaos" Kauffman is referring to the area within the ordered regime of a system close to the "phase transition" to chaotic behaviour. Unfortunately, Frazer does not demonstrate that the systems he has presented have the necessary qualities to derive useful order at the edge of chaos. He does not demonstrate, as Kauffman does repeatedly, that there exists a "phase transition" between ordered and chaotic regimes of his systems. He also does not make any studies of the relationship of useful forms generated by his work to phase transition regions of his systems should they exist. If we are to find an organic architecture, in more than name alone, it is surely to reside close to the phase transition of the construction system of which is it built. Only there, if we are to believe Kauffman, are we to find useful order together with environmentally sensitive and thermodynamically open systems which can approach the utility of living organisms.
series other
type normal paper
last changed 2004/05/22 14:12

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id d8ea
authors Kumar, Subodh and Manocha, Dinesh
year 1995
title Efficient rendering of trimmed NURBS surfaces
source Computer-Aided Design, Vol. 27 (7) (1995) pp. 509-521
summary An algorithm for the interactive display of trimmed nurbs surfaces is presented. The algorithm converts the nurbs surfaces to Bézier surfaces, and nurbs trimming curves toBézier curves. It tessellates each trimmed Bézier surface into triangles, and renders them using the triangle rendering capabilities common in current graphics systems. Itmakes use of tight bounds for the uniform tessellation of Bézier surfaces into cells and it traces the trimming curves to compute the trimmed regions of each cell. Thisoperation is based on the tracing of trimming curves, intersection computation with the cells, and triangulation of the cells. The resulting technique also makes use of spatialand temporal coherence between successive frames for cell computation and triangulation. Polygonization anomalies such as cracks and angularities are avoided as well. Thealgorithm can display trimmed models described using thousands of Bézier surfaces at interactive frame rates on high end graphics systems.
keywords Trimmed Nurbs, Bezier Surfaces, Rendering
series journal paper
last changed 2003/05/15 21:33

_id 4cb3
authors Kwartler, Michael
year 1995
title Beyond the Adversial: Conflict Resolution, Simulation and Community Design
source The Future of Endoscopy [Proceedings of the 2nd European Architectural Endoscopy Association Conference / ISBN 3-85437-114-4]
summary Fundamentally, the design of communities in the United States is grounded in the Constitution’s evolving definition of property and the rights and obligations attendant to the ownership and use of real property. The rearticulation of Jefferson’s dictum in the Declaration of Independence; “that individuals have certain inalienable rights, among these are life, liberty, and the pursuit of happiness” to the Constitution’s “life, liberty and property” represents a pragmatic understanding of the relationship between property and the actualization of the individual in society. In terms of community design, this means extensive public involvement and participation in not only the formulation of rules and regulations but of individual projects as well.

Since the 1960’s as planning and community design decision making has become increasingly contentious, the American legal system’s adversial approach to conflict resolution has become the dominant model for public decision making. The legal system’s adversial approach to adjudication is essentially a zero-sum game of winners and losers, and as most land-use lawyers will agree, is not a good model for the design of cities. While the adversial approach does not resolve disputes it rarely creates a positive and constructive consensus for change. Because physical planning and community design issues are not only value based, community design through consensus building has emerged as a new paradigm for physical planning and design.

The Environmental Simulation Center employs a broad range of complementary simulation and visualization techniques including 3-D vector based computer models, endoscopy, and verifiable digital photomontages to provide objective and verifiable information for projects and regulations under study.

In this context, a number of recent projects will be discussed which have explored the use of various simulation and visualization techniques in community design. Among them are projects involved with changes in the City’s Zoning Regulations, the community design of a major public open space in one of the region’s mid-size cities, and the design of a new village center for a suburban community, with the last project employing the Center’s userfriendly and interactive 3-D computer kit of parts. The kit - a kind of computer “pattern book” is comprised of site planning, urban and landscape design and architectural conventions - is part of the Center’s continuing effort to support a consensus based, rather than adversial based, public planning and design process.

keywords Architectural Simulation, Real Environments
series EAEA
more http://info.tuwien.ac.at/eaea/
last changed 2005/09/09 10:43

