CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 382

_id c7e9
authors Maver, T.W.
year 2002
title Predicting the Past, Remembering the Future
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 2-3
summary Charlas Magistrales 2There never has been such an exciting moment in time in the extraordinary 30 year history of our subject area, as NOW,when the philosophical theoretical and practical issues of virtuality are taking centre stage.The PastThere have, of course, been other defining moments during these exciting 30 years:• the first algorithms for generating building layouts (circa 1965).• the first use of Computer graphics for building appraisal (circa 1966).• the first integrated package for building performance appraisal (circa 1972).• the first computer generated perspective drawings (circa 1973).• the first robust drafting systems (circa 1975).• the first dynamic energy models (circa 1982).• the first photorealistic colour imaging (circa 1986).• the first animations (circa 1988)• the first multimedia systems (circa 1995), and• the first convincing demonstrations of virtual reality (circa 1996).Whereas the CAAD community has been hugely inventive in the development of ICT applications to building design, it hasbeen woefully remiss in its attempts to evaluate the contribution of those developments to the quality of the built environmentor to the efficiency of the design process. In the absence of any real evidence, one can only conjecture regarding the realbenefits which fall, it is suggested, under the following headings:• Verisimilitude: The extraordinary quality of still and animated images of the formal qualities of the interiors and exteriorsof individual buildings and of whole neighborhoods must surely give great comfort to practitioners and their clients thatwhat is intended, formally, is what will be delivered, i.e. WYSIWYG - what you see is what you get.• Sustainability: The power of «first-principle» models of the dynamic energetic behaviour of buildings in response tochanging diurnal and seasonal conditions has the potential to save millions of dollars and dramatically to reduce thedamaging environmental pollution created by badly designed and managed buildings.• Productivity: CAD is now a multi-billion dollar business which offers design decision support systems which operate,effectively, across continents, time-zones, professions and companies.• Communication: Multi-media technology - cheap to deliver but high in value - is changing the way in which we canexplain and understand the past and, envisage and anticipate the future; virtual past and virtual future!MacromyopiaThe late John Lansdown offered the view, in his wonderfully prophetic way, that ...”the future will be just like the past, onlymore so...”So what can we expect the extraordinary trajectory of our subject area to be?To have any chance of being accurate we have to have an understanding of the phenomenon of macromyopia: thephenomenon exhibitted by society of greatly exaggerating the immediate short-term impact of new technologies (particularlythe information technologies) but, more importantly, seriously underestimating their sustained long-term impacts - socially,economically and intellectually . Examples of flawed predictions regarding the the future application of information technologiesinclude:• The British Government in 1880 declined to support the idea of a national telephonic system, backed by the argumentthat there were sufficient small boys in the countryside to run with messages.• Alexander Bell was modest enough to say that: «I am not boasting or exaggerating but I believe, one day, there will bea telephone in every American city».• Tom Watson, in 1943 said: «I think there is a world market for about 5 computers».• In 1977, Ken Olssop of Digital said: «There is no reason for any individuals to have a computer in their home».The FutureJust as the ascent of woman/man-kind can be attributed to her/his capacity to discover amplifiers of the modest humancapability, so we shall discover how best to exploit our most important amplifier - that of the intellect. The more we know themore we can figure; the more we can figure the more we understand; the more we understand the more we can appraise;the more we can appraise the more we can decide; the more we can decide the more we can act; the more we can act themore we can shape; and the more we can shape, the better the chance that we can leave for future generations a trulysustainable built environment which is fit-for-purpose, cost-beneficial, environmentally friendly and culturally significactCentral to this aspiration will be our understanding of the relationship between real and virtual worlds and how to moveeffortlessly between them. We need to be able to design, from within the virtual world, environments which may be real ormay remain virtual or, perhaps, be part real and part virtual.What is certain is that the next 30 years will be every bit as exciting and challenging as the first 30 years.
series SIGRADI
email
last changed 2016/03/10 09:55

_id 1a52
authors Amor, R., Augenbroe, G., Hosking, J., Rombouts and W., Grundy, J.
year 1995
title Directions in modelling environments
source Automation in Construction 4 (3) (1995) pp. 173-187
summary Schema definition is a vital component in the computerised A/E/C projects. existing tools to manage this task are limited both in terms of the scope Of problems they can tackle and their integration with each other. This paper describes a global modellling and development environment for large modelling projects. This environment provides a total solution from initial design of schemas to validation, manipulation arid navigation through final models. A major benefit of the described system is the ability to provide multiple views of evolving schemas (or models) in both graphical and textual forms This allows modellers to visualise their schemas and instance models either textually or graphically as desired. The system automatically maintains the Conisistency of the informalion in these views even when modifications are made in other views. Simple and intuitive view navigation methods allow required information to he rapidly accessed. The environment supports strict checking of model instances and schemas in one of the major ISO-standardised modelling languages no used in product data technology. Ill this paper we show how such a modelling environment has been constructed for evaluation in the JOULE founded COMBINE project.
keywords Modelling Environment; Consistency; Multiple Views: Views; Building Models; Information Management; Integrated System; Product Modelling
series journal paper
email
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 14:33

