CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 8 of 8

_id 62a1
authors Maher, M.L. and Poon, J.
year 1996
title Modelling design exploration as co-evolution
source Microcomputers in Civil Engineering, 11:192-207
summary Most computer-based design tools assume designers work with a well defined problem. However, this assumption has been challenged by current research. The explorative aspect of design, especially during conceptual design, is not fully addressed. This paper introduces a model for problem-design exploration, and how this model can be implemented using the genetic algorithm (GA) paradigm. The basic GA, which does not support our exploration model, evaluates individuals from a population of design solutions with an unchanged fitness function. This approach to evaluation implements search with a prefixed goal. Modifications to the basic GA are required to support exploration. Two approaches to implement a co-evolving GA are presented and discussed in this paper: one in which the fitness function is represented within the genotype, and a second in which the fitness function is modelled as a separately evolving population of genotypes.
series journal paper
email
last changed 2003/04/23 15:50

_id 6ab6
authors Maher, M.L., Rutherford, J. and Gero, J.
year 1996
title Graduate Design Computing Teaching at the University of Sydney
doi https://doi.org/10.52842/conf.caadria.1996.233
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 233-244
summary Design Computing involves the effective application of computing technologies, digital media, formal methods and design theory to the study and practice of design. Computers are assuming a prominent role in design practice. This change has been partly brought about by economic pressures to improve the efficiency of design practice, but there has also been a desire to aid the design process in order to produce better designs. The introduction of new computer-based techniques and methods generally involves a re-structuring of practice and ways of designing. We are also seeing significant current developments that have far reaching implications for the future. These innovations are occuring at a rapid rate and are imposing increasing pressures on design professionals. A re-orientation of skills is required in order to acquire and manage computer resources. If designers are to lead rather than follow developments then they need to acquire specialist knowledge – a general Computing also demands technical competence, an awareness of advances in the field and an innovative spirit to harness the technology understanding of computers and their impact, expertise in the selection and management of computer-aided design systems, and skill in the design an implementation of computer programs and systems.
series CAADRIA
email
last changed 2022/06/07 07:59

_id f5a3
authors Maher, M.L. and Gomez de Silva Garza, A.
year 1996
title Developing case-based reasoning for structural design
source IEEE Expert
summary Case-based systems enable users to retrieve previously known designs from memory and adapt them to fit the current design problem. The four case-based design systems described here illustrate how various implementations achieve design assistance or design automation objectives. Case-based reasoning is a problem-solving technique that makes analogies between a problem and previously encountered situations (cases) relevant to solving the problem. Using CBR as a design process model involves the subtasks of recalling previously known designs from memory and adapting these design cases or subcases to fit the current design context. The detailed development of this process model for a particular design domain proceeds in parallel with the development of the case representation, the case memory organization, and the necessary design knowledge. The selection of an information representation paradigm and the details of its use for a problem-solving domain depend on the intended use of the information, the project information available, and the nature of the domain. CBR could be used to develop and implement a CBR system. Although that sounds circular, if CBR is a viable approach to problem solving, it can be applied to the development of the reasoning system itself. Toward that end, this article presents four "cases" of case-based building design systems that we've developed at the University of Sydney: CaseCAD, CADsyn, Win, and Demex. These systems exemplify alternative case memory contents and organizations and provide insight into different potential implementations of the recall and adaptation subprocesses.
series journal paper
email
last changed 2003/04/23 15:14

_id caadria2007_659
id caadria2007_659
authors Chen, Zi-Ru
year 2007
title The Combination of Design Media and Design Creativity _ Conventional and Digital Media
doi https://doi.org/10.52842/conf.caadria.2007.x.w5x
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
summary Creativity is always interested in many fields, in particular, creativity and design creativity have many interpretations (Boden, 1991; Gero and Maher, 1992, 1993; Kim, 1990; Sternberg, 1988; Weisberg, 1986). In early conceptual design process, designers used large number of sketches and drawings (Purcell and Gero, 1998). The sketch can inspire the designer to increase the creativity of the designer’s creations(Schenk, 1991; Goldschmidt, 1994; Suwa and Tversky, 1997). The freehand sketches by conventional media have been believed to play important roles in processes of the creative design thinking(Goldschmidt, 1991; Schon and Wiggins, 1992; Goel, 1995; Suwa et al., 2000; Verstijnen et al., 1998; Elsas van and Vergeest, 1998). Recently, there are many researches on inspiration of the design creativity by digital media(Liu, 2001; Sasada, 1999). The digital media have been used to apply the creative activities and that caused the occurrenssce of unexpected discovery in early design processes(Gero and Maher, 1993; Mitchell, 1993; Schmitt, 1994; Gero, 1996, 2000; Coyne and Subrahmanian, 1993; Boden, 1998; Huang, 2001; Chen, 2001; Manolya et al. 1998; Verstijinen et al., 1998; Lynn, 2001). In addition, there are many applications by combination of conventional and digital media in the sketches conceptual process. However, previous works only discussed that the individual media were related to the design creativity. The cognitive research about the application of conceptual sketches design by integrating both conventional and digital media simultaneously is absent.
series CAADRIA
email
last changed 2022/06/07 07:50

