CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 341

_id 3b58
authors Morozumi, M., Murakami, Y. and Iki, K.
year 1995
title Network Based Group Work CAD for UNIX Workstation
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 637-646
summary This paper discusses a model of collaborative process of architectural design and a network based group work CAD to support them. In the first part, the authors introduce a prototype system they developed to improve the environment for synchronous (interactive) design communication. Reviewing the process Of students' collaborative work that used the system, the authors point out that the frequent and timely exchange of CAD data with the system could not only stimulate designer's' imagination but accelerate the process of design development.
keywords Collaboration, Groupwork, CAD, Design Process, Network
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 2068
authors Frazer, John
year 1995
title AN EVOLUTIONARY ARCHITECTURE
source London: Architectural Association
summary In "An Evolutionary Architecture", John Frazer presents an overview of his work for the past 30 years. Attempting to develop a theoretical basis for architecture using analogies with nature's processes of evolution and morphogenesis. Frazer's vision of the future of architecture is to construct organic buildings. Thermodynamically open systems which are more environmentally aware and sustainable physically, sociologically and economically. The range of topics which Frazer discusses is a good illustration of the breadth and depth of the evolutionary design problem. Environmental Modelling One of the first topics dealt with is the importance of environmental modelling within the design process. Frazer shows how environmental modelling is often misused or misinterpreted by architects with particular reference to solar modelling. From the discussion given it would seem that simplifications of the environmental models is the prime culprit resulting in misinterpretation and misuse. The simplifications are understandable given the amount of information needed for accurate modelling. By simplifying the model of the environmental conditions the architect is able to make informed judgments within reasonable amounts of time and effort. Unfortunately the simplications result in errors which compound and cause the resulting structures to fall short of their anticipated performance. Frazer obviously believes that the computer can be a great aid in the harnessing of environmental modelling data, providing that the same simplifying assumptions are not made and that better models and interfaces are possible. Physical Modelling Physical modelling has played an important role in Frazer's research. Leading to the construction of several novel machine readable interactive models, ranging from lego-like building blocks to beermat cellular automata and wall partitioning systems. Ultimately this line of research has led to the Universal Constructor and the Universal Interactor. The Universal Constructor The Universal Constructor features on the cover of the book. It consists of a base plug-board, called the "landscape", on top of which "smart" blocks, or cells, can be stacked vertically. The cells are individually identified and can communicate with neighbours above and below. Cells communicate with users through a bank of LEDs displaying the current state of the cell. The whole structure is machine readable and so can be interpreted by a computer. The computer can interpret the states of the cells as either colour or geometrical transformations allowing a wide range of possible interpretations. The user interacts with the computer display through direct manipulation of the cells. The computer can communicate and even direct the actions of the user through feedback with the cells to display various states. The direct manipulation of the cells encourages experimentation by the user and demonstrates basic concepts of the system. The Universal Interactor The Universal Interactor is a whole series of experimental projects investigating novel input and output devices. All of the devices speak a common binary language and so can communicate through a mediating central hub. The result is that input, from say a body-suit, can be used to drive the out of a sound system or vice versa. The Universal Interactor opens up many possibilities for expression when using a CAD system that may at first seem very strange.However, some of these feedback systems may prove superior in the hands of skilled technicians than more standard devices. Imagine how a musician might be able to devise structures by playing melodies which express the character. Of course the interpretation of input in this form poses a difficult problem which will take a great deal of research to achieve. The Universal Interactor has been used to provide environmental feedback to affect the development of evolving genetic codes. The feedback given by the Universal Interactor has been used to guide selection of individuals from a population. Adaptive Computing Frazer completes his introduction to the range of tools used in his research by giving a brief tour of adaptive computing techniques. Covering topics including cellular automata, genetic algorithms, classifier systems and artificial evolution. Cellular Automata As previously mentioned Frazer