CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 10 of 10

_id 2f5f
id 2f5f
authors Gero, J. S.
year 1996
title Design tools that learn: A possible CAD future
source B. Kumar (ed.), Information Processing in Civil and Structural Design, Civil-Comp Press, Edinburgh, pp. 17-22
summary This paper describes the concept of tools that learn. these are design support tools that acquire problem-specific knowledge as they are used to solve a problem. This knoweldge is then reused in the solution of similar problems. The effect of this is that the tool is more efficient. An example is presetned to demonstrate the idea.
keywords tools, learning, emergence, knowledge
series other
type normal paper
email
more http://www.arch.usyd.edu.au/~john/
last changed 2006/05/27 18:14

_id 0a80
authors Gero, J.S.
year 1996
title Creativity, emergence and evolution in design: concepts and framework
source Knowledge-Based Systems 9(7): 435-448
summary This paper commences by outlining notions of creativity before examining the role of emergence in creative design. Various process models of emergence are presented; these are based on notions of additive and substitutive variables resulting in additive and substitutive schemas. Frameworks for both representation and process for a computational model of creative design are presented. The representational framework is based on design prototypes whilst the process framework is based on an evolutionary model. The computational model brings both representation and process together.
series other
email
last changed 2003/04/06 07:32

_id 7886
authors Rosenman, M.A. and Gero, J.S.
year 1996
title Modelling multiple views of design objects in a collaborative CAD environment
source Computer-Aided Design, Vol. 28 (3) (1996) pp. 193-205
summary Collaboration between designers in different disciplines is an increasingly important aspect in complex design situations, as exemplified in the AEC domain. CAD systems are essential for handling this complexitybut current CAD modelling technology is directed towards the production of a single product model. In the AEC environment, many disciplines are involved, each with its own concept of the design object. Eachsuch concept must be accommodated in any representation. This paper presents the ideas behind the representation of multiple concepts from an underlying description of a design such that the inter- andintra-discipline views of that design can be formed dynamically. These ideas are based on different functional contexts. Functional subsystems are introduced as an adjunct to design prototypes. An example showshow these functional subsystems are related to the design elements and how they allow for the formation of the various concepts. Thus the representation of the functional properties of design objects is theunderlying basis for the formation of different concepts.
keywords Conceptual Modelling, Multiple Abstraction Representation, CAD Modelling, Collaborative Design, Functional Representation
series journal paper
email
last changed 2003/05/15 21:33

_id 149d
authors Rosenman, M.A.
year 1996
title The generation of form using an evolutionary approach
source J.S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design Ě96, 643-662
summary Design is a purposeful knowledge-based human activity whose aim is to create form which, when realized, satisfies the given intended purposes.1 Design may be categorized as routine or non-routine with the latter further categorized as innovative or creative. The lesser the knowledge about existing relationships between the requirements and the form to satisfy those requirements, the more a design problem tends towards creative design. Thus, for non-routine design, a knowledge-lean methodology is necessary. Natural evolution has produced a large variety of forms well-suited to their environment suggesting that the use of an evolutionary approach could provide meaningful design solutions in a non-routine design environment. This work investigates the possibilities of using an evolutionary approach based on a genotype which represents design grammar rules for instructions on locating appropriate building blocks. A decomposition/aggregation hierarchical organization of the design object is used to overcome combinatorial problems and to maximize parallelism in implementation.
series other
last changed 2003/04/23 15:50

_id 4040
authors Smith, I., Stalker, R. and Lottaz, C.
year 1996
title Creating design objects from cases for interactive spatial composition
source Artificial Intelligence in Design ‚96, eds. J. S. Gero and F. Sudweeks, 97 - 116. Dordrecht: Kluwer Academic
summary This paper describes IDIOM, a system for composing layouts using cases. Layouts are interactively composed by users rather than automatically generated as has been proposed by previous research. The design is incrementally parameterized as cases are added and therefore, case adaptation, user interpretation and model activation can occur at any stage. IDIOM supports designers through reducing constraint complexity and through managing design preferences, thereby restraining proposed solutions and further adaptation within globally feasible design spaces. Improvements to the algorithm over previous implementations have increased reliability. In general, designers, who currently carry out spatial composition tasks using standard drawing tools, have reacted favourably to the system, providing useful feedback for further work.
series journal paper
last changed 2003/04/23 15:14

