CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 384

_id 8a8a
authors Akin, Ö., Sen, R., Donia,M. and Zhang, Y.
year 1995
title SEED-Pro: Computer-Assisted Architectural Programming in SEED
source Journal of Architectural Engineering -- December 1995 -- Volume 1, Issue 4, pp. 153-161
summary Computer-assisted architectural programming is in its infancy. What there is in terms of architectural programming theory often differs from practice. In the first half of this paper we define relevant terms, provide abrief review of the state of the art, and draw attention to the primacy of architectural programming in design. SEED-Pro is introduced as an intelligent assistant providing structure to the normally open-endedactivities of design. This includes the creation of an architectural program from scratch. In the second, more technical, part of the paper we emphasize three specific topics. The design problem specificationfunctionality is described. The generation and evaluation of the emerging architectural program is discussed. An approach to the decomposition of the architectural program into alternative hierarchies is provided.The paper concludes with a discussion of what is and remains to be accomplished.
series journal paper
email
last changed 2003/05/15 21:27

_id d6d8
authors Flemming, Ulrich and Woodbury, Robert
year 1995
title Software Environment to Support Early Phases in Building Design (SEED): Overview
source Journal of Architectural Engineering -- December 1995 -- Volume 1, Issue 4, pp. 147-152
summary This paper describes the overall goals of SEED, the approach taken by its developers to achieve these goals, and the subprojects that comprise the entire project. SEED aims at providing computational support forthe early design phase in all aspects that can benefit from such support. It addresses specifically architectural programming, schematic layout design, and the generation of a fully three-dimensional configuration ofphysical building components like structure and enclosure. These tasks are handled by three individual modules, SEED-Pro, SEED-Layout, and SEED-Config. A standards processor is under development tosupport standards and code checking in any module, as is an object database to store and retrieve different design versions, alternatives, and past designs that can be reused and adapted in different contexts(case-based design). Usability issues, especially the interfaces to the modules, receive special attention. Subsequent papers elaborate on these efforts in greater detail. The present paper provides an overview of theentire project and introduces shared concepts presumed known in subsequent papers.
series journal paper
email
last changed 2003/05/15 21:45

_id cbe2
authors Fenves, S., Rivard, H., Gomez, N. and Chiou S.
year 1995
title Conceptual Structural Design in SEED
source Journal of Architectural Engineering -- December 1995 -- Volume 1, Issue 4, pp. 179-186
summary Although there are many computer-based tools for analyzing structures whose geometry, topology, and member properties have already been determined, there are very few general-purpose tools to assiststructural designers in synthesizing structural configurations to be subsequently sized, analyzed, and detailed. The comceptual-structural-design submodule of the Software Environment to Support the EarlyPhases in Building Design (SEED-Config) is intended to fill this void. The process starts with a geometric model of the building's massing, a set of functional requirements to be satisfied, and a toolkit oftechnologies capable of generating potential structural system and subsystem alternatives. Structural alternatives can be rapidly generated under designer control to the level of detail desired and evaluated against arange of criteria. Provisions are made to store design cases as well as to retrieve and adapt these to meet new requirements.
series journal paper
last changed 2003/05/15 21:45