has done some work using cellular automata in both physical and simulated environments. Frazer discusses how surprisingly complex behaviour can result from the simple local rules executed by cellular automata. Cellular automata are also capable of computation, in fact able to perform any computation possible by a finite state machine. Note that this does not mean that cellular automata are capable of any general computation as this would require the construction of a Turing machine which is beyond the capabilities of a finite state machine. Genetic Algorithms Genetic algorithms were first presented by Holland and since have become a important tool for many researchers in various areas.Originally developed for problem-solving and optimization problems with clearly stated criteria and goals. Frazer fails to mention one of the most important differences between genetic algorithms and other adaptive problem-solving techniques, ie. neural networks. Genetic algorithms have the advantage that criteria can be clearly stated and controlled within the fitness function. The learning by example which neural networks rely upon does not afford this level of control over what is to be learned. Classifier Systems Holland went on to develop genetic algorithms into classifier systems. Classifier systems are more focussed upon the problem of learning appropriate responses to stimuli, than searching for solutions to problems. Classifier systems receive information from the environment and respond according to rules, or classifiers. Successful classifiers are rewarded, creating a reinforcement learning environment. Obviously, the mapping between classifier systems and the cybernetic view of organisms sensing, processing and responding to environmental stimuli is strong. It would seem that a central process similar to a classifier system would be appropriate at the core of an organic building. Learning appropriate responses to environmental conditions over time. Artificial Evolution Artificial evolution traces it's roots back to the Biomorph program which was described by Dawkins in his book "The Blind Watchmaker". Essentially, artificial evolution requires that a user supplements the standard fitness function in genetic algorithms to guide evolution. The user may provide selection pressures which are unquantifiable in a stated problem and thus provide a means for dealing ill-defined criteria. Frazer notes that solving problems with ill-defined criteria using artificial evolution seriously limits the scope of problems that can be tackled. The reliance upon user interaction in artificial evolution reduces the practical size of populations and the duration of evolutionary runs. Coding Schemes Frazer goes on to discuss the encoding of architectural designs and their subsequent evolution. Introducing two major systems, the Reptile system and the Universal State Space Modeller. Blueprint vs. Recipe Frazer points out the inadequacies of using standard "blueprint" design techniques in developing organic structures. Using a "recipe" to describe the process of constructing a building is presented as an alternative. Recipes for construction are discussed with reference to the analogous process description given by DNA to construct an organism. The Reptile System The Reptile System is an ingenious construction set capable of producing a wide range of structures using just two simple components. Frazer saw the advantages of this system for rule-based and evolutionary systems in the compactness of structure descriptions. Compactness was essential for the early computational work when computer memory and storage space was scarce. However, compact representations such as those described form very rugged fitness landscapes which are not well suited to evolutionary search techniques. Structures are created from an initial "seed" or minimal construction, for example a compact spherical structure. The seed is then manipulated using a series of processes or transformations, for example stretching, shearing or bending. The structure would grow according to the transformations applied to it. Obviously, the transformations could be a predetermined sequence of actions which would always yield the same final structure given the same initial seed. Alternatively, the series of transformations applied could be environmentally sensitive resulting in forms which were also sensitive to their location. The idea of taking a geometrical form as a seed and transforming it using a series of processes to create complex structures is similar in many ways to the early work of Latham creating large morphological charts. Latham went on to develop his ideas into the "Mutator" system which he used to create organic artworks. Generalising the Reptile System Frazer has proposed a generalised version of the Reptile System to tackle more realistic building problems. Generating the seed or minimal configuration from design requirements automatically. From this starting point (or set of starting points) solutions could be evolved using artificial evolution. Quantifiable and specific aspects of the design brief define the formal criteria which are used as a standard fitness function. Non-quantifiable criteria, including aesthetic judgments, are evaluated by the user. The proposed system would be able to learn successful strategies for satisfying both