CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 376

_id 913a
authors Brutzman, D.P., Macedonia, M.R. and Zyda, M.J.
year 1995
title Internetwork Infrastructure Requirements for Virtual Environments
source NIl 2000 Forum of the Computer Science and Telecommunications Board, National Research Council, Washington, D.C., May 1995
summary Virtual environments (VEs) are a broad multidisciplinary research area that includes all aspects of computer science, virtual reality, virtual worlds, teleoperation and telepresence. A variety of network elements are required to scale up virtual environments to arbitrarily large sizes, simultaneously connecting thousands of interacting players and all kinds of information objects. Four key communications components for virtual environments are found within the Internet Protocol (IP) suite: light-weight messages, network pointers, heavy-weight objects and real-time streams. Software and hardware shortfalls and successes for internetworked virtual environments provide specific research conclusions and recommendations. Since large-scale networked are intended to include all possible types of content and interaction, they are expected to enable new classes of interdisciplinary research and sophisticated applications that are particularly suitable for implementation using the Virtual Reality Modeling Language (VRML).
series other
last changed 2003/04/23 15:50

_id ae9f
authors Damer, B.
year 1996
title Inhabited Virtual Worlds: A New Frontier for Interaction Design
source Interactions, Vol.3, No.5 ACM
summary In April of 1995 the Internet took a step into the third dimension with the introduction of the Virtual Reality Modeling Language (VRML) as a commercial standard. Another event that month caused fewer headlines but in retrospect was just as significant. A small company from San Francisco, Worlds Incorporated, launched WorldsChat, a three dimensional environment allowing any Internet user to don a digital costume, or avatar, and travel about and converse with other people inhabiting the space. WorldsChat was appropriately modeled on a space station complete with a central hub, hallways, sliding doors, windows, and escalators to outlying pods.
series journal paper
last changed 2003/04/23 15:50