_id df4b
authors Angulo Mendivil, Antonieta Humbelina
year 1995
title On the Conceptual Feasibility of a CAAD-CAAI Integrated Decision Support System: A Computer Aided Environment for Technical Decision Making in Architecture
source Delft University of Technology
summary This document addresses two questions: What are the ultimate means of design support we can offer to the architect, and how can we devise them? We are not the first ones to address these questions, neither the first ones to point our finger in the direction of Decision Support Systems for such purposes. Nevertheless, we may be among those scholars that understanding 'Decision Support" in terms of "Learning Support", are willing to explore the implications that such an understanding assumes for the concept of Decision Support Systems. Our exploration in such regards has shown us that knowledge application and knowledge acquisition cycles describe a continuum, and that such cycles, encapsulated in our "Practice Based Learning" and "Continuing Professional Development" dynamics are present in both our instructional and professional environments. From such a perspective, our scope regarding feasible Decision Support Systems is not restricted to the use of CAAD instrumental resources, but expanded into a context of CAAD-CAAI integration. Throughout this document we conceive a system that blends CAAD and CAAI resources looking forward to the creation of a Support Environment that seeks to motivate a reflective attitude during design, in such a way, upgrade our capability for acquiring as well as applying knowledge in design. In instrumental terms, this document explains how mainstream CAAD developments in the field of "Intelligent Front End Technology" and CAAI developments in the field of "Knowledge-based Curricular Networks" can complement each other in the establishment of a Decision Support System of trans-environmental relevancy. As an application framework for the concept and instrumental base described above, this document presents an image of the kind of decision-making model that it will intend to support, the kind of task support model it will look forward to implement, and the kind of general instrumental layout it will require. On the basis of such an instrumental layout, the system that is hereby outlined can be regarded as a "CAAD-CAAI Integrated", "Intelligent", and "User-Oriented" Interface System.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id b914
authors Asanowicz, Aleksander and Asanowicz, Katarzyna
year 1995
title Designing, CAD and CAD
source CAD Space [Proceedings of the III International Conference Computer in Architectural Design] Bialystock 27-29 April 1995, pp. 181-192
summary The general aim of our discussion is to analyze what has been changed in design process according to introducing the computers technology. For the better understanding of the design process evolution, we should precisely define start point - the traditional design process.Let's treat it as an iteration game between a designer and user. If we assume that the designing base is a reductive strategy, we can define six stages of it: 1.) To define a need; 2.) To formulate a task; 3.) To synthesize a design proposals; 4.) To analyze and optimize; 5.) To make a presentation. // The last stage - the presentation of designing proposals is the main factor of using computers in design process and creating definition of CAD as Computer Aided Drafting. According to this interpretation CAD has included four groups of activities: A.) Geometrical modelling; B.) Analysis; C.) Revision and estimation of design proposals; D.) Technical drawing preparing. // Unfortunately it has no connections with another meaning of CAD - Computer Aided Design because concerns every stage of design process except of creation of architectural form. On the other hand, computer enables us to improve the design process by permanent perception of designing forms and dynamic control over the transforming structure. Nowadays thanks to full-function sketching workstation and software like Fractal Design Painter a computer can be useful from the moment when the first line is drawing. It is possible, that the new generation of CAD software - CAD with Personality which connects computer models with picture transformation will enable CAD to be Computer Aided Design.
series plCAD
email
last changed 2000/01/24 10:08

_id 4202
authors Brown, Michael E. and Gallimore, Jennie J.
year 1995
title Visualization of Three-Dimensional Structure During Computer-Aided Design
source International Journal of Human-Computer Interaction 1995 v.7 n.1 pp. 37-56
summary The visual image presented to an engineer using a computer-aided design (CAD) system influences design activities such as decision making, problem solving, cognizance of complex relationships, and error correction. Because of the three-dimensional (3-D) nature of the object being created, an important attribute of the CAD visual interface concerns the various methods of presenting depth on the display's two-dimensional (2-D) surface. The objective of this research is to examine the effects of stereopsis on subjects' ability to (a) accurately transfer to, and retrieve from, long-term memory spatial information about 3-D objects; and (b) visualize spatial characteristics in a quick and direct manner. Subjects were instructed to memorize the shape of a 3-D object presented on a stereoscopic CRT during a study period. Following the study period, a series of static trial stimuli were shown. Each trial stimulus was rotated (relative to the original) about the vertical axis in one of six 36° increments between 0° and 180°. In each trial, the subject's task was to determine, as quickly and as accurately as possible, whether the trial object was the same shape as the memorized object or its mirrored image. One of the two cases was always true. To assess the relative merits associated with disparity and interposition, the two depth cues were manipulated in a within-subject manner during the study period and during the trials that followed. Subject response time and error rate were evaluated. Improved performance due to hidden surface is the most convincing experimental finding. Interposition is a powerful cue to object structure and should not be limited to late stages of design. The study also found a significant, albeit limited, effect of stereopsis. Under specific study object conditions, adding disparity to monocular trial objects significantly decreased response time. Response latency was also decreased by adding disparity information to stimuli in the study session.
series journal paper
last changed 2003/05/15 21:45