formal and user criteria. In doing so the system would become a personalised tool of the designer. A personal assistant which would be able to anticipate aesthetic judgements and other criteria by employing previously successful strategies. Ultimately, this is a similar concept to Negroponte's "Architecture Machine" which he proposed would be computer system so personalised so as to be almost unusable by other people. The Universal State Space Modeller The Universal State Space Modeller is the basis of Frazer's current work. It is a system which can be used to model any structure, hence the universal claim in it's title. The datastructure underlying the modeller is a state space of scaleless logical points, called motes. Motes are arranged in a close-packing sphere arrangement, which makes each one equidistant from it's twelve neighbours. Any point can be broken down into a self-similar tetrahedral structure of logical points. Giving the state space a fractal nature which allows modelling at many different levels at once. Each mote can be thought of as analogous to a cell in a biological organism. Every mote carries a copy of the architectural genetic code in the same way that each cell within a organism carries a copy of it's DNA. The genetic code of a mote is stored as a sequence of binary "morons" which are grouped together into spatial configurations which are interpreted as the state of the mote. The developmental process begins with a seed. The seed develops through cellular duplication according to the rules of the genetic code. In the beginning the seed develops mainly in response to the internal genetic code, but as the development progresses the environment plays a greater role. Cells communicate by passing messages to their immediate twelve neighbours. However, it can send messages directed at remote cells, without knowledge of it's spatial relationship. During the development cells take on specialised functions, including environmental sensors or producers of raw materials. The resulting system is process driven, without presupposing the existence of a construction set to use. The datastructure can be interpreted in many ways to derive various phenotypes. The resulting structure is a by-product of the cellular activity during development and in response to the environment. As such the resulting structures have much in common with living organisms which are also the emergent result or by-product of local cellular activity. Primordial Architectural Soups To conclude, Frazer presents some of the most recent work done, evolving fundamental structures using limited raw materials, an initial seed and massive feedback. Frazer proposes to go further and do away with the need for initial seed and start with a primordial soup of basic architectural concepts. The research is attempting to evolve the starting conditions and evolutionary processes without any preconditions. Is there enough time to evolve a complex system from the basic building blocks which Frazer proposes? The computational complexity of the task being embarked upon is not discussed. There is an implicit assumption that the "superb tactics" of natural selection are enough to cut through the complexity of the task. However, Kauffman has shown how self-organisation plays a major role in the early development of replicating systems which we may call alive. Natural selection requires a solid basis upon which it can act. Is the primordial soup which Frazer proposes of the correct constitution to support self-organisation? Kauffman suggests that one of the most important attributes of a primordial soup to be capable of self-organisation is the need for a complex network of catalysts and the controlling mechanisms to stop the reactions from going supracritical. Can such a network be provided of primitive architectural concepts? What does it mean to have a catalyst in this domain? Conclusion Frazer shows some interesting work both in the areas of evolutionary design and self-organising systems. It is obvious from his work that he sympathizes with the opinions put forward by Kauffman that the order found in living organisms comes from both external evolutionary pressure and internal self-organisation. His final remarks underly this by paraphrasing the words of Kauffman, that life is always to found on the edge of chaos. By the "edge of chaos" Kauffman is referring to the area within the ordered regime of a system close to the "phase transition" to chaotic behaviour. Unfortunately, Frazer does not demonstrate that the systems he has presented have the necessary qualities to derive useful order at the edge of chaos. He does not demonstrate, as Kauffman does repeatedly, that there exists a "phase transition" between ordered and chaotic regimes of his systems. He also does not make any studies of the relationship of useful forms generated by his work to phase transition regions of his systems should they exist. If we are to find an organic architecture, in more than name alone, it is surely to reside close to the phase transition of the construction system of which is it built. Only there, if we are to believe Kauffman, are we to find useful order together with environmentally sensitive and thermodynamically open systems which can approach the utility of living organisms.
series other
type normal paper
last changed 2004/05/22 14:12