_id 2068
authors Frazer, John
year 1995
title AN EVOLUTIONARY ARCHITECTURE
source London: Architectural Association
summary In "An Evolutionary Architecture", John Frazer presents an overview of his work for the past 30 years. Attempting to develop a theoretical basis for architecture using analogies with nature's processes of evolution and morphogenesis. Frazer's vision of the future of architecture is to construct organic buildings. Thermodynamically open systems which are more environmentally aware and sustainable physically, sociologically and economically. The range of topics which Frazer discusses is a good illustration of the breadth and depth of the evolutionary design problem. Environmental Modelling One of the first topics dealt with is the importance of environmental modelling within the design process. Frazer shows how environmental modelling is often misused or misinterpreted by architects with particular reference to solar modelling. From the discussion given it would seem that simplifications of the environmental models is the prime culprit resulting in misinterpretation and misuse. The simplifications are understandable given the amount of information needed for accurate modelling. By simplifying the model of the environmental conditions the architect is able to make informed judgments within reasonable amounts of time and effort. Unfortunately the simplications result in errors which compound and cause the resulting structures to fall short of their anticipated performance. Frazer obviously believes that the computer can be a great aid in the harnessing of environmental modelling data, providing that the same simplifying assumptions are not made and that better models and interfaces are possible. Physical Modelling Physical modelling has played an important role in Frazer's research. Leading to the construction of several novel machine readable interactive models, ranging from lego-like building blocks to beermat cellular automata and wall partitioning systems. Ultimately this line of research has led to the Universal Constructor and the Universal Interactor. The Universal Constructor The Universal Constructor features on the cover of the book. It consists of a base plug-board, called the "landscape", on top of which "smart" blocks, or cells, can be stacked vertically. The cells are individually identified and can communicate with neighbours above and below. Cells communicate with users through a bank of LEDs displaying the current state of the cell. The whole structure is machine readable and so can be interpreted by a computer. The computer can interpret the states of the cells as either colour or geometrical transformations allowing a wide range of possible interpretations. The user interacts with the computer display through direct manipulation of the cells. The computer can communicate and even direct the actions of the user through feedback with the cells to display various states. The direct manipulation of the cells encourages experimentation by the user and demonstrates basic concepts of the system. The Universal Interactor The Universal Interactor is a whole series of experimental projects investigating novel input and output devices. All of the devices speak a common binary language and so can communicate through a mediating central hub. The result is that input, from say a body-suit, can be used to drive the out of a sound system or vice versa. The Universal Interactor opens up many possibilities for expression when using a CAD system that may at first seem very strange.However, some of these feedback systems may prove superior in the hands of skilled technicians than more standard devices. Imagine how a musician might be able to devise structures by playing melodies which express the character. Of course the interpretation of input in this form poses a difficult problem which will take a great deal of research to achieve. The Universal Interactor has been used to provide environmental feedback to affect the development of evolving genetic codes. The feedback given by the Universal Interactor has been used to guide selection of individuals from a population. Adaptive Computing Frazer completes his introduction to the range of tools used in his research by giving a brief tour of adaptive computing techniques. Covering topics including cellular automata, genetic algorithms, classifier systems and artificial evolution. Cellular Automata As previously mentioned Frazer has done some work using cellular automata in both physical and simulated environments. Frazer discusses how surprisingly complex behaviour can result from the simple local rules executed by cellular automata. Cellular automata are also capable of computation, in fact able to perform any computation possible by a finite state machine. Note that this does not mean that cellular automata are capable of any general computation as this would require the construction of a Turing machine which is beyond the capabilities of a finite state machine. Genetic Algorithms Genetic algorithms were first presented by Holland and since have become a important tool for many researchers in various areas.Originally developed for problem-solving and optimization problems with clearly stated criteria and goals. Frazer fails to mention one of the most important differences between genetic algorithms and other adaptive problem-solving techniques, ie. neural networks. Genetic algorithms have the advantage that criteria can be clearly stated and controlled within the fitness function. The learning by example which neural networks rely upon does not afford this level of control over what is to be learned. Classifier Systems Holland went on to develop genetic algorithms into classifier systems. Classifier systems are more focussed upon the problem of learning appropriate responses to stimuli, than searching for solutions to problems. Classifier systems receive information from the environment and respond according to rules, or classifiers. Successful classifiers are rewarded, creating a reinforcement learning environment. Obviously, the mapping between classifier systems and the cybernetic view of organisms sensing, processing and responding to environmental stimuli is strong. It would seem that a central process similar to a classifier system would be appropriate at the core of an organic building. Learning appropriate responses to environmental conditions over time. Artificial Evolution Artificial evolution traces it's roots back to the Biomorph program which was described by Dawkins in his book "The Blind Watchmaker". Essentially, artificial evolution requires that a user supplements the standard fitness function in genetic algorithms to guide evolution. The user may provide selection pressures which are unquantifiable in a stated problem and thus provide a means for dealing ill-defined criteria. Frazer notes that solving problems with ill-defined criteria using artificial evolution seriously limits the scope of problems that can be tackled. The reliance upon user interaction in artificial evolution reduces the practical size of populations and the duration of evolutionary runs. Coding Schemes Frazer goes on to discuss the encoding of architectural designs and their subsequent evolution. Introducing two major systems, the Reptile system and the Universal State Space Modeller. Blueprint vs. Recipe Frazer points out the inadequacies of using standard "blueprint" design techniques in developing organic structures. Using a "recipe" to describe the process of constructing a building is presented as an alternative. Recipes