_id e420
authors Colajanni, B., Pellitteri, G. and Giacchino, V.
year 1995
title An Hypertext in Building Rehabilitation: A Case Study in Palermo
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 29-36
doi https://doi.org/10.52842/conf.ecaade.1995.029
summary Hypertext is an ideal tool to teach building design inasmuch as it allows both teacher driven and student self driven learning. It allows to link every type of informations (texts, sounds, images, films) with associative mechanisms much like those utilized by our brain. Hypertextes buikt up for teaching purposen can be usefully employed in professional occurrencies. An example is shown dealing with the rehabilitation of the Fiumetorto Palace in the historical centre of Palermo. It manages in a simple but efficient way the many complex interconnections between analysis of the state of decay, history, town planning rules and technology focusing all the information on the rehabilitation task.
series eCAADe
email
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_4.htm
last changed 2022/06/07 07:56

_id eb51
authors Coyne, Richard
year 1996
title CAAD, Curriculum and Controversy
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 121-130
doi https://doi.org/10.52842/conf.ecaade.1996.121
summary This paper brings some of the debate within educational theory to bear on CAAD teaching, outlining the contributions of conservatism, critical theory, radical hermeneutics and pragmatism. The paper concludes by recommending that CAAD teaching move away from conservative concepts of teaching, design and technology to integrate it into the studio. In a highly illuminating book on education theory, Shaun Gallagher (1991) outlines four current views on education that correspond to four major positions in contemporary social theory and philosophy. I will extend these categories to a consideration of attitudes to information technology, and the teaching of computing in architecture. These four positions are conservatism, critical theory, radical hermeneutics, and pragmatism. I will show how certain issues cluster around them, how each position provides the focus of various discursive practices, or intellectual conversations in contemporary thinking, and how information technology is caught up in those conversations. These four positions are not "cognitive styles," but vigorously argued domains of debate involving writers such as Gadamer, Habermas and Derrida about the theory of interpretation. The field of interpretation is known as hermeneutics, which is concerned less with epistemology and knowledge than with understanding. Interpretation theory applies to reading texts, interpreting the law, and appreciating art, but also to the application of any practical task, such as making art, drawing, defining and solving problems, and design (Coyne and Snodgrass, 1995). Hermeneutics provides a coherent focus for considering many contemporary issues and many domains of practice. I outline what these positions in education mean in terms of CAAD (computer-aided architectural design) in the curriculum.

series eCAADe
email
more http://www.caad.ac.uk/~richard
last changed 2022/06/07 07:56