_id d935
authors Pasko, A.A., Adzhiev, V.D., Sourin, A.I. and Savchenko, V.V.
year 1995
title Function representation in geometric modeling: concepts, implementation and applications
source The Visual Computer, 11 (8) 429-446
summary Geometric modeling using continuous real functions of several variables is discussed. Modeling concepts include sets of objects, operations and relations. An object is a closed point set of n-dimensional Euclidean space with a defining inequality f x x xn ( , ,..., ) 1 2 0 °Ÿ . Transformations of a defining function are described for the set-theoretic operations, blending, offsetting, bijective mapping, projection, Cartesian product and metamorphosis. Inclusion, point membership and intersection relations are described. In the implemented interactive modeling system, we use highlevel geometric language that provides extendibility of the modeling system by input symbolic descriptions of primitives, operations and predicates. This approach supports combinations of representational styles, including constructive geometry, sweeping, soft objects, voxel-based objects, deformable and other animated objects. Application examples of aesthetic design, collisions simulation, NC machining, range data processing, and 3D texture generation are given.
series journal paper
last changed 2003/04/23 15:50

_id 09c6
authors Silva, Neander F.
year 1995
title The Use of Hybrid Technology in the construction of an Evolving Knowledge-Base Design System
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 589-598
summary This paper focus in one vital aspect of design computing: the knowledge-base extension and maintenance. It describes a hybrid approach where a rudimentary evolving knowledge-base design system is proposed. It draws inspiration from three areas of artificial intelligence: knowledge-base systems, connectionist models, and case-based reasoning. Its main contributions are: an incremental self-adjustment able to minimise substantially the dependency on knowledge engineer intervention, and an interactive support to innovation.
keywords Precedents, Connectionism, Knowledge-Bases Maintenance, Innovative Design
series CAAD Futures
email
last changed 2003/05/16 20:58

_id c56a
authors Sugishita, S., Kondo, K., Sato, Shimada, H. and Kimura, F.
year 1995
title Interactive Freehand Sketch Interpreter for Geometric Modelling I.16 Pen-Based Interface
source Proceedings of the Sixth International Conference on Human-Computer Interaction 1995 v.I. Human and Future Computing pp. 561-566
summary This paper presents a new method to deal with idea sketches for inputting geometric models at a workstation. The idea sketches are drawn on a CRT screen with a stylus pen and a tablet by designers at an initial stage of design procedures. They can keep their drawing styles at a workstation as the same manner as using a pen on paper. The system 'Sketch Interpreter' can create correct geometric models in a computer even though input idea sketches are incorrect perspectively. Data created are transferred to an advanced 3D-CAD system. The system is applied as a front-end processor for a design practice.
series other
last changed 2002/07/07 16:01

_id 47c7
authors Fasse, Isabelle and Paul, Jean Claude
year 1995
title Realistic Rendering and Computer-Aided Lighting Design in Architecture
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 241-255
summary This paper presents an application of realistic rendering to computer aided design in architecture. The application concerns lighting design of buildings. We describe a library of algorithms which allows the simulation of the light sources emittance, surfaces reflectance/transmittance, and light propagation laws. Our general algorithm can compute a physically based simulation of illumination in complex geometric models and offers the capability to change the inputs without recalculating the entire global physical solution. Since the solution is view independent, hardware graphic accelerations are then used to generate the images. Two industrial experimentations have proved that our system can help designers to evaluate small iterations in the design, as well as compare global alternative solutions. Therefore, design quality improvement can be obtained while saving the costly full scale trials that are necessary when conventional methods are used.
keywords Computer-Aided Design, Computer Graphics, Synthesis Images, Architectural Design, Lighting Engineering
series CAAD Futures
last changed 1999/08/03 17:16