for construction are discussed with reference to the analogous process description given by DNA to construct an organism. The Reptile System The Reptile System is an ingenious construction set capable of producing a wide range of structures using just two simple components. Frazer saw the advantages of this system for rule-based and evolutionary systems in the compactness of structure descriptions. Compactness was essential for the early computational work when computer memory and storage space was scarce. However, compact representations such as those described form very rugged fitness landscapes which are not well suited to evolutionary search techniques. Structures are created from an initial "seed" or minimal construction, for example a compact spherical structure. The seed is then manipulated using a series of processes or transformations, for example stretching, shearing or bending. The structure would grow according to the transformations applied to it. Obviously, the transformations could be a predetermined sequence of actions which would always yield the same final structure given the same initial seed. Alternatively, the series of transformations applied could be environmentally sensitive resulting in forms which were also sensitive to their location. The idea of taking a geometrical form as a seed and transforming it using a series of processes to create complex structures is similar in many ways to the early work of Latham creating large morphological charts. Latham went on to develop his ideas into the "Mutator" system which he used to create organic artworks. Generalising the Reptile System Frazer has proposed a generalised version of the Reptile System to tackle more realistic building problems. Generating the seed or minimal configuration from design requirements automatically. From this starting point (or set of starting points) solutions could be evolved using artificial evolution. Quantifiable and specific aspects of the design brief define the formal criteria which are used as a standard fitness function. Non-quantifiable criteria, including aesthetic judgments, are evaluated by the user. The proposed system would be able to learn successful strategies for satisfying both formal and user criteria. In doing so the system would become a personalised tool of the designer. A personal assistant which would be able to anticipate aesthetic judgements and other criteria by employing previously successful strategies. Ultimately, this is a similar concept to Negroponte's "Architecture Machine" which he proposed would be computer system so personalised so as to be almost unusable by other people. The Universal State Space Modeller The Universal State Space Modeller is the basis of Frazer's current work. It is a system which can be used to model any structure, hence the universal claim in it's title. The datastructure underlying the modeller is a state space of scaleless logical points, called motes. Motes are arranged in a close-packing sphere arrangement, which makes each one equidistant from it's twelve neighbours. Any point can be broken down into a self-similar tetrahedral structure of logical points. Giving the state space a fractal nature which allows modelling at many different levels at once. Each mote can be thought of as analogous to a cell in a biological organism. Every mote carries a copy of the architectural genetic code in the same way that each cell within a organism carries a copy of it's DNA. The genetic code of a mote is stored as a sequence of binary "morons" which are grouped together into spatial configurations which are interpreted as the state of the mote. The developmental process begins with a seed. The seed develops through cellular duplication according to the rules of the genetic code. In the beginning the seed develops mainly in response to the internal genetic code, but as the development progresses the environment plays a greater role. Cells communicate by passing messages to their immediate twelve neighbours. However, it can send messages directed at remote cells, without knowledge of it's spatial relationship. During the development cells take on specialised functions, including environmental sensors or producers of raw materials. The resulting system is process driven, without presupposing the existence of a construction set to use. The datastructure can be interpreted in many ways to derive various phenotypes. The resulting structure is a by-product of the cellular activity during development and in response to the environment. As such the resulting structures have much in common with living organisms which are also the emergent result or by-product of local cellular activity. Primordial Architectural Soups To conclude, Frazer presents some of the most recent work done, evolving fundamental structures using limited raw materials, an initial seed and massive feedback. Frazer proposes to go further and do away with the need for initial seed and start with a primordial soup of basic architectural concepts. The research is attempting to evolve the starting conditions and evolutionary processes without any preconditions. Is there enough time to evolve a complex system from the basic building blocks which Frazer proposes? The computational complexity of the task being embarked upon is not discussed. There is an implicit assumption that the "superb tactics" of natural selection are enough to cut through the complexity of the task. However, Kauffman has shown how self-organisation plays a major role in the early development of replicating systems which we may call alive. Natural selection requires a solid basis upon which it can act. Is the primordial soup which Frazer proposes of the correct constitution to support self-organisation? Kauffman suggests that one of the most important attributes of a primordial soup to be capable of self-organisation is the need for a complex network of catalysts and the controlling mechanisms to stop the reactions from going supracritical. Can such a network be provided of primitive architectural concepts? What does it mean to have a catalyst in this domain? Conclusion Frazer shows some interesting work both in the areas of evolutionary design and self-organising systems. It is obvious from his work that he sympathizes with the opinions put forward by Kauffman that the order found in living organisms comes from both external evolutionary pressure and internal self-organisation. His final remarks underly this by paraphrasing the words of Kauffman, that life is always to found on the edge of chaos. By the "edge of chaos" Kauffman is referring to the area within the ordered regime of a system close to the "phase transition" to chaotic behaviour. Unfortunately, Frazer does not demonstrate that the systems he has presented have the necessary qualities to derive useful order at the edge of chaos. He does not demonstrate, as Kauffman does repeatedly, that there exists a "phase transition" between ordered and chaotic regimes of his systems. He also does not make any studies of the relationship of useful forms generated by his work to phase transition regions of his systems should they exist. If we are to find an organic architecture, in more than name alone, it is surely to reside close to the phase transition of the construction system of which is it built. Only there, if we are to believe Kauffman, are we to find useful order together with environmentally sensitive and thermodynamically open systems which can approach the utility of living organisms.
series other
type normal paper
last changed 2004/05/22 14:12