_id 2068
authors Frazer, John
year 1995
title AN EVOLUTIONARY ARCHITECTURE
source London: Architectural Association
summary In "An Evolutionary Architecture", John Frazer presents an overview of his work for the past 30 years. Attempting to develop a theoretical basis for architecture using analogies with nature's processes of evolution and morphogenesis. Frazer's vision of the future of architecture is to construct organic buildings. Thermodynamically open systems which are more environmentally aware and sustainable physically, sociologically and economically. The range of topics which Frazer discusses is a good illustration of the breadth and depth of the evolutionary design problem. Environmental Modelling One of the first topics dealt with is the importance of environmental modelling within the design process. Frazer shows how environmental modelling is often misused or misinterpreted by architects with particular reference to solar modelling. From the discussion given it would seem that simplifications of the environmental models is the prime culprit resulting in misinterpretation and misuse. The simplifications are understandable given the amount of information needed for accurate modelling. By simplifying the model of the environmental conditions the architect is able to make informed judgments within reasonable amounts of time and effort. Unfortunately the simplications result in errors which compound and cause the resulting structures to fall short of their anticipated performance. Frazer obviously believes that the computer can be a great aid in the harnessing of environmental modelling data, providing that the same simplifying assumptions are not made and that better models and interfaces are possible. Physical Modelling Physical modelling has played an important role in Frazer's research. Leading to the construction of several novel machine readable interactive models, ranging from lego-like building blocks to beermat cellular automata and wall partitioning systems. Ultimately this line of research has led to the Universal Constructor and the Universal Interactor. The Universal Constructor The Universal Constructor features on the cover of the book. It consists of a base plug-board, called the "landscape", on top of which "smart" blocks, or cells, can be stacked vertically. The cells are individually identified and can communicate with neighbours above and below. Cells communicate with users through a bank of LEDs displaying the current state of the cell. The whole structure is machine readable and so can be interpreted by a computer. The computer can interpret the states of the cells as either colour or geometrical transformations allowing a wide range of possible interpretations. The user interacts with the computer display through direct manipulation of the cells. The computer can communicate and even direct the actions of the user through feedback with the cells to display various states. The direct manipulation of the cells encourages experimentation by the user and demonstrates basic concepts of the system. The Universal Interactor The Universal Interactor is a whole series of experimental projects investigating novel input and output devices. All of the devices speak a common binary language and so can communicate through a mediating central hub. The result is that input, from say a body-suit, can be used to drive the out of a sound system or vice versa. The Universal Interactor opens up many possibilities for expression when using a CAD system that may at first seem very strange.However, some of these feedback systems may prove superior in the hands of skilled technicians than more standard devices. Imagine how a musician might be able to devise structures by playing melodies which express the character. Of course the interpretation of input in this form poses a difficult problem which will take a great deal of research to achieve. The Universal Interactor has been used to provide environmental feedback to affect the development of evolving genetic codes. The feedback given by the Universal Interactor has been used to guide selection of individuals from a population. Adaptive Computing Frazer completes his introduction to the range of tools used in his research by giving a brief tour of adaptive computing techniques. Covering topics including cellular automata, genetic algorithms, classifier systems and artificial evolution. Cellular Automata As previously mentioned Frazer has done some work using cellular automata in both physical and simulated environments. Frazer discusses how surprisingly complex behaviour can result from the simple local rules executed by cellular automata. Cellular automata are also capable of computation, in fact able to perform any computation possible by a finite state machine. Note that this does not mean that cellular automata are capable of any general computation as this would require the construction of a Turing machine which is beyond the capabilities of a finite state machine. Genetic Algorithms Genetic algorithms were first presented by Holland and since have become a important tool for many researchers in various areas.Originally developed for problem-solving and optimization problems with clearly stated criteria and goals. Frazer fails to mention one of the most important differences between genetic algorithms and other adaptive problem-solving techniques, ie. neural networks. Genetic algorithms have the advantage that criteria can be clearly stated and controlled within the fitness function. The learning by example which neural networks rely upon does not afford this level of control over what is to be learned. Classifier Systems Holland went on to develop genetic algorithms into classifier systems. Classifier systems are more focussed upon the problem of learning appropriate responses to stimuli, than searching for solutions to problems. Classifier systems receive information from the environment and respond according to rules, or classifiers. Successful classifiers are rewarded, creating a reinforcement learning environment. Obviously, the mapping between classifier systems and the cybernetic view of organisms sensing, processing and responding to environmental stimuli is strong. It would seem that a central process similar to a classifier system would be appropriate at the core of an organic building. Learning appropriate responses to environmental conditions over time. Artificial Evolution Artificial evolution traces it's roots back to the Biomorph program which was described by Dawkins in his book "The Blind Watchmaker". Essentially, artificial evolution requires that a user supplements the standard fitness function in genetic algorithms to guide evolution. The user may provide selection pressures which are unquantifiable in a stated problem and thus provide a means for dealing ill-defined criteria. Frazer notes that solving problems with ill-defined criteria using artificial evolution seriously limits the scope of problems that can be tackled. The reliance upon user interaction in artificial evolution reduces the practical size of populations and the duration of evolutionary runs. Coding Schemes Frazer goes on to discuss the encoding of architectural designs and their subsequent evolution. Introducing two major systems, the Reptile system and the Universal State Space Modeller. Blueprint vs. Recipe Frazer points out the inadequacies of using standard "blueprint" design techniques in developing organic structures. Using a "recipe" to describe the process of constructing a building is presented as an alternative. Recipes