_id d7eb
authors Bharwani, Seraj
year 1996
title The MIT Design Studio of the Future: Virtual Design Review Video Program
source Proceedings of ACM CSCW'96 Conference on Computer-Supported Cooperative Work 1996 p.10
summary The MIT Design Studio of the Future is an interdisciplinary effort to focus on geographically distributed electronic design and work group collaboration issues. The physical elements of this virtual studio comprise networked computer and videoconferencing connections among electronic design studios at MIT in Civil and Environmental Engineering, Architecture and Planning, Mechanical Engineering, the Lab for Computer Science, and the Rapid Prototyping Lab, with WAN and other electronic connections to industry partners and sponsors to take advantage of non-local expertise and to introduce real design and construction and manufacturing problems into the equation. This prototype collaborative design network is known as StudioNet. The project is looking at aspects of the design process to determine how advanced technologies impact the process. The first experiment within the electronic studio setting was the "virtual design review", wherein jurors for the final design review were located in geographically distributed sites. The video captures the results of that project, as does a paper recently published in the journal Architectural Research Quarterly (Cambridge, UK; Vol. 1, No. 2; Dec. 1995).
series other
last changed 2002/07/07 16:01

_id 4538
authors Dobson, A., Dokonal, W. and Kosco, I.
year 1995
title World Wide Web Presentation of Collaborative Student Design Work
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 105-110
doi https://doi.org/10.52842/conf.ecaade.1995.105
summary Inspired by presentations made at the last eCAADe conference of collaborative work by students at a number of schools of architecture who were using the Internet as a form of virtual studio, a network for a collaborative design project was set up between the schools of architecture in Bratislava, Graz and Luton. This paper takes the form of a multi-media presentation of the results of this collaborative project, carried out on-line via the World Wide Web site at the University of Technology in Graz. In addition to presenting the design solutions produced during the project, the paper analyses the technical difficulties encountered with file transfers, assesses the participants' experience of using the Internet as a medium for collaboration, evaluates the educational validity of the project and outlines proposals for the future development of collaborative activities by the group.
series eCAADe
email
last changed 2022/06/07 07:55

_id 79fd
authors Jabi, Wassim and Hall, Theodore
year 1995
title The Role of Computers in Synchronous Collaborative Design
source Proceedings of the 14th International Congress on Cybernetics. Namur, Belgium: International Association for Cybernetics, 1995, pp. 71-76
summary In this paper we discuss the role of computers in supporting real-time synchronous design among geographically dispersed team members using the global network of computers known as the Internet. To enable efficient and functional synchronous design activity, we advocate a new generation of design-oriented software that combines collaboration technologies with a meaningful and parsimonious representation scheme. We are particularly interested in supporting the early design phases, wherein many of the most important decisions are made and collaboration is most important. These activities are crucial to the evolution and quality of the final design, and they are receptive to and can benefit from computer support. Furthermore, these are precisely the areas where current CAD systems are weakest. As a general theoretical direction, our emphasis is not on integrated databases, but rather on shared protocols of interaction that are independent of implementation and storage schemes. Our first experimental phase involved the simultaneous development and testing of prototypes for a Synchronous Collaborative Design Environment (SYCODE) on heterogeneous computer systems at two geographically dispersed sites. The applications were developed independently, based on a verbal description of protocols, with minimal sharing of actual source code. Though their user interfaces and implementation details are different, these prototypes allow multiple users to share a virtual design space - both within and between the remote sites - in which to create and manipulate architectural elements.
keywords Computer Supported Collaborative Design, Synchronous Design, Collaboration, Computers, CAD, Internet
series other
email
last changed 2002/03/05 19:53

_id d460
authors Khedro, Taha
year 1995
title AgentCAD for Cooperative Design
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 667-672
summary AgentCAD is a network infrastructure of distributed CAD applications that facilitates the concurrent an cooperative interaction of several designers working together, possibly over several physical locations, on a design project. It provides a set of services and protocols that support the communications of distributed design information captured by CAD drawings, multiple design views, and design changes. It coordinates access to a common and multiple design models as well as the activities of designers based on captured knowledge of designers' tasks, capabilities, and interests, which characterize their behaviors. The idea of AgentCAD represents a departure from the usual way in which CAD applications are used as single-user tools, applied to one view of specific design problems. In describing the AgentCAD environment, we discuss the organization of AgentCAD, its communication model, and the cooperative interaction protocols for designers in the context of a design scenario.
keywords Cooperative Design; Collaborative Design; Distributed Problem Solving; Communications; Coordination
series CAAD Futures
last changed 1999/08/03 17:16

_id cc90
authors Kolarevic, Branko
year 1998
title CAD@HKU
source ACADIA Quarterly, vol. 17, no. 4, pp. 16-17
doi https://doi.org/10.52842/conf.acadia.1998.016
summary Since 1993, we have experimented with Virtual Design Studios (VDS) as an on-going research project that investigates the combination of current computer-aided design (CAD), computer networks (Internet), and computer supported collaborative work (CSCW) techniques to bring together studentsat geographically distributed locations to work in a virtual atelier. In 1993 the theme of the first joint VDS project was in-fill housing for the traditional Chinese walled village of Kat Hing Wai in the New Territories north of Hong Kong, and our partners included MIT and Harvard in Boston (USA), UBC in Vancouver (Canada), and Washington University in St. Louis (USA). In 1994 we were joined by Cornell (USA) and Escola Tecnica Superior d’Arquitectura de Barcelona (Spain) to re-design Li Long housing in Shanghai, and 1995 added the Warsaw Institute of Technology (Poland) for the ACSA/Dupont competition to design a Center for Cultural and Religious Studies in Japan. The 1996 topic was an international competition to design a monument located in Hong Kong to commemorate the return of Hong Kong to Chinese sovereignty in 1997. Communication was via e-mail, the WorldWide Web with limited attempts at VRML, and network video. Several teaching and research experiments conducted through these projects have demonstrated the viability and potential of using electronic, telecommunications, and videoconferencing technologies in collaborative design processes. Results of these VDS have been presented at conferences worldwide, explained in journal papers and published in Virtual Design Studio, edited by J. Wojtowicz, published by HKU Press.
series ACADIA
email
last changed 2022/06/07 07:51