_id 2068
authors Frazer, John
year 1995
title AN EVOLUTIONARY ARCHITECTURE
source London: Architectural Association
summary In "An Evolutionary Architecture", John Frazer presents an overview of his work for the past 30 years. Attempting to develop a theoretical basis for architecture using analogies with nature's processes of evolution and morphogenesis. Frazer's vision of the future of architecture is to construct organic buildings. Thermodynamically open systems which are more environmentally aware and sustainable physically, sociologically and economically. The range of topics which Frazer discusses is a good illustration of the breadth and depth of the evolutionary design problem. Environmental Modelling One of the first topics dealt with is the importance of environmental modelling within the design process. Frazer shows how environmental modelling is often misused or misinterpreted by architects with particular reference to solar modelling. From the discussion given it would seem that simplifications of the environmental models is the prime culprit resulting in misinterpretation and misuse. The simplifications are understandable given the amount of information needed for accurate modelling. By simplifying the model of the environmental conditions the architect is able to make informed judgments within reasonable amounts of time and effort. Unfortunately the simplications result in errors which compound and cause the resulting structures to fall short of their anticipated performance. Frazer obviously believes that the computer can be a great aid in the harnessing of environmental modelling data, providing that the same simplifying assumptions are not made and that better models and interfaces are possible. Physical Modelling Physical modelling has played an important role in Frazer's research. Leading to the construction of several novel machine readable interactive models, ranging from lego-like building blocks to beermat cellular automata and wall partitioning systems. Ultimately this line of research has led to the Universal Constructor and the Universal Interactor. The Universal Constructor The Universal Constructor features on the cover of the book. It consists of a base plug-board, called the "landscape", on top of which "smart" blocks, or cells, can be stacked vertically. The cells are individually identified and can communicate with neighbours above and below. Cells communicate with users through a bank of LEDs displaying the current state of the cell. The whole structure is machine readable and so can be interpreted by a computer. The computer can interpret the states of the cells as either colour or geometrical transformations allowing a wide range of possible interpretations. The user interacts with the computer display through direct manipulation of the cells. The computer can communicate and even direct the actions of the user through feedback with the cells to display various states. The direct manipulation of the cells encourages experimentation by the user and demonstrates basic concepts of the system. The Universal Interactor The Universal Interactor is a whole series of experimental projects investigating novel input and output devices. All of the devices speak a common binary language and so can communicate through a mediating central hub. The result is that input, from say a body-suit, can be used to drive the out of a sound system or vice versa. The Universal Interactor opens up many possibilities for expression when using a CAD system that may at first seem very strange.However, some of these feedback systems may prove superior in the hands of skilled technicians than more standard devices. Imagine how a musician might be able to devise structures by playing melodies which express the character. Of course the interpretation of input in this form poses a difficult problem which will take a great deal of research to achieve. The Universal Interactor has been used to provide environmental feedback to affect the development of evolving genetic codes. The feedback given by the Universal Interactor has been used to guide selection of individuals from a population. Adaptive Computing Frazer completes his introduction to the range of tools used in his research by giving a brief tour of adaptive computing techniques. Covering topics including cellular automata, genetic algorithms, classifier systems and artificial evolution. Cellular Automata As previously mentioned Frazer has done some work using cellular automata in both physical and simulated environments. Frazer discusses how surprisingly complex behaviour can result from the simple local rules executed by cellular automata. Cellular automata are also capable of computation, in fact able to perform any computation possible by a finite state machine. Note that this does not mean that cellular automata are capable of any general computation as this would require the construction of a Turing machine which is beyond the capabilities of a finite state machine. Genetic Algorithms Genetic algorithms were first presented by Holland and since have become a important tool for many researchers in various areas.Originally developed for problem-solving and optimization problems with clearly stated criteria and goals. Frazer fails to mention one of the most important differences between genetic algorithms and other adaptive problem-solving techniques, ie. neural networks. Genetic algorithms have the advantage that criteria can be clearly stated and controlled within the fitness function. The learning by example which neural networks rely upon does not afford this level of control over what is to be learned. Classifier Systems Holland went on to develop genetic algorithms into classifier systems. Classifier systems are more focussed upon the problem of learning appropriate responses to stimuli, than searching for solutions to problems. Classifier systems receive information from the environment and respond according to rules, or classifiers. Successful classifiers are rewarded, creating a reinforcement learning environment. Obviously, the mapping between classifier systems and the cybernetic view of organisms sensing, processing and responding to environmental stimuli is strong. It would seem that a central process similar to a classifier system would be appropriate at the core of an organic building. Learning appropriate responses to environmental conditions over time. Artificial Evolution Artificial evolution traces it's roots back to the Biomorph program which was described by Dawkins in his book "The Blind Watchmaker". Essentially, artificial evolution requires that a user supplements the standard fitness function in genetic algorithms to guide evolution. The user may provide selection pressures which are unquantifiable in a stated problem and thus provide a means for dealing ill-defined criteria. Frazer notes that solving problems with ill-defined criteria using artificial evolution seriously limits the scope of problems that can be tackled. The reliance upon user interaction in artificial evolution reduces the practical size of populations and the duration of evolutionary runs. Coding Schemes Frazer goes on to discuss the encoding of architectural designs and their subsequent evolution. Introducing two major systems, the Reptile system and the Universal State Space Modeller. Blueprint vs. Recipe Frazer points out the inadequacies of using standard "blueprint" design techniques in developing organic structures. Using a "recipe" to describe the process of constructing a building is presented as an alternative. Recipes for construction are discussed with reference to the analogous process description given by DNA to construct an organism. The Reptile System The Reptile System is an ingenious construction set capable of producing a wide range of structures using just two simple components. Frazer saw the advantages of this system for rule-based and evolutionary systems in the compactness of structure descriptions. Compactness was essential for the early computational work when computer memory and storage space was scarce. However, compact representations such as those described form very rugged fitness landscapes which are not well suited to evolutionary search techniques. Structures are created from an initial "seed" or minimal construction, for example a compact spherical structure. The seed is then manipulated using a series of processes or transformations, for example stretching, shearing or bending. The structure would grow according to the transformations applied to it. Obviously, the transformations could be a predetermined sequence of actions which would always yield the same final structure given the same initial seed. Alternatively, the series of transformations applied could be environmentally sensitive resulting in forms which were also sensitive to their location. The idea of taking a geometrical form as a seed and transforming it using a series of processes to create complex structures is similar in many ways to the early work of Latham creating large morphological charts. Latham went on to develop his ideas into the "Mutator" system which he used to create organic artworks. Generalising the Reptile System Frazer has proposed a generalised version of the Reptile System to tackle more realistic building problems. Generating the seed or minimal configuration from design requirements automatically. From this starting point (or set of starting points) solutions could be evolved using artificial evolution. Quantifiable and specific aspects of the design brief define the formal criteria which are used as a standard fitness function. Non-quantifiable criteria, including aesthetic judgments, are evaluated by the user. The proposed system would be able to learn successful strategies for satisfying both formal and user criteria. In doing so the system would become a personalised tool of the designer. A personal assistant which would be able to anticipate aesthetic judgements and other criteria by employing previously successful strategies. Ultimately, this is a similar concept to Negroponte's "Architecture Machine" which he proposed would be computer system so personalised so as to be almost unusable by other people. The Universal State Space Modeller The Universal State Space Modeller is the basis of Frazer's current work. It is a system which can be used to model any structure, hence the universal claim in it's title. The datastructure underlying the modeller is a state space of scaleless logical points, called motes. Motes are arranged in a close-packing sphere arrangement, which makes each one equidistant from it's twelve neighbours. Any point can be broken down into a self-similar tetrahedral structure of logical points. Giving the state space a fractal nature which allows modelling at many different levels at once. Each mote can be thought of as analogous to a cell in a biological organism. Every mote carries a copy of the architectural genetic code in the same way that each cell within a organism carries a copy of it's DNA. The genetic code of a mote is stored as a sequence of binary "morons" which are grouped together into spatial configurations which are interpreted as the state of the mote. The developmental process begins with a seed. The seed develops through cellular duplication according to the rules of the genetic code. In the beginning the seed develops mainly in response to the internal genetic code, but as the development progresses the environment plays a greater role. Cells communicate by passing messages to their immediate twelve neighbours. However, it can send messages directed at remote cells, without knowledge of it's spatial relationship. During the development cells take on specialised functions, including environmental sensors or producers of raw materials. The resulting system is process driven, without presupposing the existence of a construction set to use. The datastructure can be interpreted in many ways to derive various phenotypes. The resulting structure is a by-product of the cellular activity during development and in response to the environment. As such the resulting structures have much in common with living organisms which are also the emergent result or by-product of local cellular activity. Primordial Architectural Soups To conclude, Frazer presents some of the most recent work done, evolving fundamental structures using limited raw materials, an initial seed and massive feedback. Frazer proposes to go further and do away with the need for initial seed and start with a primordial soup of basic architectural concepts. The research is attempting to evolve the starting conditions and evolutionary processes without any preconditions. Is there enough time to evolve a complex system from the basic building blocks which Frazer proposes? The computational complexity of the task being embarked upon is not discussed. There is an implicit assumption that the "superb tactics" of natural selection are enough to cut through the complexity of the task. However, Kauffman has shown how self-organisation plays a major role in the early development of replicating systems which we may call alive. Natural selection requires a solid basis upon which it can act. Is the primordial soup which Frazer proposes of the correct constitution to support self-organisation? Kauffman suggests that one of the most important attributes of a primordial soup to be capable of self-organisation is the need for a complex network of catalysts and the controlling mechanisms to stop the reactions from going supracritical. Can such a network be provided of primitive architectural concepts? What does it mean to have a catalyst in this domain? Conclusion Frazer shows some interesting work both in the areas of evolutionary design and self-organising systems. It is obvious from his work that he sympathizes with the opinions put forward by Kauffman that the order found in living organisms comes from both external evolutionary pressure and internal self-organisation. His final remarks underly this by paraphrasing the words of Kauffman, that life is always to found on the edge of chaos. By the "edge of chaos" Kauffman is referring to the area within the ordered regime of a system close to the "phase transition" to chaotic behaviour. Unfortunately, Frazer does not demonstrate that the systems he has presented have the necessary qualities to derive useful order at the edge of chaos. He does not demonstrate, as Kauffman does repeatedly, that there exists a "phase transition" between ordered and chaotic regimes of his systems. He also does not make any studies of the relationship of useful forms generated by his work to phase transition regions of his systems should they exist. If we are to find an organic architecture, in more than name alone, it is surely to reside close to the phase transition of the construction system of which is it built. Only there, if we are to believe Kauffman, are we to find useful order together with environmentally sensitive and thermodynamically open systems which can approach the utility of living organisms.
series other
type normal paper
last changed 2004/05/22 14:12