for construction are discussed with reference to the analogous process description given by DNA to construct an organism. The Reptile System The Reptile System is an ingenious construction set capable of producing a wide range of structures using just two simple components. Frazer saw the advantages of this system for rule-based and evolutionary systems in the compactness of structure descriptions. Compactness was essential for the early computational work when computer memory and storage space was scarce. However, compact representations such as those described form very rugged fitness landscapes which are not well suited to evolutionary search techniques. Structures are created from an initial "seed" or minimal construction, for example a compact spherical structure. The seed is then manipulated using a series of processes or transformations, for example stretching, shearing or bending. The structure would grow according to the transformations applied to it. Obviously, the transformations could be a predetermined sequence of actions which would always yield the same final structure given the same initial seed. Alternatively, the series of transformations applied could be environmentally sensitive resulting in forms which were also sensitive to their location. The idea of taking a geometrical form as a seed and transforming it using a series of processes to create complex structures is similar in many ways to the early work of Latham creating large morphological charts. Latham went on to develop his ideas into the "Mutator" system which he used to create organic artworks. Generalising the Reptile System Frazer has proposed a generalised version of the Reptile System to tackle more realistic building problems. Generating the seed or minimal configuration from design requirements automatically. From this starting point (or set of starting points) solutions could be evolved using artificial evolution. Quantifiable and specific aspects of the design brief define the formal criteria which are used as a standard fitness function. Non-quantifiable criteria, including aesthetic judgments, are evaluated by the user. The proposed system would be able to learn successful strategies for satisfying both formal and user criteria. In doing so the system would become a personalised tool of the designer. A personal assistant which would be able to anticipate aesthetic judgements and other criteria by employing previously successful strategies. Ultimately, this is a similar concept to Negroponte's "Architecture Machine" which he proposed would be computer system so personalised so as to be almost unusable by other people. The Universal State Space Modeller The Universal State Space Modeller is the basis of Frazer's current work. It is a system which can be used to model any structure, hence the universal claim in it's title. The datastructure underlying the modeller is a state space of scaleless logical points, called motes. Motes are arranged in a close-packing sphere arrangement, which makes each one equidistant from it's twelve neighbours. Any point can be broken down into a self-similar tetrahedral structure of logical points. Giving the state space a fractal nature which allows modelling at many different levels at once. Each mote can be thought of as analogous to a cell in a biological organism. Every mote carries a copy of the architectural genetic code in the same way that each cell within a organism carries a copy of it's DNA. The genetic code of a mote is stored as a sequence of binary "morons" which are grouped together into spatial configurations which are interpreted as the state of the mote. The developmental process begins with a seed. The seed develops through cellular duplication according to the rules of the genetic code. In the beginning the seed develops mainly in response to the internal genetic code, but as the development progresses the environment plays a greater role. Cells communicate by passing messages to their immediate twelve neighbours. However, it can send messages directed at remote cells, without knowledge of it's spatial relationship. During the development cells take on specialised functions, including environmental sensors or producers of raw materials. The resulting system is process driven, without presupposing the existence of a construction set to use. The datastructure can be interpreted in many ways to derive various phenotypes. The resulting structure is a by-product of the cellular activity during development and in response to the environment. As such the resulting structures have much in common with living organisms which are also the emergent result or by-product of local cellular activity. Primordial Architectural Soups To conclude, Frazer presents some of the most recent work done, evolving fundamental structures using limited raw materials, an initial seed and massive feedback. Frazer proposes to go further and do away with the need for initial seed and start with a primordial soup of basic architectural concepts. The research is attempting to evolve the starting conditions and evolutionary processes without any preconditions. Is there enough time to evolve a complex system from the basic building blocks which Frazer proposes? The computational complexity of the task being embarked upon is not discussed. There is an implicit assumption that the "superb tactics" of natural selection are enough to cut through the complexity of the task. However, Kauffman has shown how self-organisation plays a major role in the early development of replicating systems which we may call alive. Natural selection requires a solid basis upon which it can act. Is the primordial soup which Frazer proposes of the correct constitution to support self-organisation? Kauffman suggests that one of the most important attributes of a primordial soup to be capable of self-organisation is the need for a complex network of catalysts and the controlling mechanisms to stop the reactions from going supracritical. Can such a network be provided of primitive architectural concepts? What does it mean to have a catalyst in this domain? Conclusion Frazer shows some interesting work both in the areas of evolutionary design and self-organising systems. It is obvious from his work that he sympathizes with the opinions put forward by Kauffman that the order found in living organisms comes from both external evolutionary pressure and internal self-organisation. His final remarks underly this by paraphrasing the words of Kauffman, that life is always to found on the edge of chaos. By the "edge of chaos" Kauffman is referring to the area within the ordered regime of a system close to the "phase transition" to chaotic behaviour. Unfortunately, Frazer does not demonstrate that the systems he has presented have the necessary qualities to derive useful order at the edge of chaos. He does not demonstrate, as Kauffman does repeatedly, that there exists a "phase transition" between ordered and chaotic regimes of his systems. He also does not make any studies of the relationship of useful forms generated by his work to phase transition regions of his systems should they exist. If we are to find an organic architecture, in more than name alone, it is surely to reside close to the phase transition of the construction system of which is it built. Only there, if we are to believe Kauffman, are we to find useful order together with environmentally sensitive and thermodynamically open systems which can approach the utility of living organisms.
series other
type normal paper
last changed 2004/05/22 14:12

