CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 379

_id 8991
authors Danahy, John and Hoinkes, Rodney
year 1995
title Polytrim: Collaborative Setting for Environmental Design
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 647-658
summary This paper begins with a review of the structuring values and questions the Centre for Landscape Research (CLR) is interested in answering with its testbed software system Polytrim (and its derivatives; CLRview, CLRpaint, CLRmosaic available via anonymous ftp over the internet). The mid section of the paper serves as a guide to Polytrim's structure and implementation issues. Some of the most enduring and significant principles learned from Polytrim's use over the last six years of use in research, teaching and professional practice are introduced. The paper will end with an overview of characteristics that we believe our next generation of software should achieve. The CLR's digital library on the World-Wide Web provides an extensive Set of illustrations and detailed descriptions of the ideas and figures presented in this paper. Endnotes provide specific internet addresses for those that wish to read, see or use the system.
keywords Dialogue, Interaction, Collaboration, Integration, Setting
series CAAD Futures
email
last changed 2003/05/16 20:58

_id d7eb
authors Bharwani, Seraj
year 1996
title The MIT Design Studio of the Future: Virtual Design Review Video Program
source Proceedings of ACM CSCW'96 Conference on Computer-Supported Cooperative Work 1996 p.10
summary The MIT Design Studio of the Future is an interdisciplinary effort to focus on geographically distributed electronic design and work group collaboration issues. The physical elements of this virtual studio comprise networked computer and videoconferencing connections among electronic design studios at MIT in Civil and Environmental Engineering, Architecture and Planning, Mechanical Engineering, the Lab for Computer Science, and the Rapid Prototyping Lab, with WAN and other electronic connections to industry partners and sponsors to take advantage of non-local expertise and to introduce real design and construction and manufacturing problems into the equation. This prototype collaborative design network is known as StudioNet. The project is looking at aspects of the design process to determine how advanced technologies impact the process. The first experiment within the electronic studio setting was the "virtual design review", wherein jurors for the final design review were located in geographically distributed sites. The video captures the results of that project, as does a paper recently published in the journal Architectural Research Quarterly (Cambridge, UK; Vol. 1, No. 2; Dec. 1995).
series other
last changed 2002/07/07 16:01

_id a472
authors Caneparo, Luca
year 1995
title Coordinative Virtual Space for Architectural Design
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 739-748
summary The paper explores group coordination in the design process through communicative innovations brought by computers. It is divided into three main sections. The first is the analysis of the design group coordination and communication. The second introduces the concept of Coordinative Virtual Space: this is a common multi-dimensional space where the group members share design information. The third presents the implementation: each member can connect to the shared space through the computer network and display several projections of the design information space.
keywords Collaborative Design, Virtual Workspace, Shared Workspace, Groupware, Design Paradigm
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2012/12/04 07:53

_id maver_075
id maver_075
authors Chen, Y.Z. and Maver, T.W.
year 1995
title Some Experiments on Implementing Collaborative Building Design Environments
source Building Simulation 95 Conference (Ed: J Mitchell et al) Madison, USA
summary A collaborative building design environment has been proposed to integrate together both the heterogeneous applications and the dispersed project participants. Based on the functional requirements identified, the conventional building product models have been extended to incorporate high-level concepts such as activity and organisation, which are essential for coordination, and a generic human- human interaction model has been developed, which could not only make the building domain models interaction-aware, but also serve as a base model for developing general interaction utilities. Collaborative design environment prototyping has been described, covering the common project workspace, general interaction utilities and multiuser interfaces. Three distribution schemes for implementing the common project workspace within a distributed environment have also been discussed.
series other
type normal paper
email
last changed 2015/02/20 14:46