_id 0237
authors Wrona, Stefan
year 1995
title VDS Virtual Design Studio
source CAD Space [Proceedings of the III International Conference Computer in Architectural Design] Bialystock 27-29 April 1995, pp. 227-232
summary The Department of Architecture Warsaw University of Technology was the first in Poland to take part in the third edition of the international student workshop -Virtual Design Studio. This year’s subject is a competition organized by ACSA 2A Center for Cultural and Religious Studies". The design is located on Miyajima Island in the Inland Sea of Japan near Hiroshima. VDS workshops are a proposal to create a new approach to architectural designing - working in joint groups, where the participants are separated by long distances. This idea wouldn't possible without an important tool - the InterNet. The information is sent mainly by E-mail through News Servers made by groups in each country. The News Server works as electronic pinup board where every student can locate his work. The multimedia tool -HyperDoc- permits students to easily and quickly look at other students' work. VDS'95 participants are divided into international groups of 5-7 people, They use almost every method of computer presentation: photorendering, animation, scanned freehand drawings and photos. The basic tool is CAD. Students also use traditional methods of representation like models, sketches, drawings. The Virtual Design Studio is an important experience. It shows a new concept of designing: Computer Mediated Design. The necessary contact between architect and client can be realized by the computer network. The problem of distance is eliminated. Conclusions from VDS activity will permit the creation in the future of a special net of design studios, where all discussions will be accomplished by computer. All over the world the network of Infoways will bring people together.
series plCAD
email
last changed 2003/05/17 10:01

_id bf5f
authors Chen, Xiangping
year 1995
title Representation, Evaluation and Edition of Feature-based and Constraint- based Design
source Purdue University
summary This thesis investigates a general and systematic approach to feature-based and constraint-based design. We combine feature-based design and constraint-based design by globally decomposing a design into a sequence of feature attachments and locally defining and positioning each feature by constraints. Analogous to the concept of high-level programming languages, we formalize a layered design model that eliminates the dependency of a design representation on a solid modeler. With this design model, design intent, such as feature descriptions and constraints, is stored in an unevaluated, modeler-independent design representation while the geometry to which it corresponds is stored in an evaluated, modeler-dependent design representation. The separation essentially relies on a naming and matching schema that converts between a geometric reference and a generic name, and a design compiler that automatically instantiates the unevaluated design representation to an evaluated design representation with respect to a solid modeler. The geometric references for defining feature attributes and constraints are recorded with their generic names in the unevaluated design representation. We propose several techniques for naming geometric entities unambiguously. The design compilation or instantiation involves remapping a generic name back to a geometric reference in the selected geometric modeler, solving constraints and implementing feature operations or attachments. Instead of developing a constraint solver for this design compiler, we use an independent and general solver. Feature attachment operations are different from classical Boolean operations in solid modeling. However, we provide a semantics for them that is based on existing operations in solid modeling. The layered design model allows users to edit archived conceptual designs to derive new designs quickly. We investigate the coordination of later features in the unevaluated and modeler-independent representation when a feature is edited and provide a method for editing feature-based and constraint-based design. We also discuss how to extend this work to a commercial feature-based and constraint-based CAD system.  
series thesis:PhD
last changed 2003/02/12 22:37

_id 27
authors De Gregorio, R., Carmena, S., Morelli, R.D., AvendaÒo, C. and Lioi, C.
year 1998
title La Construccion del Espacio del Poder. Museo de la Casa Rosada (The Construction of the Space of Power. Museum of the "Casa Rosada" (Argentinean Presidential House))
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 212-217
summary The present work is part of the exposition "Francesco Tamburini, La ConstrucciÛn del Espacio del Poder I", exhibited in Rivadavia Cultural Center ( Rosario city), and in Casa Rosada Museum during 1997. The Exposition is based on an investigation program of the space that involves Casa Rosada, determining this space as the first piece of its collection. In 1995, when a group of argentines where visiting the picture gallery Pianetti (Jesi, Italy) there have been found some watercolours of Francesco Tamburini (1846-1890), planner of the main faÁades of the Government and author of many works. These watercolours have great value for architecture, and unknown by public, they have been the starting point of the Exposition. Among these argentines was Roberto De Gregorio architect, historian teacher of this school of architecture, and in charge of the historical investigation. C.I.A.D.'s specific work consists in converting in digital data Casa Rosada's faÁades. The two first stages, already completed, finished on the digital data conversion of facades, in front of Plaza de Mayo and Rivadavia street, with presidential access esplanade. Actually the work is centred on the two facades left and on the elaboration of an electronic model for the edition of a CD-ROM containing the information of the exposition.
series SIGRADI
email
last changed 2016/03/10 09:50