_id 4688
authors Woodbury, Robert and Chang, Teng-Wen
year 1995
title Building Enclosures using SEED-Config
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 49-54
summary We describe enclosure design for SEED-Config using an example from "Architectural Details for Insulated Buildings" (Brand 90). We develop enclosures for insulated buildings in terms of the functional units that specify them, the technologies that implement them and the design units that describe them. Brand gives details in eight series (A-H); in each series he describes a specific detailing system. We base our exposition on series A to E: these share the property of the wall fitting partially under the roof and floor slabs. In series F and G the wall stands clear of the slabs and this would require a different approach to detailing from a very high level. Series H is a compendium of special cases that we do not discuss here at all. We conclude with a discussion of what our enclosure design example implies for the representation and computational engine of SEED-Config. We chose insulated enclosures as our example for a specific reason: Brandís treatment of them is proximate to the fundamental approach we take in SEED. Brand wrote in clear, rule-like terms that progress from the abstract to the specific. He explicitly links each part of every detail to the function it fulfills.
keywords Generative Systems, Building Enclosures, CAD, SEED, Representation, Search
series CAAD Futures
email
last changed 2003/05/16 20:58

_id d637
authors Flemming, Ulrich and Sheng-Fen , Chien
year 1995
title Schematic Layout Design in SEED Environment
source Journal of Architectural Engineering -- December 1995 -- Volume 1, Issue 4, pp. 162-169
summary This paper describes SEED-Layout, a module of SEED that supports the generation of schematic layouts of the functional units specified in an architectural program. SEED-Layout provides capabilities that allowdesigners to generate and evaluate rapidly different layout alternatives and versions; to explore the trade-offs involved; and to engage generally in an iterative, highly explorative design process. The resulting"design space" is complex, and the paper describes current efforts to provide designers with intelligent "navigation" aids that encourage them to explore interesting portions of this space without "getting lost."The paper concludes with a brief description of the current implementation and directions for future work.
series journal paper
email
last changed 2003/05/15 21:45

