CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 476

_id 2ca3
authors Curless, Brian and Levoy, Marc
year 1996
title A Volumetric Method for Building Complex Models from Range Images
source Stanford University
summary A number of techniques have been developed for reconstructing surfaces by integrating groups of aligned range images. A desirable set of properties for such algorithms includes: incremental updating, representation of directional uncertainty, the ability to fill gaps in the reconstruction, and robustness in the presence of outliers. Prior algorithms possess subsets of these properties. In this paper, we present a volumetric method for integrating range images that possesses all of these properties. Our volumetric representation consists of a cumulative weighted signed distance function. Working with one range image at a time, we first scan-convert it to a distance function, then combine this with the data already acquired using a simple additive scheme. To achieve space efficiency, we employ a run-length encoding of the volume. To achieve time efficiency, we resample the range image to align with the voxel grid and traverse the range and voxel scanlines synchronously. We generate the final manifold by extracting an isosurface from the volumetric grid. We show that under certain assumptions, this isosurface is optimal in the least squares sense. To fill gaps in the model, we tessellate over the boundaries between regions seen to be empty and regions never observed. Using this method, we are able to integrate a large number of range images (as many as 70) yielding seamless, high-detail models of up to 2.6 million triangles.
series other
last changed 2003/04/23 15:50

_id ddssar9633
id ddssar9633
authors Szalapaj, Peter and Kane, Andrew
year 1996
title Techniques of Superimposition
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary This paper addresses the issues of 2-D and 3-D image manipulation in the context of a Computational Design Formulation System. The central feature of such a system is the ability to bring together two or more design objects in the same reference space for the purpose of analysis. Studies of traditional design methods has revealed the effectiveness of this technique of superimposition. This paper describes ways in which superimposition can be achieved, and, in particular, focuses on a range of domain-independent knowledge-based graphical operators that enable the decomposition of complex design forms into simpler aspects (secondary models) that can then be superimposed and/or analysed from a design-theoretic point of view. Examples of domain-independent knowledge-base graphical operators include object selection, planar bisection, 2-D closure (the grouping of lines into regions), aggregation (the decomposition of 2-D regions into aggregations of lines), spatial bisection, 3-D closure (the grouping of 2-D regions into volumes), 3-D aggregation (the decomposition of volumes into aggregations of 2-D regions). The representation of these operators is dependent upon the notion of a parameterisable volume, thus avoiding the need for translations between multiple representations of graphical objects by providing a common representation form for all objects. Secondary models can therefore subsequently be manipulated either through subtractive procedures (e.g. carving voids from solids), or by additive ones (e.g. assembling given design elements), or by other means such as transformation or distortion. The same techniques of superimposition can also be used to support the visualisation of design forms in two ways: by the juxtaposition of plans and sections with the 3-D form; by the multiple superimposition of alternative design representations e.g. structural schematic, parti schematic, volumetric schematic and architectural model.
keywords Design Formulation, Superimposition, Primary Model, Secondary Model, Parameterisable Volume
series DDSS
last changed 2003/08/07 16:36

_id af53
authors Boyer, E. and Mitgang, L.
year 1996
title Building community: a new future for architecture education and practice
source Carnegie Foundation for the Advancement of Teaching
summary Internships, before and after graduation, are the most essential link connecting students to the world of practice. Yet, by all accounts, internship is perhaps the most troubled phase of the continuing education of architects. During this century, as architectural knowledge grew more complex, the apprenticeship system withered away and schools assumed much of the responsibility for preparing architects for practice. However, schools cannot do the whole job. It is widely acknowledged that certain kinds of technical and practical knowledge are best learned in the workplace itself, under the guidance of experienced professionals. All state accrediting boards require a minimum period of internship-usually about three years-before a person is eligible to take the licensing exam. The National Council of Architectural Registration Boards (NCARB) allows students to earn up to two years of work credit prior to acquisition of an accredited degree. The Intern Development Program (IDP), launched by NCARB and the American Institute of Architects in 1979, provides the framework for internship in some forty states. The program was designed to assure that interns receive adequate mentoring, that experiences are well-documented, and that employers and interns allocate enough time to a range of educational and vocational experiences to prepare students for eventual licensure. As the IDP Guidelines state, "The shift from school to office is not a transition from theory to pragmatism. It is a period when theory merges with pragmatism.... It's a time when you: apply your formal education to the daily realities of architectural practice; acquire comprehensive experience in basic practice areas; explore specialized areas of practice; develop professional judgment; continue your formal education in architecture; and refine your career goals." Whatever its accomplishments, however, we found broad consensus that the Intern Development Program has not, by itself, solved the problems of internship. Though we found mutually satisfying internship programs at several of the firms we visited or heard about around the country, at many others interns told us they were not receiving the continuing education and experience they needed. The truth is that architecture has serious, unsolved problems compared with other fields when it comes to supplying on-the-job learning experiences to induct students into the profession on a massive scale. Medicine has teaching hospitals. Beginning teachers work in actual classrooms, supported by school taxes. Law offices are, for the most part, in a better financial position to support young lawyers and pay them living wages. The architecture profession, by contrast, must support a required system of internship prior to licensure in an industry that has neither the financial resources of law or medicine, the stability and public support of teaching, nor a network of locations like hospitals or schools where education and practice can be seamlessly connected. And many employers acknowledged those problems. "The profession has all but undermined the traditional relationship between the profession and the academy," said Neil Frankel, FAIA, executive vice president of Perkins & Will, a multinational firm with offices in New York, Chicago, Washington, and London. "Historically, until the advent of the computer, the profession said, 'Okay, go to school, then we in the profession will teach you what the real world is like.' With the coming of the computer, the profession needed a skill that students had, and has left behind the other responsibilities." One intern told us she had been stuck for months doing relatively menial tasks such as toilet elevations. Another intern at a medium-sized firm told us he had been working sixty to seventy hours per week for a year and a half. "Then my wife had a baby and I 'slacked off' to fifty hours. The partner called me in and I got called on the carpet for not working hard enough." "The whole process of internship is being outmoded by economics," one frustrated intern told us. "There's not the time or the money. There's no conception of people being groomed for careers. The younger staff are chosen for their value as productive workers." "We just don't have the best structure here to use an intern's abilities to their best," said a Mississippi architect. "The people who come out of school are really problems. I lost patience with one intern who was demanding that I switch him to another section so that he could learn what he needed for his IDP. I told him, 'It's not my job to teach you. You are here to produce.'" What steps might help students gain more satisfying work opportunities, both during and after graduation?
series other
last changed 2003/04/23 15:14