_id 06e1
authors Keul, Alexander
year 1996
title LOST IN SPACE? ARCHITECTURAL PSYCHOLOGY - PAST, PRESENT, FUTURE
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary A methodological review by Kaminski (1995) summed up five perspectives in environmental psychology - patterns of spatial distribution, everyday “jigsaw puzzles”, functional everyday action systems, sociocultural change and evolution of competence. Architectural psychology (named so at the Strathclyde conference 1969; Canter, 1973) as psychology of built environments is one leg of environmental psychology, the second one being psychology of environmental protection. Architectural psychology has come of age and passed its 25th birthday. Thus, a triangulation of its position, especially in Central Europe, seems interesting and necessary. A recent survey mainly on university projects in German-speaking countries (Kruse & Trimpin, 1995) found a marked decrease of studies in psychology of built environments. 1994, 25% of all projects were reported in this category, which in 1975 had made up 40% (Kruse, 1975). Guenther, in an unpublished survey of BDP (association of professional German psychologists) members, encountered only a handful active in architectural psychology - mostly part-time, not full-time. 1996, Austria has two full-time university specialists. The discrepancy between the general interest displayed by planners and a still low institutionalization is noticeable.

How is the research situation? Using several standard research data banks, the author collected articles and book(chapter)s on architectural psychology in German- and English-language countries from 1990 to 1996. Studies on main architecture-psychology interface problems such as user needs, housing quality evaluations, participatory planning and spatial simulation / virtual reality did not outline an “old, settled” discipline, but rather the sketchy, random surface of a field “always starting anew”. E.g., discussions at the 1995 EAEA-Conference showed that several architectural simulation studies since 1973 caused no major impact on planner's opinions (Keul&Martens, 1996). “Re-inventions of the wheel” are caused by a lack of meetings (except this one!) and of interdisciplinary infrastructure in German-language countries (contrary to Sweden or the United States). Social pressures building up on architecture nowadays by inter-European competition, budget cuts and citizen activities for informed consent in most urban projects are a new challenge for planners to cooperate efficiently with social scientists. At Salzburg, the author currently manages the Corporate Design-process for the Chamber of Architecture, Division for Upper Austria and Salzburg. A “working group for architectural psychology” (Keul-Martens-Maderthaner) has been active since 1994.

keywords Model Simulation, Real Environments
series EAEA
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2005/09/09 10:43

_id e655
authors Paoluzzi, A., Pascucci, V. and Vicentino, M.
year 1995
title Geometric programming: A programming approach to geometric design
source ACM Transactions on Graphics
summary This article presents a functional programming approach to geometric design with embedded polyhedral complexes. Its main goals are to show the expressive power of the language as well as its usefulness for geometric design. The language, named PLASM (the Programming LAnguage for Solid Modeling), introduces a very high level approach to "constructive" or "generative" modeling. Geometrical objects are generated by evaluating some suitable language expressions. Because generating expressions can be easily combined, the language also extends the standard variational geometry approach by supporting classes of geometric objects with varying topology and shape. The design language PLASM can be roughly considered as a geometry-oriented extension of a subset of the functional language FL. The language takes a dimension-independent approach to geometry representation and algorithms. In particular it implements an algebraic calculus over embedded polyhedra of any dimension. The generated objects are always geometrically consistent because the validity of geometry is guaranteed at a syntactical level. Such an approach allows one to use a representation scheme which is weaker than those usually adopted in solid modelers, thus encompassing a broader geometric domain, which contains solids, surfaces, and wire-frames, as well as higher-dimensional objects.
series journal paper
last changed 2003/04/23 15:50