_id e75d
authors Achten, H., Dijkstra, J., Oxman, R. and Bax, Th.
year 1995
title Knowledge-Based Systems Programming for Knowledge Intensive Teaching
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 139-148
doi https://doi.org/10.52842/conf.ecaade.1995.139
summary Typological design implies extensive knowledge of building types in order to design a building belonging to a building type. It facilitates the design process, which can be considered us a sequence of decisions. The paper gives an outline of a new approach in a course teaching typological knowledge through the medium of Knowledge-Based Systems programming. It demonstrates how Knowledge-Based Systems offer an appropriate structure for analysing the knowledge required to implement typological design. The class consists of third-year undergraduate students with no extensive previous programming experience. The implementation language is AutoLISP which operates in the AutoCAD environment. The building type used in the course is the office building. in order to become acquainted with both building type and programming in AutoLISP, information and instructions have been gathered and prestructured, including a worked out analysis and AutoLISP code. Office plans are generated through use of the Knowledge-Based System. They are encoded in the form of frames. At the end of the course the students will have learned the basics of Knowledge-Based Systems, have been introduced to programming these systems, have analysed and reflected upon the design process, and gained insight into a specific building type.
series eCAADe
email
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_18.htm
last changed 2022/06/07 07:54

_id 47ae
authors Comair, Claude and Kaga, Atsuko
year 1995
title Open Design Environment (ODE): Global Design Studio, Experiments in 3D City Simulation
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 113-124
summary This paper depicts the evolution of the research done at the Sasada Laboratory (Osaka University) in the fields of Architectural and Urban related Computer Simulations. This research led to the birth of what we call the "Open Development Environment" (ODE). ODE is presented in this paper through a simple example. In this example, four teams cooperate to produce the database for a simple twin tower complex. The database is kept very simple and the protocol of communication among the different teams is a new computer language called VU (Vee-You). VU was conceived and developed by Claude Comair for the specific purpose of defining architectural and urban objects.
keywords Computer Assisted Design, Computer Languages, Computer Generated Databases, Computer Graphics, Three-Dimensional Computer Simulation
series CAAD Futures
email
last changed 2003/05/16 20:58

_id a84e
authors De Grassi, Mario and Giretti, Alberto
year 1995
title Applying Formal Methods to Multimedia Design Aid
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 283-296
doi https://doi.org/10.52842/conf.ecaade.1995.283
summary In the last decade we assisted at an evolution of computer aided design systems from drafting, calculation and simulation utilities toward systems able to support the conceptual phase of the design process. Systems supporting conceptual design use knowledge about the design domain and assume a will defined model of the design activity. Their computational framework is usually built by means of a set of representational schemata which lack a formal semantics. This aspect causes a limitation on the applicability of their computational framework to different domains. In this paper we propose a formal knowledge representation language, that has been defined in order to represent the structural relationships of domain knowledge. On the basis of language structure we propose a number of inferences tailored to case-based conceptual design aiding. Finally we apply the representational framework to the implementation of a computational architecture for conceptual design aiding that integrates multimedia representation of design cases with symbolic information processing. The architecture combines a knowledge representation server and a multimedia server. The knowledge representation server processes both domain knowledge and design experiences according to the Case Based Reasoning paradigm. The multimedia server produces the required case representation.

series eCAADe
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_34.htm
last changed 2022/06/07 07:55

_id 6a3a
authors Ekholm, A., Fridqvist, S. and Af Klercker, J.
year 1995
title BAS.CAAD - Building and User Activity Systems Modelling for Computer-Aided Architectural Design
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 217-230
doi https://doi.org/10.52842/conf.ecaade.1995.217
summary In the early stages of the building design process not only building and site but also user activities and experiences are formed. This paper presents a development programme for CAAD where conceptual models of some fundamental characteristics of building, site and user organisation will be developed and implemented in a prototype CAAD-programme. The models are based both on empirical studies and an ontological Framework which is also used for organising the basic object structure of the prototype CAD program. The architectural design process has several characteristics which a CAAD-programme must support, e.g incremental determination of properties, change of scale and shift of focus. The research investigates how the design object and the user interface can be formed to serve this working method. One important field is to study the usefulness of the user organisation model for the brief and building management stages. The programming work for the prototypes is done with Smalltalk on Macintosh computers. The tests of the prototype includes spatial co-ordination of the three systems.