_id 8425
authors Chiu, Mao-Lin
year 1995
title Collaborative Design in CAAD Studios: Shared Ideas, Resources, and Representations
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 749-759
summary This paper is to discuss the shared experiences among two institutions learned from the collaborative design project with a three-stage structured design process. The collaborative methodology is developed for participants in the studios to learn how to utilize shared ideas, resources, and representations. Design communication and interaction is taken place through internet in the asynchronous mode. The shift from conventional design studios to collaborative design studios requires several changes, including the tools, the communication media, the remote reflections, and more importantly, the design process, the team organization, and the networked design culture.
keywords Collaborative Design, Computer-Aided Architectural Design, Computer Supported Collaborative Work, Shared Representations
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 1ffd
authors Dave, Bharat
year 1995
title Towards Distributed Computer-Aided Design Environments
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 659-666
summary Computing in architectural design has followed a number of different visions, hopes and research agendas. One of the dominant themes in design Computing seeks to support various activities of 'individual' designers acting within a 'personal' design realm. Parallel to this is another theme which seeks to blend computing aids into normal working environments of groups of designers. The recent interest in and resurgence of collaborative design tools are steps towards what we view as an emerging theme in design computing, namely distributed design environments. This paper describes experiments in collaborative design using computers, and their observations are used to suggest future directions for integrating computing and design in distributed environments.
keywords Design Computing, Collaborative Work, Distributed Processing, Design Services, Design Products
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 4538
authors Dobson, A., Dokonal, W. and Kosco, I.
year 1995
title World Wide Web Presentation of Collaborative Student Design Work
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 105-110
doi https://doi.org/10.52842/conf.ecaade.1995.105
summary Inspired by presentations made at the last eCAADe conference of collaborative work by students at a number of schools of architecture who were using the Internet as a form of virtual studio, a network for a collaborative design project was set up between the schools of architecture in Bratislava, Graz and Luton. This paper takes the form of a multi-media presentation of the results of this collaborative project, carried out on-line via the World Wide Web site at the University of Technology in Graz. In addition to presenting the design solutions produced during the project, the paper analyses the technical difficulties encountered with file transfers, assesses the participants' experience of using the Internet as a medium for collaboration, evaluates the educational validity of the project and outlines proposals for the future development of collaborative activities by the group.
series eCAADe
email
last changed 2022/06/07 07:55

_id maver_090
id maver_090
authors Harrison C., Grant, M., Granat, M., Maver, T. and Conway, B.
year 2000
title Development of a Wheelchair Virtual
source 3rd International Conference on Disability, VR and Associated Technologies, Sardinia, (Ed. P Sharkey) ICDVRAT2000, 1-8
summary In the UK the Disability Discrimination Act 1995 aims to end discrimination against disabled people. Importantly the Act gives the disabled community new employment and access rights. Central to these rights will be an obligation for employers and organisations to provide premises which do not disadvantage disabled people. Many disabled people rely on wheelchairs for mobility. However, many buildings do not provide conditions suited to wheelchair users. This project aims to provide instrumentation allowing wheelchair navigation within virtual buildings. The provision of such instrumentation assists architects in identifying the needs of wheelchair users at the design stage. Central to this project is the need to provide a platform which can accommodate a range of wheelchair types, that will map intended wheelchair motion into a virtual world and that has the capacity to provide feedback to the user reflecting changes in floor surface characteristics and slope. The project represents a collaborative effort between architects, bioengineers and user groups and will be comprised of stages related to platform design, construction, interfacing, testing and user evaluation.
series other
email
last changed 2003/09/03 15:01

_id 51fd
authors Harrison, Steve and Minneman, Scott
year 1995
title Studying Collaborative Design to Build Design Tools
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 687-697
summary This paper outlines the way in which studying designers at work on real problems can inform the development of new computer aided architectural design systems. From a number of studies of designers in various domains, supporting the communications of designers is re-conceptualized into one of transmitting and storing process ephemera, rather than normalizing representations. After characterizing process ephemera, an example from one of the studies is described in detail. The paper concludes with implications for the design of collaborative CAAD systems.
keywords Collaboration, Design Communications, Telepresence, Media Space, Process Ephemera, Virtual Design Studio
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 79fd
authors Jabi, Wassim and Hall, Theodore
year 1995
title The Role of Computers in Synchronous Collaborative Design
source Proceedings of the 14th International Congress on Cybernetics. Namur, Belgium: International Association for Cybernetics, 1995, pp. 71-76
summary In this paper we discuss the role of computers in supporting real-time synchronous design among geographically dispersed team members using the global network of computers known as the Internet. To enable efficient and functional synchronous design activity, we advocate a new generation of design-oriented software that combines collaboration technologies with a meaningful and parsimonious representation scheme. We are particularly interested in supporting the early design phases, wherein many of the most important decisions are made and collaboration is most important. These activities are crucial to the evolution and quality of the final design, and they are receptive to and can benefit from computer support. Furthermore, these are precisely the areas where current CAD systems are weakest. As a general theoretical direction, our emphasis is not on integrated databases, but rather on shared protocols of interaction that are independent of implementation and storage schemes. Our first experimental phase involved the simultaneous development and testing of prototypes for a Synchronous Collaborative Design Environment (SYCODE) on heterogeneous computer systems at two geographically dispersed sites. The applications were developed independently, based on a verbal description of protocols, with minimal sharing of actual source code. Though their user interfaces and implementation details are different, these prototypes allow multiple users to share a virtual design space - both within and between the remote sites - in which to create and manipulate architectural elements.
keywords Computer Supported Collaborative Design, Synchronous Design, Collaboration, Computers, CAD, Internet
series other
email
last changed 2002/03/05 19:53