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 4171
authors Gero, John S. and Maher, Mary Lou
year 1996
title Current CAAD Research at the Key Centre of Design Computing University of Sydney
doi https://doi.org/10.52842/conf.caadria.1996.035
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 35-52
summary Designing is one of the most significant of human acts. It is one of the bases for change in our society. However, designers are amongst the least recongised for society’s change agents. Surprisingly, given that designing has been occurring for many millennia, our understanding of the processes of designing is remarkably limited. Part of our understanding of designing comes not only from studying human designers as they design but from postulating design methods which describe some aspect of the design process without claiming to model the processes used by human designers. The early approaches to design methods were prescriptive when applied to human designers. More recently, design methods have been formalised not as humano-centred processes but as processes capable of computer implementation. Amongst the goals of these endeavours are to develop a better understanding of the processes of designing, to develop methods which can be computerised and to aid human designers through the introduction of novel methods which have no human counterpart. Much of this research is driven by the fact that human designs are very often incomplete, inadequate or just plainly poorly conceived for the task they are meant to address.
series CAADRIA
email
last changed 2022/06/07 07:51

_id 6d9c
authors Saad, Milad and Maher, Mary Lou
year 1996
title Shared understanding in computer-supported collaborative design
source Computer-Aided Design, Vol. 28 (3) (1996) pp. 183-192
summary We propose that computer-support for collaborative design requires a shared understanding of the design artifact among a design team. The development and support for this shared understanding builds on currentdevelopments and research in AI, CAD, CSCW and computational models of design. The shared understanding should be an explicit representation in order to be effectively shared. The explicit representation shouldcomprise both a visual representation and a semantic model. In this paper we present an architecture for computer-supported collaborative design that distinguishes between a shared visual representation and a sharedunderlying representation. The development of the underlying representation combines graphical and semantic objects than can be abstracted and aggregated as a tangled hierarchy.
keywords Computer-Supported Collaborative Design, Design Semantics, Multimedia
series journal paper
last changed 2003/05/15 21:33

_id avocaad_2001_16
id avocaad_2001_16
authors Yu-Ying Chang, Yu-Tung Liu, Chien-Hui Wong
year 2001
title Some Phenomena of Spatial Characteristics of Cyberspace
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary "Space," which has long been an important concept in architecture (Bloomer & Moore, 1977; Mitchell, 1995, 1999), has attracted interest of researchers from various academic disciplines in recent years (Agnew, 1993; Benko & Strohmayer, 1996; Chang, 1999; Foucault, 1982; Gould, 1998). Researchers from disciplines such as anthropology, geography, sociology, philosophy, and linguistics regard it as the basis of the discussion of various theories in social sciences and humanities (Chen, 1999). On the other hand, since the invention of Internet, Internet users have been experiencing a new and magic "world." According to the definitions in traditional architecture theories, "space" is generated whenever people define a finite void by some physical elements (Zevi, 1985). However, although Internet is a virtual, immense, invisible and intangible world, navigating in it, we can still sense the very presence of ourselves and others in a wonderland. This sense could be testified by our naming of Internet as Cyberspace -- an exotic kind of space. Therefore, as people nowadays rely more and more on the Internet in their daily life, and as more and more architectural scholars and designers begin to invest their efforts in the design of virtual places online (e.g., Maher, 1999; Li & Maher, 2000), we cannot help but ask whether there are indeed sensible spaces in Internet. And if yes, these spaces exist in terms of what forms and created by what ways?To join the current interdisciplinary discussion on the issue of space, and to obtain new definition as well as insightful understanding of "space", this study explores the spatial phenomena in Internet. We hope that our findings would ultimately be also useful for contemporary architectural designers and scholars in their designs in the real world.As a preliminary exploration, the main objective of this study is to discover the elements involved in the creation/construction of Internet spaces and to examine the relationship between human participants and Internet spaces. In addition, this study also attempts to investigate whether participants from different academic disciplines define or experience Internet spaces in different ways, and to find what spatial elements of Internet they emphasize the most.In order to achieve a more comprehensive understanding of the spatial phenomena in Internet and to overcome the subjectivity of the members of the research team, the research design of this study was divided into two stages. At the first stage, we conducted literature review to study existing theories of space (which are based on observations and investigations of the physical world). At the second stage of this study, we recruited 8 Internet regular users to approach this topic from different point of views, and to see whether people with different academic training would define and experience Internet spaces differently.The results of this study reveal that the relationship between human participants and Internet spaces is different from that between human participants and physical spaces. In the physical world, physical elements of space must be established first; it then begins to be regarded as a place after interaction between/among human participants or interaction between human participants and the physical environment. In contrast, in Internet, a sense of place is first created through human interactions (or activities), Internet participants then begin to sense the existence of a space. Therefore, it seems that, among the many spatial elements of Internet we found, "interaction/reciprocity" Ñ either between/among human participants or between human participants and the computer interface Ð seems to be the most crucial element.In addition, another interesting result of this study is that verbal (linguistic) elements could provoke a sense of space in a degree higher than 2D visual representation and no less than 3D visual simulations. Nevertheless, verbal and 3D visual elements seem to work in different ways in terms of cognitive behaviors: Verbal elements provoke visual imagery and other sensory perceptions by "imagining" and then excite personal experiences of space; visual elements, on the other hand, provoke and excite visual experiences of space directly by "mapping".Finally, it was found that participants with different academic training did experience and define space differently. For example, when experiencing and analyzing Internet spaces, architecture designers, the creators of the physical world, emphasize the design of circulation and orientation, while participants with linguistics training focus more on subtle language usage. Visual designers tend to analyze the graphical elements of virtual spaces based on traditional painting theories; industrial designers, on the other hand, tend to treat these spaces as industrial products, emphasizing concept of user-center and the control of the computer interface.The findings of this study seem to add new information to our understanding of virtual space. It would be interesting for future studies to investigate how this information influences architectural designers in their real-world practices in this digital age. In addition, to obtain a fuller picture of Internet space, further research is needed to study the same issue by examining more Internet participants who have no formal linguistics and graphical training.
series AVOCAAD
email
last changed 2005/09/09 10:48

No more hits.

HOMELOGIN (you are user _anon_751436 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002