series eCAADe
email
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_28.htm
last changed 2022/06/07 07:55

_id 0128
authors Engeli, M., Kurmann, D. and Schmitt, G.
year 1995
title A New Design Studio: Intelligent Objects and Personal Agents
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 155-170
doi https://doi.org/10.52842/conf.acadia.1995.155
summary As design processes and products are constantly increasing in complexity, new tools are being developed for the designer to cope with the growing demands. In this paper we describe our research towards a design environment, within which different aspects of design can be combined, elaborated and controlled. New hardware equipment will be combined with recent developments in graphics and artificial intelligence programming to develop appropriate computer based tools and find possible new design techniques. The core of the new design studio comprises intelligent objects in a virtual reality environment that exhibit different behaviours drawn from Artificial Intelligence (AI) and Artificial Life (AL) principles, a part already realised in a tool called 'Sculptor'. The tasks of the architect will focus on preferencing and initiating good tendencies in the development of the design. A first set of software agents, assistants that support the architect in viewing, experiencing and judging the design has also been conceptualised for this virtual design environment. The goal is to create an optimised environment for the designer, where the complexity of the design task can be reduced thanks to the support made available from the machine.
keywords Architectural Design, Design Process, Virtual Reality, Artificial Intelligence, Personal Agents
series ACADIA
email
last changed 2022/06/07 07:55

_id ae06
authors Grant, Michael and Paterson, Inga
year 1995
title Multimedia - A Multi Purpose Programming Environment
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 183-186
doi https://doi.org/10.52842/conf.ecaade.1995.183
summary In the few short years since the emergence of multimedia programming tools this activity has moved from the periphery of the Information Technologies to the mainstream of computing applications. This is due not only to the progressive development in hardware and software technologies but also to the escalating set of desires of authors and users of multimedia products. Perhaps the most interesting theme within this strand of development is in the progression of the capabilities of the scripting and programming capabilities now on offer. The purpose of this paper is to trace the development of this aspect and speculate on the future of multimedia authoring tools as a new generation programming environment where the distinction between multimedia and CAD becomes less well defined.
series eCAADe
email
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_24.htm
last changed 2022/06/07 07:51

_id 2e3b
authors Kvan, Thomas and Kvan, Erik
year 1997
title Is Design Really Social
source Creative Collaboration in Virtual Communities 1997, ed. A. Cicognani. VC'97. Sydney: Key Centre of Design Computing, Department of Architectural and Design Science, University of Sydney, 8 p.
summary There are many who will readily agree with Mitchell’s assertion that “the most interesting new directions (for computer-aided design) are suggested by the growing convergence of computation and telecommunication. This allows us to treat designing not just as a technical process... but also as a social process.” [Mitchell 1995]. The assumption is that design was a social process until users of computer-aided design systems were distracted into treating it as a merely technical process. Most readers will assume that this convergence must and will lead to increased communication between design participants; that better social interaction leads to be better design. The unspoken assumption appears to be that putting the participants into an environment with maximal communication channels will result in design collaboration. The tools provided; therefore; must permit the best communication and the best social interaction. We think it essential to examine the foundations and assumptions on which software and environments are designed to support collaborative design communication. Of particular interest to us in this paper is the assumption about the “social” nature of design. Early research in computer-assisted design collaborations has jumped immediately into conclusions about communicative models which lead to high-bandwidth video connections as the preferred channel of collaboration. The unstated assumption is that computer-supported design environments are not adequate until they replicate in full the sensation of being physically present in the same space as the other participants (you are not there until you are really there). It is assumed that the real social process of design must include all the signals used to establish and facilitate face-to-face communication; including gestures; body language and all outputs of drawing (e.g. Tang [1991]). In our specification of systems for virtual design communities; are we about to fall into the same traps as drafting systems did?
keywords CSCW; Virtual Community; Architectural Design; Computer-Aided Design
series other
email
last changed 2002/11/15 18:29