_id d935
authors Pasko, A.A., Adzhiev, V.D., Sourin, A.I. and Savchenko, V.V.
year 1995
title Function representation in geometric modeling: concepts, implementation and applications
source The Visual Computer, 11 (8) 429-446
summary Geometric modeling using continuous real functions of several variables is discussed. Modeling concepts include sets of objects, operations and relations. An object is a closed point set of n-dimensional Euclidean space with a defining inequality f x x xn ( , ,..., ) 1 2 0 °Ÿ . Transformations of a defining function are described for the set-theoretic operations, blending, offsetting, bijective mapping, projection, Cartesian product and metamorphosis. Inclusion, point membership and intersection relations are described. In the implemented interactive modeling system, we use highlevel geometric language that provides extendibility of the modeling system by input symbolic descriptions of primitives, operations and predicates. This approach supports combinations of representational styles, including constructive geometry, sweeping, soft objects, voxel-based objects, deformable and other animated objects. Application examples of aesthetic design, collisions simulation, NC machining, range data processing, and 3D texture generation are given.
series journal paper
last changed 2003/04/23 15:50

_id 25e6
authors Potamianos, I., Turner, J. and Jabi, W.
year 1995
title Exploring the Proportions of Middle-Byzantine Churches: A Parametric Approach
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 483-493
summary This paper examines two theories regarding the design principles of Byzantine churches through the use of 3D computer models produced by a programming language that allows the manipulation of the models parametrically to derive several instantiations by varying key dimensions. This geometry-based programming language, which is part of a larger solids modeling program, proved to be an excellent tool for determining the scope and the limiting cases of each of the two theories and the degree of their interrelationship.
keywords Parametric Solids Modeling, CSG, Byzantine Churches
series CAAD Futures
email
last changed 2002/02/20 22:02

_id e75d
authors Achten, H., Dijkstra, J., Oxman, R. and Bax, Th.
year 1995
title Knowledge-Based Systems Programming for Knowledge Intensive Teaching
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 139-148
doi https://doi.org/10.52842/conf.ecaade.1995.139
summary Typological design implies extensive knowledge of building types in order to design a building belonging to a building type. It facilitates the design process, which can be considered us a sequence of decisions. The paper gives an outline of a new approach in a course teaching typological knowledge through the medium of Knowledge-Based Systems programming. It demonstrates how Knowledge-Based Systems offer an appropriate structure for analysing the knowledge required to implement typological design. The class consists of third-year undergraduate students with no extensive previous programming experience. The implementation language is AutoLISP which operates in the AutoCAD environment. The building type used in the course is the office building. in order to become acquainted with both building type and programming in AutoLISP, information and instructions have been gathered and prestructured, including a worked out analysis and AutoLISP code. Office plans are generated through use of the Knowledge-Based System. They are encoded in the form of frames. At the end of the course the students will have learned the basics of Knowledge-Based Systems, have been introduced to programming these systems, have analysed and reflected upon the design process, and gained insight into a specific building type.
series eCAADe
email
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_18.htm
last changed 2022/06/07 07:54

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id aab6
authors Bermudez, Julio
year 1995
title Designing Architectural Experiences: Using Computers to Construct Temporal 3D Narratives
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 139-149
doi https://doi.org/10.52842/conf.acadia.1995.139
summary Computers are launching us into a representational revolution that fundamentally challenges the way we have hitherto conceived and practiced architecture. This paper will explore one of its fronts: the simulation of architectural experiences. Today's off-the-shelf softwares (e.g. 3D modeling, animations, multimedia) allow us for first time in history to depict and thus approach architectural design and criticism truly experientially. What is so appealing about this is the possibility of shifting our attention from the object to the experience of the object and in so doing reconceptualizing architectural design as the design of architectural experiences. Carrying forward such a phenomenological proposition requires us to know (1) how to work with non-traditional and 'quasi-immersive' (or subject-centered) representational systems, and (2) how to construct temporal assemblages of experiential events that unfold not unlike 'architectural stories'. As our discipline lacks enough knowledge on this area, importing models from other fields appears as an appropriate starting point. In this sense, the narrative arts (especially those involved with the temporal representation of audio-visual narratives) offer us the best insights. For example, principles of cinema and storytelling give us an excellent guidance for designing architectural experiences that have a structuring theme (parti), a plot (order), unfolding episodes (rhythm), and special events (details). Approaching architecture as a temporal 3D narrative does transform the design process and, consequently, its results. For instance, (1) phenomenological issues enter the decision making process in an equal footing to functional, technological, or compositional considerations; (2) orthographic representations become secondary sources of information, mostly used for later accurate dimensioning or geometrization; (3) multi-sensory qualities beyond sight are seriously considered (particularly sound, texture, and kinesthetic); etc.
series ACADIA
email
last changed 2022/06/07 07:52