_id 6a3a
authors Ekholm, A., Fridqvist, S. and Af Klercker, J.
year 1995
title BAS.CAAD - Building and User Activity Systems Modelling for Computer-Aided Architectural Design
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 217-230
doi https://doi.org/10.52842/conf.ecaade.1995.217
summary In the early stages of the building design process not only building and site but also user activities and experiences are formed. This paper presents a development programme for CAAD where conceptual models of some fundamental characteristics of building, site and user organisation will be developed and implemented in a prototype CAAD-programme. The models are based both on empirical studies and an ontological Framework which is also used for organising the basic object structure of the prototype CAD program. The architectural design process has several characteristics which a CAAD-programme must support, e.g incremental determination of properties, change of scale and shift of focus. The research investigates how the design object and the user interface can be formed to serve this working method. One important field is to study the usefulness of the user organisation model for the brief and building management stages. The programming work for the prototypes is done with Smalltalk on Macintosh computers. The tests of the prototype includes spatial co-ordination of the three systems.

series eCAADe
email
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_28.htm
last changed 2022/06/07 07:55

_id e716
authors Nickerson, S., Thrale, B. and Whiting, D.
year 1995
title Automating the Drafting for As-Found Recording and Facility Management Surveys
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 315-332
doi https://doi.org/10.52842/conf.acadia.1995.315
summary Much of the time of a facility planner, restoration architect or heritage recorder is spent, on site analysing thebuilding and collecting data and measurements. These will be used later to create the reports and drawings that will provide the basis for the subsequent design but these notes and measurements are just the beginning of the long process of drafting the as-found situation. Errors are inevitable in this type of work but, typically they only come to light, back in the office where confirming a measurement may entail an extra trip to the site, and there are times that they only turn up when a contractor encounters problems on the job A software tool, currently under development, addresses this problem by first helping to structure the note taking process so that more consistent data is collected, and then, automatically creating a 2D or 3D CAD model from the resulting database. This can be done on a laptop computer, before the recording team leaves the site so that the model can be compared with reality and faulty or missing measurements corrected. Furthermore, this combination of database and drawing is linked, allowing queries of the data from inside Autocad or the assembly of a specialized model based on a database query. Point collection techniques supported include traditional and not so traditional) hand measurement, total station surveying equipment and interfaces with other software such as rectification and photogrammetric packages. The applications envisioned include as found recording, facilities management data collection and the possibility of a totally data-driven GIS
series ACADIA
last changed 2022/06/07 07:58

_id c56a
authors Sugishita, S., Kondo, K., Sato, Shimada, H. and Kimura, F.
year 1995
title Interactive Freehand Sketch Interpreter for Geometric Modelling I.16 Pen-Based Interface
source Proceedings of the Sixth International Conference on Human-Computer Interaction 1995 v.I. Human and Future Computing pp. 561-566
summary This paper presents a new method to deal with idea sketches for inputting geometric models at a workstation. The idea sketches are drawn on a CRT screen with a stylus pen and a tablet by designers at an initial stage of design procedures. They can keep their drawing styles at a workstation as the same manner as using a pen on paper. The system 'Sketch Interpreter' can create correct geometric models in a computer even though input idea sketches are incorrect perspectively. Data created are transferred to an advanced 3D-CAD system. The system is applied as a front-end processor for a design practice.
series other
last changed 2002/07/07 16:01