_id 9377
authors Nowacki, Aleksander
year 1995
title Gothic Cathedral in the Virtual Reality
source CAD Space [Proceedings of the III International Conference Computer in Architectural Design] Bialystock 27-29 April 1995, pp. 43-56
summary Everyone who once visited Beauvais, small town placed 100 km from Paris, certainly asked himself: "how would have this highest gothic cathedral, that was started here, looked like if it had been completed?". I attempted to answer this question in my diploma work in 1994. However, the task wouldn't be done without power of contemporary computers. They made it possible to create the entire three-dimensional model of this magnificent building in the virtual reality. Cathedral Saint-Pierre in Beauvais, which was started in 1225, partly collapsed in 1284 and 1573. Finally, in 1600, when only choir and transept were finished, the works had been interrupted. The height of this highest gothic interior in the world is 48.5m. To my disposition I had the drawings of plan and cross- section of the existing part of the building, photographic specification and detailed description of the construction of the cathedral. I used PC 486DX/33, 16 MB RAM, HD 170 MB and software: Autodesk AutoCAD r.12 and AccuRender r.1.10. The work was divided into three stages. The first one was "building" the model of existing part of the cathedral in the threedimensional CAD-space. The next one was trying "to finish" the temple based on theoretical reflections and comparative analyses of existing French gothic cathedrals. The last stage included the performance of the series of pseudorealistic pictures showing the "finished" cathedral in Beauvais from the outside, inside and with illumination by night.
series plCAD
last changed 2000/01/24 10:08