_id bf5f
authors Chen, Xiangping
year 1995
title Representation, Evaluation and Edition of Feature-based and Constraint- based Design
source Purdue University
summary This thesis investigates a general and systematic approach to feature-based and constraint-based design. We combine feature-based design and constraint-based design by globally decomposing a design into a sequence of feature attachments and locally defining and positioning each feature by constraints. Analogous to the concept of high-level programming languages, we formalize a layered design model that eliminates the dependency of a design representation on a solid modeler. With this design model, design intent, such as feature descriptions and constraints, is stored in an unevaluated, modeler-independent design representation while the geometry to which it corresponds is stored in an evaluated, modeler-dependent design representation. The separation essentially relies on a naming and matching schema that converts between a geometric reference and a generic name, and a design compiler that automatically instantiates the unevaluated design representation to an evaluated design representation with respect to a solid modeler. The geometric references for defining feature attributes and constraints are recorded with their generic names in the unevaluated design representation. We propose several techniques for naming geometric entities unambiguously. The design compilation or instantiation involves remapping a generic name back to a geometric reference in the selected geometric modeler, solving constraints and implementing feature operations or attachments. Instead of developing a constraint solver for this design compiler, we use an independent and general solver. Feature attachment operations are different from classical Boolean operations in solid modeling. However, we provide a semantics for them that is based on existing operations in solid modeling. The layered design model allows users to edit archived conceptual designs to derive new designs quickly. We investigate the coordination of later features in the unevaluated and modeler-independent representation when a feature is edited and provide a method for editing feature-based and constraint-based design. We also discuss how to extend this work to a commercial feature-based and constraint-based CAD system.  
series thesis:PhD
last changed 2003/02/12 22:37

_id 07de
authors Cheng, Nancy Yen-wen
year 1995
title Linking the Virtual to Reality: CAD & Physical Modeling
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 303-311
summary Using both study models and digital models for schematic design allows us to take advantage of the strengths of each. Models constructed manually benefit from spontaneous juxtapositions and serendipitous interactions with light and gravity. Converting these models into the digital realm allows the computer to take over in areas that it does best: geometric transformation, rigorous analysis, elaboration and co-ordination of details and complexity. As a project develops, CAD/CAM methods can generate forms or components for verifying the virtual representation. The paradigm of porting data to appropriate software tools needs to be extended to exporting out of and into the physical realm. Connecting to models in real space allows us to use senses that are not yet completely addressed by digital models.
keywords Modeling, Representation, Design
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 6966
authors Chuah, M.C., Roth, S.F., Kolojejchick, J., Mattis, J. and Juarez, O.
year 1995
title SageBook: Searching data-graphics by content
source Proceedings of CHI , ACM Press
summary Currently, there are many hypertext-like tools and database retrieval systems that use keyword search as a means of navigation. While useful for certain tasks, keyword search is insufficient for browsing databases of data-graphics. SageBook is a system that searches among existing data-graphics, so that they can be reused with new data. In order to fulfill the needs of retrieval and reuse, it provides: 1) a direct manipulation, graphical query interface; 2) a content description language that can express important relationships for retrieving data-graphics; 3) automatic description of stored data-graphics based on their content; 4) search techniques sensitive to the structure and similarity among data-graphics; 5) manual and automatic adaptation tools for altering data-graphics so that they can be reused with new data.
series other
last changed 2003/04/23 15:50