_id 6b82
authors Week, David
year 1995
title The Database Revisited: Beyond the Container Metaphor
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 53-70
doi https://doi.org/10.52842/conf.acadia.1995.053
summary The growth of international networks, and of international trade in general, has increased the opportunities for architects to work together over distance. In our practice at Pacific Architecture, we’ve been using first modems, and now the Internet, to connect co-workers at sites in Australia, Oregon, Scotland, and Papua New Guinea. Design collaboration has been primarily through the e-mail exchange of text and drawings. We’ve also assessed other CMC tools. Products like Timbuktu and video-conferencing software allow for real-time collaboration, based on the metaphor of two (or more) people together at a table, able to see and hear each other, and to work together on the same document. Groupware make intragroup communication the basis for building a workgroup’s knowledgebase. On recent projects, we’ve begun using database software as the basis for collaborative design communication. We’ve taken as a model for data structure Christopher Alexander’s ‘pattern language’ schema. Conversations about the design take the form of a collaborative construction of the language. Inputs into the database are constrained by the ‘pattern’ format. The CAD drawings run in parallel, as an ‘expression’ or ‘instance’ of the language. So far, CAD and database do not have an integrated interface. This paper describes our experience in these projects. It also outlines a set of design criteria for an integrated CAD/database environment economically and incrementally achievable within the constraints of currently available software. Formulating such criteria requires the reconceptualisation of notions of ‘database’. This paper looks at these notions through philosophical and linguistic work on metaphor. In conclusion, the paper analyses the way in which we can use a reframed notion of database to create a useful collaborative communication environment, centred on the architectural drawing.

series ACADIA
last changed 2022/06/07 07:58

_id 8378
authors Arlati, Ezio
year 1995
title Patriarch: A Hypermedia Environment for the Support of Architectural Design
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 187-198
doi https://doi.org/10.52842/conf.ecaade.1995.187
summary This paper reports on current research in the field of architectural design and knowledge- based systems, through the conception and implementation of two software tools operating as a part of an integrated hypermedia environment denominated PatriArch. Main concern of this set of tools operating in PatriArch is the support of design since the very beginning, in that phase of not yet correctly explored or interpretated constraints and of scarcely specified goals, in which an initial solution model - provisionally composed of fragments of supposed fitting ideas - for the design theme has to take place. The creative activity of the designer is assumed as an 'intentional planning activity' that represents the acquired level of knowledge of the network of connections defining the nature, function, shape in the space etc. of the increasingly integrated solution-model: the final design will be an evolution of this - and other competitive and concurrent - models. PatriArch is meant to be the environment containing and allowing the representation of this evolution through its ability of linking the fragments of designers' knowledge, supported by an integrated relational data base: Sysinfo. These works were conceived inside an educational software development program for architecture students.

series eCAADe
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_25.htm
last changed 2022/06/07 07:54

_id a472
authors Caneparo, Luca
year 1995
title Coordinative Virtual Space for Architectural Design
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 739-748
summary The paper explores group coordination in the design process through communicative innovations brought by computers. It is divided into three main sections. The first is the analysis of the design group coordination and communication. The second introduces the concept of Coordinative Virtual Space: this is a common multi-dimensional space where the group members share design information. The third presents the implementation: each member can connect to the shared space through the computer network and display several projections of the design information space.
keywords Collaborative Design, Virtual Workspace, Shared Workspace, Groupware, Design Paradigm
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 1af7
authors Jabi, Wassim M. and Hall, Theodore W.
year 1995
title Beyond the Shared Whiteboard: Issues in Computer Supported Collaborative Design
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 719-725
summary This research focuses on combining the rich representations of computer-aided design systems with current collaboration technologies to support distributed design processes. Our emphasis is not on concurrent multi-user access to integrated databases, but rather on shared protocols of interaction that are independent of implementation and storage schemes. We have developed a prototype for a Synchronous Collaborative Design System (SYCODE) that enables geographically dispersed designers to share common representations even when using different hardware platforms. The limitations of the existing network infrastructure have compelled its to devise a meaningful and parsimonious representation scheme and to semantically define pending and confirmed actions.
keywords Computer Supported Co-operative Work, Collaborative Design, Multi-User Synchronous CAAD, Shared Workspace, Shared Protocols of interaction
series CAAD Futures
email
last changed 2002/02/20 22:01