_id 1af7
authors Jabi, Wassim M. and Hall, Theodore W.
year 1995
title Beyond the Shared Whiteboard: Issues in Computer Supported Collaborative Design
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 719-725
summary This research focuses on combining the rich representations of computer-aided design systems with current collaboration technologies to support distributed design processes. Our emphasis is not on concurrent multi-user access to integrated databases, but rather on shared protocols of interaction that are independent of implementation and storage schemes. We have developed a prototype for a Synchronous Collaborative Design System (SYCODE) that enables geographically dispersed designers to share common representations even when using different hardware platforms. The limitations of the existing network infrastructure have compelled its to devise a meaningful and parsimonious representation scheme and to semantically define pending and confirmed actions.
keywords Computer Supported Co-operative Work, Collaborative Design, Multi-User Synchronous CAAD, Shared Workspace, Shared Protocols of interaction
series CAAD Futures
email
last changed 2002/02/20 22:01

_id d460
authors Khedro, Taha
year 1995
title AgentCAD for Cooperative Design
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 667-672
summary AgentCAD is a network infrastructure of distributed CAD applications that facilitates the concurrent an cooperative interaction of several designers working together, possibly over several physical locations, on a design project. It provides a set of services and protocols that support the communications of distributed design information captured by CAD drawings, multiple design views, and design changes. It coordinates access to a common and multiple design models as well as the activities of designers based on captured knowledge of designers' tasks, capabilities, and interests, which characterize their behaviors. The idea of AgentCAD represents a departure from the usual way in which CAD applications are used as single-user tools, applied to one view of specific design problems. In describing the AgentCAD environment, we discuss the organization of AgentCAD, its communication model, and the cooperative interaction protocols for designers in the context of a design scenario.
keywords Cooperative Design; Collaborative Design; Distributed Problem Solving; Communications; Coordination
series CAAD Futures
last changed 1999/08/03 17:16

_id a4f6
authors Kimura, T., Komatsu, K. and Watanabe, H.
year 1995
title Spatial Configuration Data Model For InterApplicational Collaborative Design
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 761-770
summary In this paper, a new design method is proposed which will enable the designer to predict and control the flow of pedestrians acting inside the designed building. Watanabe laboratory has been working on human behavioral research, and referring to the results of these studies, the authors pointing out the requirements for a tool supporting the new design method. Later on, a data model and a loosely integrated system intended to match the needs will be proposed.
keywords Human Behavior, Design Method, Design Process, Integrated CAD System
series CAAD Futures
last changed 1999/08/03 17:16

_id cc90
authors Kolarevic, Branko
year 1998
title CAD@HKU
source ACADIA Quarterly, vol. 17, no. 4, pp. 16-17
doi https://doi.org/10.52842/conf.acadia.1998.016
summary Since 1993, we have experimented with Virtual Design Studios (VDS) as an on-going research project that investigates the combination of current computer-aided design (CAD), computer networks (Internet), and computer supported collaborative work (CSCW) techniques to bring together studentsat geographically distributed locations to work in a virtual atelier. In 1993 the theme of the first joint VDS project was in-fill housing for the traditional Chinese walled village of Kat Hing Wai in the New Territories north of Hong Kong, and our partners included MIT and Harvard in Boston (USA), UBC in Vancouver (Canada), and Washington University in St. Louis (USA). In 1994 we were joined by Cornell (USA) and Escola Tecnica Superior d’Arquitectura de Barcelona (Spain) to re-design Li Long housing in Shanghai, and 1995 added the Warsaw Institute of Technology (Poland) for the ACSA/Dupont competition to design a Center for Cultural and Religious Studies in Japan. The 1996 topic was an international competition to design a monument located in Hong Kong to commemorate the return of Hong Kong to Chinese sovereignty in 1997. Communication was via e-mail, the WorldWide Web with limited attempts at VRML, and network video. Several teaching and research experiments conducted through these projects have demonstrated the viability and potential of using electronic, telecommunications, and videoconferencing technologies in collaborative design processes. Results of these VDS have been presented at conferences worldwide, explained in journal papers and published in Virtual Design Studio, edited by J. Wojtowicz, published by HKU Press.
series ACADIA
email
last changed 2022/06/07 07:51