_id 23fc
authors Martens, B., Voigt, A., Schmidinger, E. and Linzer, H.
year 1995
title The Effective Use of Multimedia and Telematics in Planning and Design
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 75-82
doi https://doi.org/10.52842/conf.ecaade.1995.075
summary Provided multimedia is regarded as the connection of various media for achieving specific goals, the objectives are to he defined very precisely. In architecture, urban and regional planning any confrontation with information in terms of graphics predominantly tends to be represented by visual communication. Thus complex spatial accounts of the facts calling for universally understood representations are conveyed. Despite the fact that presentations have so far mostly appeared as "mixed media" in computer-assisted spatial planning the initial fascination has somewhat faded away. This contribution is to issue concrete working experience with (inter-) national videoconferences via Internet and distributed modelling. Finally, definite solution approaches for the integration of video-conferencing in a simulation- and computer-assisted planning process utilizing multimedia are demonstrated.
series eCAADe
email
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_10.htm
last changed 2022/06/07 07:59

_id 8402
authors Martens, Bob (Ed.)
year 1995
title The Future of Endoscopy
source [Proceedings of the 2nd European Architectural Endoscopy Association Conference / ISBN 3-85437-114-4] Vienna (Austria), 30 August - 1 September 1995, 144p.
summary The first EAEA-Conference took place at Tampere University of Technology (Finland, 1993) serving as an meeting point for specialists of endoscopy in architecture and displayed an approach to the potentials of endoscopy. The Vienna Conference in 1995 continued this direction and tried furthermore to serve as a platform for non-advanced users. EAEA '95 Vienna aimed at a critical investigation of today's endoscopic culture. The Aspern-Workshop represented the highlight of this conference. Prior to the conference nine universities had submitted endoscopic and computer-assisted space simulations for this urban expansion area north of the Vienna Danube. The outcome was not to be regarded as a “noble competition” between the various institutions participating, but rather to sound out the actual potential of various simulation techniques and their combinations for future use. The conference proceedings contain the papers presented at the meeting by 23 experts from 15 universities. The papers cover such areas as the technical features of endoscopy and environmental simulation, theories supporting the use of endoscopy, practical applications, and discussions on the future of endoscopy and environmental simulation in comparison with other means of architectural representation.
keywords Architectural Endoscopy
series EAEA
email
more http://info.tuwien.ac.at/eaea/
last changed 2005/09/09 10:43

_id 0892
authors Mortola, E., Fortuzzi A., and Mirabelli, P.
year 1995
title Communications Project of Designing with Multimedia Interactive Tools
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 361-374
doi https://doi.org/10.52842/conf.ecaade.1995.361
summary We at a new step of software where the development of applications is done not using instructions, but composing applications. The software object oriented which allows the integration between applications is the solution for the designer to produce the own software. It is possible to use integrated applications with a limited knowledge of algorithms and programming languages. That allows the not specialized users to use specialized multimedia tools. The consequences of this opportunity can result very important not only for the designer but above all the actors involved in the decision making process. It is hard to evaluate the social weight of hypertexts and hypermedia in the field of social participation to the decision making. However their efficiency in the communication problem it is clear. We can preview that in the next future the use of hypermedia will be more extensive in the field of decision making, which involve public interests. Some hypertext developed in the CAAD Laboratory of the Third University are briefly described.

series eCAADe
email
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_44.htm
last changed 2022/06/07 07:58