_id cf2011_p024
id cf2011_p024
authors Tidafi, Temy; Charbonneau Nathalie, Khalili-Araghi Salman
year 2011
title Backtracking Decisions within a Design Process: a Way of Enhancing the Designer's Thought Process and Creativity
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 573-587.
summary This paper proposes a way computer sciences could contribute to stimulate the designer’s reflexive thought. We explore the possibility of making use of backtracking devices in order to formalize the designer’s thought process. Design, as a process of creating an object, cannot be represented by means of a linear timeline. Accordingly, the backtracking processes we are discussing here are not based on a linear model but rather on a non-linear structure. Beyond the notion of undoing and redoing commands within CAD packages, the backtracking process is seen as a way to explore and record several alternate options. The branches of the non-linear model can be seen as pathways made of sequential decisions. The designer creates and explores these pathways while making tentative moves towards an architectural solution. Within the design process, backtracking enables the designer to establish and act on a network of interrelated decisions. This notion is fundamental. It is quite obvious that information, in order to be meaningful, must occupy a specific place within an informational network. A data, separated from its context, is devoid of interest. By the same token, a decision takes on significance solely in combination with other decisions. In this paper, we examine what kinds of decisions are involved within a design process, how they are connected, and what could be the best ways to formalize the relationships. Our goal is to experiment ways that could enable the designer and his/her collaborators to get a clearer mental picture of the network of decisions aforementioned. The non-linear model can be seen as a graph structure. The user moves wherever he/she wants through the branches of the structure to establish the network of decisions or to get reacquainted with a previous design process. As a matter of fact, it can act in both ways: to reassess or to confirm a decision. On the one hand, the designer can go back to previous states, reconsider past choices, and eventually modify them. On the other hand, he/she can move forward and revisit a given sequence of decisions, so as to recapture the essence of a previous design process. It goes without saying that knowledge regarding the design process is constructed by the designer from his/her own experiences. Since the designer’s perception evolves as time goes by, the network of decisions constitutes a model that is continuously questioned and restructured. The designer does not elaborate solely an architectural object, but also an evolving model formalizing the way he/she achieved his/her aim. As Le Moigne (1995) pointed out, the model itself produces knowledge; afterwards, the designer can examine it so as to get a clearer mental picture of his/her own cognitive processes. Furthermore, it can be used by his/her collaborators in order to understand which thread of ideas led the designer to a given visual result, and eventually resume or reorient the design process. In addition to reflecting on the ideological implications inherent to this questioning, we take into account the feasibility of such a research project. From a more technical point of view, in this paper we will describe how we plane to take up the challenge of elaborating a digital environment enabling backtracking processes within graph structures. Furthermore, we will explain how we plane to test the first trial version of the new environment with potential users so as to observe how they respond to it. These experiments will be conducted in order to verify to what extend the methods we are proposing are able to i) enhance the designer’s creativity and ii) increase our understanding of designer’s thought process.
keywords backtracking, design process, digital environments, problem space, network of decisions, graph structure.
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2006_621
id caadria2006_621
authors YU-LU LIU
year 2006
title THE MORE PHYSICAL NETWORK SPACE: A preliminary experiment in VR-Cave
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 621-623
doi https://doi.org/10.52842/conf.caadria.2006.x.o6l
summary For now, the written word is still the most efficient communication method in network space (Anders, 1998). When designing a network space, it is necessary to let users know the concept of the space. Some researchers imitated physical space and brought a similar spatial experience into network space. The design of network space may be based on existing space in the real world. The rules of construction in physical space and network space are the same (Donath, 1997; Dyson, 1998). Consequently, the best way to explore network space is to imitate physical space (Mitchell, 1995, 1999a).
series CAADRIA
email
last changed 2022/06/07 07:50

_id c078
authors Allegra, M, Fulantelli, G. and Mangiarotti, G.
year 1995
title A New Methodology to Develop Hypermedia Systems for Architecture History
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 43-52
doi https://doi.org/10.52842/conf.ecaade.1995.043
summary This paper illustrates a research project concerning the analysis of architectural works through a comparative study based on hypermedia tools; by exploring the hypermedia, users can find the main subjects relative to the "method " of architectural planning. The use of multimedia in architecture allows the integration in a single system of different types of information which are necessary for the description of a work. texts, designs, photos and sounds. In addition, the hypertext information structure allows the direct intervention on analyzed projects, by pointing out the more important themes and their relationships. Users have the opportunity to immerse themselves in hypermedia and choose the subject to navigate through on each occasion. Our research project aims at developing a prototype concerning two architects. I.L.Kahn and F.L. Wright. The development methodology is based on the key role played by the components of architectonic works, thus allowing users to compare them in a simple and correct way. The methodology used in this work can be extended to other architects or periods, by simply changing the possibility of navigation, i.e. by changing the reading keys.

series eCAADe
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_6.htm
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 17HOMELOGIN (you are user _anon_29404 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002