_id ebbf
authors Ohno, Ryozo
year 1995
title Street-scape and Way-finding Performance
source The Future of Endoscopy [Proceedings of the 2nd European Architectural Endoscopy Association Conference / ISBN 3-85437-114-4]
summary In this study, it was hypothesized that people’s performance of way-finding depends on the characteristics of street-scapes, i.e., the more visual information exists the easier people find their own ways. This relationship was investigated by an experiment using an environmental simulator and analysis of the subject’s behavioral data recorded by the simulation system. Three scale models (1/150) of identical maze patterns (300m x 300m) which have different street-scapes were created and set in the simulator, in which an endoscope connected to CCD color TV camera controlled by a system operated by a personal computer. Three types of streets are: (1) having no characteristics with monotonous surface, (2) having characteristics on each corner with different buildings, (3) having characteristics along the streets with trees, columns or fences. The simulator allows a subject to move through the scale models and looking around, using a “joy-stick“ for viewing the scene as projected on 100-inch CCTV screen. The control system of the simulator records all signals generated by the “joy-stick“ every 0.01 second, and thus exact position within the model space and the viewing direction at given moment can be stored in the computer memory, which can be used to analyze the subject’s behavior. The task of a subject was to find the way which was previously shown by the screen. Three male and three female subjects for each of three street types, for a total of eighteen subjects participated in the experiment. An analysis of the trace of movements and viewing directions generally supported the hypothesis that the street with visual characteristics were easier to memorize the route although there was a large difference in performance among subjects. It was also noted that there were three different strategies of way-finding according to the subject: one group of subjects seemed to rely on well structured knowledge of the route, i.e., the cognitive map, and the other group seemed to rely on incoming visual information of the changing scenes, and the last group seemed to find the way using both the cognitive map and visual information depending on the situations.
keywords Architectural Endoscopy, Real Environments
series EAEA
more http://info.tuwien.ac.at/eaea/
last changed 2005/09/09 10:43

_id b731
authors Ramstein, Christophe
year 1995
title An Architecture Model for Multimodal Interfaces with Force Feedback I.14 Virtual Reality 2
source Proceedings of the Sixth International Conference on Human-Computer Interaction 1995 v.I. Human and Future Computing pp. 455-460
summary Multimodal interfaces with force feedback pose new problems both in terms of their design and for hardware and software implementation. The first problem is to design and build force-feedback pointing devices that permit users both to select and manipulate interface objects (windows, menus and icons) and at the same time feel these objects with force and precision through their tactile and kinesthetic senses. The next problem is to model the interface such that it can be returned to the user via force-feedback devices: the task is to define the fields of force corresponding to interface objects and events, and to design algorithms to synthesize these forces in such a way as to provide optimum real-time operation. The final problem concerns the hardware and software architecture to be used to facilitate the integration of this technology with contemporary graphic interfaces. An architecture model for a multimodal interface is presented: it is based on the notion of a multiagent model and breaks down inputs and outputs according to multiple modalities (visual, auditory and haptic). These modalities are represented by independent software components that communicate with one another via a higher-level control agent.
keywords Multimodal Interface; Software Architecture Model; Force Feedback; Haptic Device; Physical Model
series other
last changed 2002/07/07 16:01

_id 0c8e
authors Ager, Mark Thomas and Sinclair, Brian R.
year 1995
title StereoCAD: Three Dimensional Representation
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 343-355
summary Concepts of stereoscopic vision have been around for more than two thousand years. Despite this long history, its application to the field to architecture and design seems relatively unexplored. Synthesis of two technologies, the stereoscope and the computer, was the focus of the present study. The goal of the research was to determine if computer-generated stereoscopic pairs hold value for architectural design. Using readily available computer technology (Apple Macintosh) the research team modelled and rendered an existing project to verify the degree of correlation between the physical construct, the computer 3D model and resultant correlation between the physical construct, the computer 3D model and resultant rendered stereo-paired representation. The experiments performed in this study have shown that producing stereo-paired images that highly correlate to reality is possible using technology that is readily available in the marketplace. Both the technology required to produce (i.e., personal computer and modelling/rendering software) and view (i.e., modified stereoscope) the images is unimposing. Both devices can easily fit in a studio or a boardroom and together can be utilized effectively to permit designers, clients and end-users to experience proposed spaces and projects. Furthermore, these technologies are familiar (clients and end-users have already experienced them in other applications and settings) and assume a fraction of the cost of more dynamic, immersive virtual reality systems. Working from this base, limitations of the process as well as future applications of computer-generated stereoscopic images are identified.
keywords Stereovision, Representation, Computers, Architects, Design
series CAAD Futures
last changed 2003/11/21 15:15