_id ff2e
authors Paoluzzi, Alberto and Pascucci, Valerio and Sansoni, Claudio
year 1995
title Prototype Shape Modeling with a Design Language
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 59-75
summary A programming approach to the rapid prototyping of architectural design is discussed in this paper. This is done with particular reference to the early steps of design development, where a number of preliminary design alternatives should be generated and evaluated. At this purpose we show that the generation of the 3D shape of each design alternative can be automated starting from the 2D layout of plans, sections and elevations. Each such geometric object can be symbolically defined with few lines of code using design variables and constraint operators. The 3D models generated by evaluation of program scripts may then be used as input to standard engineering evaluation methods concerning costs, heat exchanges and structural behaviour.
series CAAD Futures
last changed 1999/08/03 17:16

_id 6cb2
authors Af Klercker, Jonas
year 1995
title Architects Early Sketching on Computer Using Multimedia
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 247-256
doi https://doi.org/10.52842/conf.ecaade.1995.247
summary This paper presents a development work which aims at practical applications of ideas built on experiences in practise and education and the theoretical development in the BAS.CAAD project. The important difference between BAS.CAAD and CAD programs of today is the possibility to handle user organisation, building design and site in the same program. This means that design today has to be done in at least 3 separate programs with different ways of defining objects. It is then a computer technical problem to mix and study the relations between objects of separate origin. In a recent project our method to overcome this difficulty in CAAD computing was using a Multimedia program making visual simulations to analyse consequences of form etc. As the process went on and forms where more concrete it was possible to make simulations worth showing and discussing to involve colleagues, clients and users.

series eCAADe
email
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_51.htm
last changed 2022/06/07 07:54

_id 0c8e
authors Ager, Mark Thomas and Sinclair, Brian R.
year 1995
title StereoCAD: Three Dimensional Representation
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 343-355
summary Concepts of stereoscopic vision have been around for more than two thousand years. Despite this long history, its application to the field to architecture and design seems relatively unexplored. Synthesis of two technologies, the stereoscope and the computer, was the focus of the present study. The goal of the research was to determine if computer-generated stereoscopic pairs hold value for architectural design. Using readily available computer technology (Apple Macintosh) the research team modelled and rendered an existing project to verify the degree of correlation between the physical construct, the computer 3D model and resultant correlation between the physical construct, the computer 3D model and resultant rendered stereo-paired representation. The experiments performed in this study have shown that producing stereo-paired images that highly correlate to reality is possible using technology that is readily available in the marketplace. Both the technology required to produce (i.e., personal computer and modelling/rendering software) and view (i.e., modified stereoscope) the images is unimposing. Both devices can easily fit in a studio or a boardroom and together can be utilized effectively to permit designers, clients and end-users to experience proposed spaces and projects. Furthermore, these technologies are familiar (clients and end-users have already experienced them in other applications and settings) and assume a fraction of the cost of more dynamic, immersive virtual reality systems. Working from this base, limitations of the process as well as future applications of computer-generated stereoscopic images are identified.
keywords Stereovision, Representation, Computers, Architects, Design
series CAAD Futures
last changed 2003/11/21 15:15

_id c078
authors Allegra, M, Fulantelli, G. and Mangiarotti, G.
year 1995
title A New Methodology to Develop Hypermedia Systems for Architecture History
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 43-52
doi https://doi.org/10.52842/conf.ecaade.1995.043
summary This paper illustrates a research project concerning the analysis of architectural works through a comparative study based on hypermedia tools; by exploring the hypermedia, users can find the main subjects relative to the "method " of architectural planning. The use of multimedia in architecture allows the integration in a single system of different types of information which are necessary for the description of a work. texts, designs, photos and sounds. In addition, the hypertext information structure allows the direct intervention on analyzed projects, by pointing out the more important themes and their relationships. Users have the opportunity to immerse themselves in hypermedia and choose the subject to navigate through on each occasion. Our research project aims at developing a prototype concerning two architects. I.L.Kahn and F.L. Wright. The development methodology is based on the key role played by the components of architectonic works, thus allowing users to compare them in a simple and correct way. The methodology used in this work can be extended to other architects or periods, by simply changing the possibility of navigation, i.e. by changing the reading keys.

series eCAADe
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_6.htm
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 19HOMELOGIN (you are user _anon_198090 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002