_id 6ab6
authors Maher, M.L., Rutherford, J. and Gero, J.
year 1996
title Graduate Design Computing Teaching at the University of Sydney
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 233-244
doi https://doi.org/10.52842/conf.caadria.1996.233
summary Design Computing involves the effective application of computing technologies, digital media, formal methods and design theory to the study and practice of design. Computers are assuming a prominent role in design practice. This change has been partly brought about by economic pressures to improve the efficiency of design practice, but there has also been a desire to aid the design process in order to produce better designs. The introduction of new computer-based techniques and methods generally involves a re-structuring of practice and ways of designing. We are also seeing significant current developments that have far reaching implications for the future. These innovations are occuring at a rapid rate and are imposing increasing pressures on design professionals. A re-orientation of skills is required in order to acquire and manage computer resources. If designers are to lead rather than follow developments then they need to acquire specialist knowledge – a general Computing also demands technical competence, an awareness of advances in the field and an innovative spirit to harness the technology understanding of computers and their impact, expertise in the selection and management of computer-aided design systems, and skill in the design an implementation of computer programs and systems.
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2007_659
id caadria2007_659
authors Chen, Zi-Ru
year 2007
title The Combination of Design Media and Design Creativity _ Conventional and Digital Media
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
doi https://doi.org/10.52842/conf.caadria.2007.x.w5x
summary Creativity is always interested in many fields, in particular, creativity and design creativity have many interpretations (Boden, 1991; Gero and Maher, 1992, 1993; Kim, 1990; Sternberg, 1988; Weisberg, 1986). In early conceptual design process, designers used large number of sketches and drawings (Purcell and Gero, 1998). The sketch can inspire the designer to increase the creativity of the designer’s creations(Schenk, 1991; Goldschmidt, 1994; Suwa and Tversky, 1997). The freehand sketches by conventional media have been believed to play important roles in processes of the creative design thinking(Goldschmidt, 1991; Schon and Wiggins, 1992; Goel, 1995; Suwa et al., 2000; Verstijnen et al., 1998; Elsas van and Vergeest, 1998). Recently, there are many researches on inspiration of the design creativity by digital media(Liu, 2001; Sasada, 1999). The digital media have been used to apply the creative activities and that caused the occurrenssce of unexpected discovery in early design processes(Gero and Maher, 1993; Mitchell, 1993; Schmitt, 1994; Gero, 1996, 2000; Coyne and Subrahmanian, 1993; Boden, 1998; Huang, 2001; Chen, 2001; Manolya et al. 1998; Verstijinen et al., 1998; Lynn, 2001). In addition, there are many applications by combination of conventional and digital media in the sketches conceptual process. However, previous works only discussed that the individual media were related to the design creativity. The cognitive research about the application of conceptual sketches design by integrating both conventional and digital media simultaneously is absent.
series CAADRIA
email
last changed 2022/06/07 07:50

_id 4171
authors Gero, John S. and Maher, Mary Lou
year 1996
title Current CAAD Research at the Key Centre of Design Computing University of Sydney
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 35-52
doi https://doi.org/10.52842/conf.caadria.1996.035
summary Designing is one of the most significant of human acts. It is one of the bases for change in our society. However, designers are amongst the least recongised for society’s change agents. Surprisingly, given that designing has been occurring for many millennia, our understanding of the processes of designing is remarkably limited. Part of our understanding of designing comes not only from studying human designers as they design but from postulating design methods which describe some aspect of the design process without claiming to model the processes used by human designers. The early approaches to design methods were prescriptive when applied to human designers. More recently, design methods have been formalised not as humano-centred processes but as processes capable of computer implementation. Amongst the goals of these endeavours are to develop a better understanding of the processes of designing, to develop methods which can be computerised and to aid human designers through the introduction of novel methods which have no human counterpart. Much of this research is driven by the fact that human designs are very often incomplete, inadequate or just plainly poorly conceived for the task they are meant to address.
series CAADRIA
email
last changed 2022/06/07 07:51

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2012/12/04 07:53

No more hits.

HOMELOGIN (you are user _anon_238387 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002