_id 4684
authors Herzog, Marcus and Kühn, Christian
year 1995
title Technological Issues in Multimedia Applications for Architectural Design Education
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 95-104
doi https://doi.org/10.52842/conf.ecaade.1995.095
summary Teaching architecture is not primarily an instructional process but rather a process of interaction and experience. In this context multimedia material can be used to provide an active educational environment where students learn by doing. To yield an effective learning system expertise from various fields have to be combined. This paper emphasizes the technological challenges of multimedia applications in architectural design education. We discuss two research prototype systems and analyze the influence of the underpinning technology on the performance of the overall system design. Finally we give technical requirements that are demanded for next generation systems and propose a framework for concerted research action.
series eCAADe
email
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_13.htm
last changed 2022/06/07 07:50

_id eff2
authors Sinclair, Brian
year 1995
title Architecture in the Environment: A Technology-Centered Model for Priomary, Secondary & Post-Secondary Educational Partnership
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 357-370
doi https://doi.org/10.52842/conf.acadia.1995.357
summary Societal appreciation of architecture, the environment and the role of design & planning professionals should begin early in the educational stream. Working from this premise, a model was developed which relied on a combination of learning strategies: Cognitive, Psychomotor and Affective. The project’s primary goal was to build knowledge of architecture and the environment in K-12 children, with particular emphasis on primary levels. More specifically, the ARCH was selected thematically as a strong architectonic element through which to promote a better connection with and responsibility for the environment. The educational experience comprised three sequential forms: visual history of the ARCH, physical construction using foam blocks, and finally "construction” in the computer using a multi-media interactive three-dimensionally focused program. Pedagogically the sequencing provided explanation and context, built awareness through making, and finally reinforced the lessons of the previous steps while highlighting the potential of information technology. To deliver the curriculum an installation was built at a local museum, with primary grade children arriving on field trips. Architecture faculty and students designed the curriculum and installation, including the computer modules. Secondary school students were trained, with the intention that they would in turn educate primary school students at the installation. In disseminating knowledge downwards through the various educational levels, awareness was promoted concerning the architects role, architectural elements, and the broader built environment. Using the ARCH as the theme, realization of the inter-connectedness of the environment was advanced. Through linking and learning, participants came to better understand the value of their individual contributions and the critical need for collaboration.

series ACADIA
email
last changed 2022/06/07 07:56

_id f8f0
authors Bakhtari, Shirin and Oertel, Wolfgang
year 1995
title DOM: An Active Assistance System for Architectural and Engineering Design
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 153-162
summary This article delineates an active design assistance system for conceptual design, called DOM which is the abbreviation for Domain Ontology Modelling. The intention of our work is to endorse the role of modelling a common and shared platform of design knowledge as well as to address the crucial task of representing design decisions and engineering judgements in order to evaluate design layouts and to support layout construction from scratch.The prerequisites and assumptions for an appropriate role of an active design assistance system are explained. The presented paper contains both a conceptual and a technical exploration of the DOM system.
keywords Design Ontology, Decision Making, Analysis, Synthesis
series CAAD Futures
last changed 2003/11/21 15:16

_id ddssar0206
id ddssar0206
authors Bax, M.F.Th. and Trum, H.M.G.J.
year 2002
title Faculties of Architecture
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary In order to be inscribed in the European Architect’s register the study program leading to the diploma ‘Architect’ has to meet the criteria of the EC Architect’s Directive (1985). The criteria are enumerated in 11 principles of Article 3 of the Directive. The Advisory Committee, established by the European Council got the task to examine such diplomas in the case some doubts are raised by other Member States. To carry out this task a matrix was designed, as an independent interpreting framework that mediates between the principles of Article 3 and the actual study program of a faculty. Such a tool was needed because of inconsistencies in the list of principles, differences between linguistic versions ofthe Directive, and quantification problems with time, devoted to the principles in the study programs. The core of the matrix, its headings, is a categorisation of the principles on a higher level of abstractionin the form of a taxonomy of domains and corresponding concepts. Filling in the matrix means that each study element of the study programs is analysed according to their content in terms of domains; thesummation of study time devoted to the various domains results in a so-called ‘profile of a faculty’. Judgement of that profile takes place by committee of peers. The domains of the taxonomy are intrinsically the same as the concepts and categories, needed for the description of an architectural design object: the faculties of architecture. This correspondence relates the taxonomy to the field of design theory and philosophy. The taxonomy is an application of Domain theory. This theory,developed by the authors since 1977, takes as a view that the architectural object only can be described fully as an integration of all types of domains. The theory supports the idea of a participatory andinterdisciplinary approach to design, which proved to be awarding both from a scientific and a social point of view. All types of domains have in common that they are measured in three dimensions: form, function and process, connecting the material aspects of the object with its social and proceduralaspects. In the taxonomy the function dimension is emphasised. It will be argued in the paper that the taxonomy is a categorisation following the pragmatistic philosophy of Charles Sanders Peirce. It will bedemonstrated as well that the taxonomy is easy to handle by giving examples of its application in various countries in the last 5 years. The taxonomy proved to be an adequate tool for judgement ofstudy programs and their subsequent improvement, as constituted by the faculties of a Faculty of Architecture. The matrix is described as the result of theoretical reflection and practical application of a matrix, already in use since 1995. The major improvement of the matrix is its direct connection with Peirce’s universal categories and the self-explanatory character of its structure. The connection with Peirce’s categories gave the matrix a more universal character, which enables application in other fieldswhere the term ‘architecture’ is used as a metaphor for artefacts.
series DDSS
last changed 2003/11/21 15:16