_id 7670
authors Sawicki, Bogumil
year 1995
title Ray Tracing – New Chances, Possibilities and Limitations in AutoCAD
source CAD Space [Proceedings of the III International Conference Computer in Architectural Design] Bialystock 27-29 April 1995, pp. 121-136
summary Realistic image synthesis is nowadays widely used in engineering applications. Some of these applications, such as architectural, interior, lighting and industrial design demand accurate visualization of non-existent scenes as they would look to us, when built in reality. This can only be archived by using physically based models of light interaction with surfaces, and simulating propagation of light through an environment. Ray tracing is one of the most powerful techniques used in computer graphics, which can produce such very realistic images. Ray tracing algorithm follows the paths of light rays backwards from observer into the scene. It is very time consuming process and as such one could not be developed until proper computers appeared, In recent years the technological improvements in computer industry brought more powerful machines with bigger storage capacities and better graphic devices. Owing to increasing these hardware capabilities successful implementation of ray tracing in different CAD software became possible also on PC machines. Ray tracing in AutoCAD r.12 - the most popular CAD package in the world - is the best of that example. AccuRender and AutoVision are an AutoCAD Development System (ADS) applications that use ray tracing to create photorealistic images from 3D AutoCAD models. These ,internal"' applications let users generate synthetic images of threedimensional models and scenes entirely within AutoCAD space and show effects directly on main AutoCAD screen. Ray tracing algorithm accurately calculates and displays shadows, transparency, diffusion, reflection, and refraction from surface qualities of user-defined materials. The accurate modelling of light lets produce sophisticated effects and high-quality images, which these ray tracers always generates at 24-bit pixel depth,"providing 16,7 million colours. That results can be quite impressive for some architects and are almost acceptable for others but that coloured virtual world, which is presented by ray tracing in AutoCAD space in such convincing way, is still not exactly the same as the real world. Main limitations of realism are due to the nature of ray tracing method Classical ray tracing technique takes into account the effects of light reflection from neighbouring surfaces but, leaves out of account the ambient and global illumination arising out of complex interreflections in an environment. So models generated by ray tracing belong to an "ideal" world where real materials and environment can't find their right place. We complain about that fact and say that ray tracing shows us "too specular world", but (...) (...) there is anything better on the horizon? It should be concluded, that typical abilities of today's graphics software and hardware are far from exploited. As was observed in literature there have been various works carried along with the explicit intention of overcoming all these ray tracing limitations, These researches seem to be very promising and let us hope that their results will be seen in CAD applications soon. As it happens with modelling, perhaps the answer will come from a variety of techniques that can be combined together with ray tracing depending on the case we are dealing with. Therefore from the point of view of an architects that try to keep alive some interest on the nature of materials and their interaction with form, "ray tracing" seems to be right path of research and development that we can still a long way follow, From the point of view of the school, a critical assimilation of "ray tracing" processes is required and one that might help to determinate exactly their distortions and to indicate the correct way of its development and right place in CAAD education. I trust that ray tracing will become standard not only in AutoCAD but in all architectural space modelling CAD applications and will be established as a powerful and real tool for experimental researches in architectural design process. Will be the technological progress so significant in the nearest future as it is anticipated?
series plCAD
last changed 2000/01/24 10:08

_id 0b96
authors Spencer, G. (et al.)
year 1995
title Physically-Based Glare Effects for Digital Images
source SIGGRAPH'95. Conference Proc., pp. 325-334
summary The physical mechanisms and physiological causes of glare in human vision are reviewed. These mechanisms are scattering in the cornea, lens, and retina, and di raction in the coherent cell structures on the outer radial areas of the lens. This scattering and di raction are responsible for the \bloom" and \flare lines" seen around very bright objects. The di raction e ects cause the \lenticular halo". The quantitative models of these glare e ects are reviewed, and an algorithm for using these models to add glare e ects to digital images is presented. The resulting digital point-spread function is thus psychophysically based and can substantially increase the \perceived" dynamic range of computer simulations containing light sources. Finally, a perceptual test is presented that indicates these added glare e ects increase the apparent brightness of light sources in digital images.
series other
last changed 2003/04/23 15:50