_id 47ae
authors Comair, Claude and Kaga, Atsuko
year 1995
title Open Design Environment (ODE): Global Design Studio, Experiments in 3D City Simulation
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 113-124
summary This paper depicts the evolution of the research done at the Sasada Laboratory (Osaka University) in the fields of Architectural and Urban related Computer Simulations. This research led to the birth of what we call the "Open Development Environment" (ODE). ODE is presented in this paper through a simple example. In this example, four teams cooperate to produce the database for a simple twin tower complex. The database is kept very simple and the protocol of communication among the different teams is a new computer language called VU (Vee-You). VU was conceived and developed by Claude Comair for the specific purpose of defining architectural and urban objects.
keywords Computer Assisted Design, Computer Languages, Computer Generated Databases, Computer Graphics, Three-Dimensional Computer Simulation
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 80df
authors Cook, Alan R.
year 1995
title Stereopsis in the Design and Presentation of Architectural Works
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 113-137
doi https://doi.org/10.52842/conf.acadia.1995.113
summary This article presumes the primacy of spatial cognition in evaluating architectural designs and begins by describing key concepts involved in the perception of spatial form, focussing on parallax and stereoscopy. The ultimate emphasis is directed at presenting techniques which employ computers with modest hardware specifications and a basic three-dimensional modeling software application to produce sophisticated imaging tools. It is argued that these techniques are comparable to high end computer graphic products in their potentials for carrying information and in some ways are superior in their speed of generation and economies of dissemination. A camera analogy is considered in relation to controlling image variables. The ability to imply a temporal dimension is explored. An abbreviated summary of pertinent binocular techniques for viewing stereograms precedes a rationalization and initiation for using the cross-convergence technique. Ways to generate and view stereograms and other multiscopic views using 3-D computer models are described. Illustrations from sample projects show various levels of stereogram rendering including the theoretically 4-D wireframe stereogram. The translated perspective array autostereogram is presented as an economical and easily reproducible alternative to holography as well as being a substitute for stop action animation.

series ACADIA
email
last changed 2022/06/07 07:56

_id c3d0
authors Cotton, John
year 1995
title Solid Modeling as a Tool for Constructing Solar Envelopes
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 253-260
doi https://doi.org/10.52842/conf.acadia.1995.253
summary This paper presents a method for constructing solar envelopes in site planning using a 3D solid-modeling program as the tool. The solar envelope for a building site is a mechanism for ensuring that planning regulations on the solar access rights of other sites are observed. In this application, solid modeling offers the practical advantage of being a general-purpose tool having the capability to handle sets of site conditions that are quite complex. The paper reviews the concept of solar envelopes and demonstrates the method of application of solar-envelope construction to a site defined to avoid overly simplifying conditions. Techniques for displaying the constraints on building sections imposed by a solar envelope are presented as well.
series ACADIA
email
last changed 2022/06/07 07:56

_id 4aae
authors Day, Alan K. and Radford, Antony D.
year 1995
title Imaging Change: The Computer City Model as a Laboratory for Urban Design Research
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 495-506
summary The use of an extensive and detailed computer model of the city of Bath, UK, as a laboratory for urban design research is discussed. Bath is a small predominantly Georgian historic city that has been designated a World Heritage Site. Examples are drawn from four kinds of work: the representation of Bathís historic growth (including unbuilt plans), the prediction of the urban design impact of individual development proposals, the study and development of explicit and implicit urban design Çrulesë for the form of existing and new development, and the impact on city form and appearance of policy proposals for urban sustainability.
keywords 3D City Modeling, Urban Modelling, Planning, Public Consultation
series CAAD Futures
email
last changed 2003/05/16 20:58