_id 00f4
authors Brown, Andre G.P. and Knight, Mike
year 1995
title An Integrated Hypermedia Project
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 111-116
doi https://doi.org/10.52842/conf.ecaade.1995.111
summary This paper describes how Hypermedia can be used as unifying tool, marrying together many strands of work related to architectural design and CAD. The project which we describe was undertaken with fourth year students at the University of Liverpool and is entitled the Electronic City. It is founded on the premise of assembling a Hypermedia package which describes the city and its architecture to a lay person. There are two strands to the project, the Hypermedia strand and a graphics/CAD strand. At the end the task was then to stitch the strands together to produce a common, coherent Hypermedia package. At the end of the project we expect that the students will have developed skills and an appreciation of: (-) the architecture and history of the city (-) the design of Hypermedia interfaces (-) the design of Information structures (-) three dimensional modelling and rendering

series eCAADe
email
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_15.htm
last changed 2022/06/07 07:54

_id e201
authors Coulon, Carl-Helmut
year 1995
title Automatic Indexing, Retrieval and Reuse of Topologies in Architectural Layouts
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 577-586
summary Former layouts contain much of the know-how of architects. A generic and automatic way to formalize this know-how in order to use it by a computer would save a lot of effort and money. However, there seems to be no such way. The only access to the know-how are the layouts themselves. Developing a generic software tool to reuse former layouts you cannot consider every part of the architectural domain or things like personal style. Tools used today only consider small parts of the architectural domain. Any personal style is ignored. Isnít it possible to build a basic tool which is adjusted by the content of the former layouts, but maybe extended inclemently by modeling as much of the domain as desirable? This paper will describe a reuse tool to perform this task focusing on topological and geometrical binary relations.
keywords Case-Based Reasoning, Graph Matching, Structural Comparison, Topology
series CAAD Futures
last changed 1999/08/03 17:16

_id 0128
authors Engeli, M., Kurmann, D. and Schmitt, G.
year 1995
title A New Design Studio: Intelligent Objects and Personal Agents
source Computing in Design - Enabling, Capturing and Sharing Ideas [ACADIA Conference Proceedings / ISBN 1-880250-04-7] University of Washington (Seattle, Washington / USA) October 19-22, 1995, pp. 155-170
doi https://doi.org/10.52842/conf.acadia.1995.155
summary As design processes and products are constantly increasing in complexity, new tools are being developed for the designer to cope with the growing demands. In this paper we describe our research towards a design environment, within which different aspects of design can be combined, elaborated and controlled. New hardware equipment will be combined with recent developments in graphics and artificial intelligence programming to develop appropriate computer based tools and find possible new design techniques. The core of the new design studio comprises intelligent objects in a virtual reality environment that exhibit different behaviours drawn from Artificial Intelligence (AI) and Artificial Life (AL) principles, a part already realised in a tool called 'Sculptor'. The tasks of the architect will focus on preferencing and initiating good tendencies in the development of the design. A first set of software agents, assistants that support the architect in viewing, experiencing and judging the design has also been conceptualised for this virtual design environment. The goal is to create an optimised environment for the designer, where the complexity of the design task can be reduced thanks to the support made available from the machine.
keywords Architectural Design, Design Process, Virtual Reality, Artificial Intelligence, Personal Agents
series ACADIA
email
last changed 2022/06/07 07:55

_id ead7
authors Gero, J.S. and Schnier, T.
year 1995
title Evolving representations of design cases and their use in creative design
source J.S. Gero, M.L. Maher and F. Sudweeks (eds), Preprints Computational Models of Creative Design , Key Centre of Design Computing, University of Sydney, pp. 343-368
summary In case-based design, the adaptation of a design case to new design requirements plays an important role. If it is sufficient to adapt a predefined set of design parameters, the task is easily automated. If, however, more far-reaching, creative changes are required, current systems provide only limited success. This paper describes an approach to creative design adaptation based on the notion of creativity as 'goal oriented shift of focus of a search process'. An evolving representation is used to restructure the search space so that designs similar to the example case lie in the focus of the search. This focus is than used as a starting point to generate new designs.
series other
email
last changed 2003/04/06 15:22

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 19HOMELOGIN (you are user _anon_953360 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002