_id 2e3b
authors Kvan, Thomas and Kvan, Erik
year 1997
title Is Design Really Social
source Creative Collaboration in Virtual Communities 1997, ed. A. Cicognani. VC'97. Sydney: Key Centre of Design Computing, Department of Architectural and Design Science, University of Sydney, 8 p.
summary There are many who will readily agree with Mitchell’s assertion that “the most interesting new directions (for computer-aided design) are suggested by the growing convergence of computation and telecommunication. This allows us to treat designing not just as a technical process... but also as a social process.” [Mitchell 1995]. The assumption is that design was a social process until users of computer-aided design systems were distracted into treating it as a merely technical process. Most readers will assume that this convergence must and will lead to increased communication between design participants; that better social interaction leads to be better design. The unspoken assumption appears to be that putting the participants into an environment with maximal communication channels will result in design collaboration. The tools provided; therefore; must permit the best communication and the best social interaction. We think it essential to examine the foundations and assumptions on which software and environments are designed to support collaborative design communication. Of particular interest to us in this paper is the assumption about the “social” nature of design. Early research in computer-assisted design collaborations has jumped immediately into conclusions about communicative models which lead to high-bandwidth video connections as the preferred channel of collaboration. The unstated assumption is that computer-supported design environments are not adequate until they replicate in full the sensation of being physically present in the same space as the other participants (you are not there until you are really there). It is assumed that the real social process of design must include all the signals used to establish and facilitate face-to-face communication; including gestures; body language and all outputs of drawing (e.g. Tang [1991]). In our specification of systems for virtual design communities; are we about to fall into the same traps as drafting systems did?
keywords CSCW; Virtual Community; Architectural Design; Computer-Aided Design
series other
email
last changed 2002/11/15 18:29

_id ab9c
authors Kvan, Thomas and Kvan, Erik
year 1999
title Is Design Really Social
source International Journal of Virtual Reality, 4:1
summary There are many who will readily agree with Mitchell's assertion that "the most interesting new directions (for computer-aided design) are suggested by the growing convergence of computation and telecommunication. This allows us to treat designing not just as a technical process... but also as a social process." [Mitchell 1995]. The assumption is that design was a social process until users of computer-aided design systems were distracted into treating it as a merely technical process. Most readers will assume that this convergence must and will lead to increased communication between design participants, that better social interaction leads to be better design. The unspoken assumption appears to be that putting the participants into an environment with maximal communication channels will result in design collaboration. The tools provided, therefore, must permit the best communication and the best social interaction. We see a danger here, a pattern being repeated which may lead us into less than useful activities. As with several (popular) architectural design or modelling systems already available, however, computer system implementations all too often are poor imitations manual systems. For example, few in the field will argue with the statement that the storage of data in layers in a computer-aided drafting system is an dispensable approach. Layers derive from manual overlay drafting technology [Stitt 1984] which was regarded as an advanced (manual) production concept at the time many software engineers were specifying CAD software designs. Early implementations of CAD systems (such as RUCAPS, GDS, Computervision) avoided such data organisation, the software engineers recognising that object-based structures are more flexible, permitting greater control of data editing and display. Layer-based systems, however, are easier to implement in software, more familiar to the user and hence easier to explain, initially easier to use but more limiting for an experienced and thoughtful user, leading in the end to a lesser quality in resultant drawings and significant problems in output control (see Richens [1990], pp. 31-40 for a detailed analysis of such features and constraints). Here then we see the design for architectural software faithfully but inappropriately following manual methods. So too is there a danger of assuming that the best social interaction is that done face-to-face, therefore all collaborative design communications environments must mimic face-to-face.
series journal paper
email
last changed 2003/05/15 10:29

_id 19b3
authors Kvan, Thomas
year 1995
title Fruitful Exchanges: Professional Implications for Computer-mediated Design
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 771-776
summary The paper reviews experiences in using computer tools for collaborative design projects in the light of the lessons learned from implementing CAD systems in practice.
keywords Computer-Aided Design, Professional Practice, Computer-Mediated Design
series CAAD Futures
email
last changed 2003/05/16 20:58

_id ccbd
authors Martens, Bob and Dokonal, Wolfgang
year 1997
title Collaborative Teamwork GRAWI '97: The Third Attempt to "Internet-Design"
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.n2o
summary The abbreviation GraWi is made up of the combination of first letters of the Austrian university sites of GRAz and WIen (Vienna) and stands for the follow-up model of BraGraLuWi having involved also the universities of BRAtislava and LUton in 1996. A joint project-design had already been carried out in 1995 (BraGraLu). The present contribution is aimed at assessing the project.
keywords Collaborative Teamwork, Internet Design
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/martens/index.htm
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 18HOMELOGIN (you are user _anon_358013 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002