_id 25e6
authors Potamianos, I., Turner, J. and Jabi, W.
year 1995
title Exploring the Proportions of Middle-Byzantine Churches: A Parametric Approach
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 483-493
summary This paper examines two theories regarding the design principles of Byzantine churches through the use of 3D computer models produced by a programming language that allows the manipulation of the models parametrically to derive several instantiations by varying key dimensions. This geometry-based programming language, which is part of a larger solids modeling program, proved to be an excellent tool for determining the scope and the limiting cases of each of the two theories and the degree of their interrelationship.
keywords Parametric Solids Modeling, CSG, Byzantine Churches
series CAAD Futures
email
last changed 2002/02/20 22:02

_id 00ae
id 00ae
authors Ataman, Osman
year 1995
title Building A Computer Aid for Teaching Architectural Design Concepts
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 187-208
doi https://doi.org/10.52842/conf.acadia.1995.187
summary Building an aid for teaching architectural design concepts is the process of elaborating topics, defining problems and suggesting to the students strategies for solving those problems. I believe students in Environment and Behavior (E&B) courses at Georgia Tech can benefit greatly from a computer based educational tool designed to provide them with experiences they currently do not possess. In particular, little time in the course (outside lectures) is devoted to applying concepts taught in the course to the studio projects. The tool I am proposing provides students with an opportunity to critique architectural environments (both simple examples and previous projects) using a single concept, "affordances". This paper describes my current progress toward realizing the goal of designing a tool that will help the students to understand particular concepts and to integrate them into their designs. It is my claim that an integrative and interactive approach - creating a learning environment and making both the students and the environment mutually supportive- is fundamentally more powerful than traditional educational methods.

series ACADIA
email
last changed 2022/06/07 07:54

_id c3fa
authors Barnanente, A., Cuscito, A.P. and Maiellaro, N.
year 1995
title Expert System and Hypertext for Development Control
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 347-354
doi https://doi.org/10.52842/conf.ecaade.1995.347
summary The paper deals with an interactive system based on expert system and hypertext interaction in order to meet the demands of support for local government officials' activity in building-application inspection. Also described are the planning departments context and the problem related to eliciting knowledge in building-inspection process.
series eCAADe
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_42.htm
last changed 2022/06/07 07:54

_id d79e
authors Boerner, Katy
year 1995
title Interactive, Adaptive, Computer-aided Design
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 627-634
summary A general framework of a system that supports building engineering is presented. It accounts for a set of desirable features. Among them are (1) graphical man-machine interaction, (2) high interactivity to facilitate the acquisition of the huge amount of knowledge necessary to support design, (3) incremental knowledge acquisition as the basis for incrementally increasing system support, and (4) adaptability to the tasks which are tackled, the distinctive features of the domain, and user preferences. This paper provides the underlying assumptions and basic approaches of the modules constituting this framework and sketches the current implementation.
keywords Graphical Interfaces, Incremental Knowledge Acquisition, Knowledge Organization, Case-Based Reasoning, Design Prototypes, Analogical Reasoning
series CAAD Futures
email
last changed 2003/11/21 15:16

_id 64bf
authors Chuah, M.C., Roth, S.F., Mattis, J., and Kolojejchick, J.A.
year 1995
title SDM: Selective Dynamic Manipulation of Visualizations
source Proceedings of UIST‘95, ACM Symposium on User Interface Software and Technology, Pittsburg. 61-70
summary In this paper we present a new set of interactive techniques for 2D and 3D visualizations. This set of techniques is called SDM (Selective Dynamic Manipulation). Selective, indicating our goal for providing a high degree of user control in selecting an object set, in selecting interactive techniques and the properties they affect, and in the degree to which a user action affects the visualization. Dynamic, indicating that the interactions all occur in real-time and that interactive animation is used to provide better contextual information to users in response to an action or operation. Manipulation, indicating the types of interactions we provide, where users can directly move objects and transform their appearance to perform different tasks. While many other approaches only provide interactive techniques in isolation, SDM supports a suite of techniques which users can combine to solve a wide variety of problems.
series other
last changed 2003/04/23 15:14