_id a84e
authors De Grassi, Mario and Giretti, Alberto
year 1995
title Applying Formal Methods to Multimedia Design Aid
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 283-296
doi https://doi.org/10.52842/conf.ecaade.1995.283
summary In the last decade we assisted at an evolution of computer aided design systems from drafting, calculation and simulation utilities toward systems able to support the conceptual phase of the design process. Systems supporting conceptual design use knowledge about the design domain and assume a will defined model of the design activity. Their computational framework is usually built by means of a set of representational schemata which lack a formal semantics. This aspect causes a limitation on the applicability of their computational framework to different domains. In this paper we propose a formal knowledge representation language, that has been defined in order to represent the structural relationships of domain knowledge. On the basis of language structure we propose a number of inferences tailored to case-based conceptual design aiding. Finally we apply the representational framework to the implementation of a computational architecture for conceptual design aiding that integrates multimedia representation of design cases with symbolic information processing. The architecture combines a knowledge representation server and a multimedia server. The knowledge representation server processes both domain knowledge and design experiences according to the Case Based Reasoning paradigm. The multimedia server produces the required case representation.

series eCAADe
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_34.htm
last changed 2022/06/07 07:55

_id 2036
authors Dzeng, R.J.
year 1995
title Caseplan: A Case-based Planer and Scheduler for Construction Using Product Modeling
source University of Michigan
summary Construction planning and scheduling are important to contractors for estimating the cost and duration of a project they are to bid on and construct. Many projects specify incentive and disincentive clauses for completing projects early and late. The timely completion and success of a project rely on good planning and scheduling. Contractors who repeatedly build the same kind of facilities acquire experience in scheduling the needed construction work. When parts of a facility's design are copied from one project to the next, the previously developed schedules could possibly be reused to schedule future work. This dissertation presents a construction planner and scheduler, named CasePlan, that automates the planning and scheduling process through the use of experience encoded in cases. CasePlan enables a contractor to specify a facility design using a product model, describe the relationships between product components and parts of a schedule (e.g., activity subnetworks, construction crews), and store this information as a case. As a decision support tool, CasePlan enables the contractor to search for cases whose facility designs are similar to that of a new project. The similarity assessment is based on the relative importance values that the contractor assigns to the components and their attributes in the product model. As an automation tool, CasePlan creates the schedule of a new project by reusing parts of the schedules whose associated designs are most similar to that project's design. The result is a schedule in which construction alternatives are chosen from those used in previous cases based on the new project scheduling constraints. The contractor / system-user can interact with CasePlan during its operation or modify the resulting schedule to add detail needed for executing the schedule in the field. Two types of construction projects have been studied for the development of CasePlan. One is the Kit-of-Parts post offices, in which designs are made by reusing design modules defined as Parts. The other is the boiler erection for fossil-fueled power plants, in which the design process is standardized and component configurations are similar across designs. These projects were chosen because their schedules are similar within each project type, which suggested that practitioners had a high incentive and were likely to reuse schedules. CasePlan's similarity assessment for boiler erection projects was validated using a survey. CasePlan's schedules and usability was subjectively evaluated also by the interviewed professionals.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 2508
authors Eggli, L. and Bruderlin, B.D. (et al.)
year 1995
title Sketching as a Solid Modeling Tool
source Third Symposium on Solid Modeling and Applications. C. Hoffmann and J. Rossignac. Salt Lake City, ACM: 313-321
summary This paper describes 'Quick-sketch', a 2d and 3d modeling tool for pen based computers. Users of this system define a model by simple pen strokes drawn directly on the screen of a pen-based PC. Lines, circles, arcs, or B-spline curves are automatically distinguished, and interpreted from these strokes. The system also automatically determines relations, such as right angles, tangencies, symmetry, and parallelism, from the sketch input, These relationships are then used to clean up the drawing by making the approximate relationships exact. Constraints are established to maintain the relationships in further editing. A constraint maintenance system, which is based on gestural manipulation and soft constraints, is employed in this system. Several techniques for sketch based definitions of solid objects are provided as well, including extrusion, surface of revolution, ruled surfaces and sweep. Feat ures can be sketched on the surfaces of 3d objects, using the same 2d- and 3d techniques. This way, objects of medium complexity can be sketched in seconds. The system can be used as a front-end to more sophisticated modeling, rendering or animation environments, serving as a hand sketching tool in the preliminary design phase.
series other
last changed 2003/04/23 15:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 18HOMELOGIN (you are user _anon_862175 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002