_id 33f3
authors Fujii, Haruyuki
year 1995
title Incorporation of Natural Language Processing and a Generative System - An Interactive System that Constructs Topological Models from Spatial Descriptions in Natural Language
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 205-218
summary The natural language processing technique and the spatial reasoning technique are incorporated to create a computational model representing the process of updating and maintaining the knowledge about spatial relations. An algorithm for the spatial reasoning is proposed. An interactive system that understands sentences describing spatial relations is implemented. The system determines the reference of an anaphoric or deictic expression from the literal meaning of the input and the implicit meaning derived from the literal meaning. The consistency of the spatial relations is maintained. The correct topological representations of the spatial relations are generated from well-formed descriptions.
keywords Natural Language Processing, Discourse Analysis, Artificial Intelligence, Architecture, CAD
series CAAD Futures
email
last changed 2003/05/16 20:58

_id acadia21_100
id acadia21_100
authors Ghandi, Mona; Ismail, Mohamed; Blaisdell, Marcus
year 2021
title Parasympathy
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 100-109.
doi https://doi.org/10.52842/conf.acadia.2021.100
summary Parasympathy is an interactive spatial experience operating as an extension of visitors’ minds. By integrating Artificial Intelligence (AI), wearable technologies, affective computing (Picard 1995; Picard 2003), and neuroscience, this project blurs the lines between the physical, digital, and biological spheres and empowers users’ brains to solicit positive changes from their spaces based on their real-time biophysical reactions and emotions.

The objective is to deploy these technologies in support of the wellbeing of the community especially when related to social matters such as inclusion and social justice in our built environment. Consequently, this project places the users’ emotions at the very center of its space by performing real-time responses to the emotional state of the individuals within the space.

series ACADIA
type project
email
last changed 2023/10/22 12:06

_id 980c
authors Gougoudilis, Vasileios
year 1995
title Hyperwalls or an Application of a Non-deterministic Rule-based System in Interactive Architectural Modelling
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 173-179
summary This paper presents the architectural modeling as a process of augmenting spatial information; a chain of actions that leads from a sketched idea to the elaborated model. A symbolic constraint solver tool is connected to traditional CAD techniques, as well as to a data representation scheme efficient for architectural elements. The orchestration of the available and added tools allows the designer to ìedit ideasî fast, keeping in mind that different design profiles require adaptive tools to support the varying methodologies. Until the moment that automated design will be both possible and desirable, machines can really shorten the time needed to visualize design ideas in the sense of a handy but non-decisive ìcalculatorî. The discussion is built around illustrated examples from the implemented constraint based modeler.
keywords Non-Deterministic, Rule-Based System, Architectural Modelling
series CAAD Futures
last changed 1999/08/03 17:16

_id 5ca8
authors Honda, Y., Matsuda, K., Rekimoto, J. and Lea, R.
year 1995
title Virtual society: Extending the WWW to support a multi-user interactive shared 3D environment
source Proceedings of VRML'95, San Diego, CA
summary The main goal of this paper is to propose a global architecture and a set of protocols to realize a multi-user interactive shared 3D environment in a WWW setting and based upon VRML. We call such an environment Virtual Society. This paper also discusses our initial implementation of Virtual Society and some experimental results from its use.
series other
email
last changed 2003/04/23 15:50

_id 5c5f
authors Jepson, W., Liggett, R. and Friedman, S.
year 1995
title An environment for real-time urban visualization
source Proceedings of the Symposium on Interactive 3D Gra hics, Monterey, CA
summary Drawing from technologies developed for military flight simulation and virtual reality, a system for efficiently modeling and simulating urban environments has been implemented at UCLA. This system combines relatively simple 3-dimensional models (from a traditional CAD standpoint) with aerial photographs and street level video to create a realistic (down to plants, street signs and the graffiti on the walls) model of an urban neighborhood which can then be used for interactive fly and walk-through demonstrations.The Urban Simulator project is more than just the simulation software. It is a methodology which integrates existing systems such as CAD and GIS with visual simulation to facilitate the modeling, display, and evaluation of alternative proposed environments. It can be used to visualize neighborhoods as they currently exist and how they might appear after built intervention occurs. Or, the system can be used to simulate entirely new development.
series other
last changed 2003/04/23 15:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 18HOMELOGIN (you are user _anon_303737 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002