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id f5ee
authors Erhorn, H., De Boer, J. and Dirksmueller, M.
year 1997
title ADELINE, an Integrated Approach to Lighting Simulation
source Proceedings of Right Light 4, 4th European Conference on Energy-Efficient Lighting, pp.99-103
summary The use of daylighting and artificial lighting simulation programs to calculate complex systems and models in the design practice often is impeded by the fact that the operation of these programs, especially the model input, is extremely complicated and time-consuming. Programs that are easier to use generally do not show the calculation capabilities required in practice. A second obstacle arises as the lighting calculations often do not allow any statements regarding the interactions with the energetic and thermal building performance. Both problems are mainly due to a lacking integration of the design tools of other building design practitioners as well as due to insufficient user interfaces. The program package ADELINE (Advanced Daylight and Electric Lighting Integrated New Environment) being available since May 1996 as completely revised version 2.0 presents a promising approach to solve these problems. This contribution describes the approaches and methods used within the international project IEA Task 21 for a further development of the ADELINE system. Aim of this work is a further improvement of user interfaces based on the inclusion of new dialogs and on a portation of the program system from MS-DOS to the Windows NT platform. Additional focus is laid on the use of recent developments in the field of information technology and experiences gained in other projects on integrated building design systems, like for example EU-COMBINE, in a pragmatical way. An integrated building design system with open standardized interfaces is to be achieved inter alia by using ISOSTEP formats, database technologies and a consequent, object-oriented design.
series other
last changed 2003/04/23 15:50

_id a115
authors Hanna, R.
year 1996
title A Computer-based Approach for Teaching Daylighting at the Early Design Stage
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 181-190
doi https://doi.org/10.52842/conf.ecaade.1996.181
summary This paper has reviewed the literature on the teaching of daylight systems design in architectural education, and found that traditionally such teaching has evolved around the prediction of the Daylight Factor (DF%), i.e. illuminance, via two methods one studio-based and another laboratory based. The former relies on graphical and/or mathematical techniques, e.g. the BRE Protractors, the BRE Tables, Waldram Diagrams, the Pepper-pot diagrams and the BRE formula. The latter tests scale models of buildings under artificial sky conditions (CIE sky). The paper lists the advantages and disadvantages of both methods in terms of compatibility with the design process, time required, accuracy, energy-consumption facts, and visual information.

This paper outlines a proposal for an alternative method for teaching daylight and artificial lighting design for both architectural students and practitioners. It is based on photorealistic images as well as numbers, and employs the Lumen Micro 6.0 programme. This software package is a complete indoor lighting design and analysis programme which generates perspective renderings and animated walk-throughs of the space lighted naturally and artificially.

The paper also presents the findings of an empirical case study to validate Lumen Micro 6.0 by comparing simulated output with field monitoring of horizontal and vertical illuminance and luminance inside the highly acclaimed GSA building in Glasgow. The monitoring station was masterminded by the author and uses the Megatron lighting sensors, Luscar dataloggers and the Easylog analysis software. In addition photographs of a selected design studio inside the GSA building were contrasted with computer generated perspective images of the same space.

series eCAADe
email
last changed 2022/06/07 07:50

_id 3451
authors Harrison, Beverly L.
year 1996
title The Design and Evaluation of Transparent User Interfaces. From Theory to Practice
source University of Toronto, Toronto
summary The central research issue addressed by this dissertation is how we can design systems where information on user interface tools is overlaid on the work product being developed with these tools. The interface tools typically appear in the display foreground while the data or work space being manipulated typically appear in the perceptual background. This represents a trade-off in focused foreground attention versus focused background attention. By better supporting human attention we hope to improve the fluency of work, where fluency is reflected in a more seamless integration between task goals, user interface tool manipulations to achieve these goals, and feedback from the data or work space being manipulated. This research specifically focuses on the design and evaluation of transparent user interface 'layers' applied to graphical user interfaces. By allowing users to see through windows, menus, and tool palettes appearing in the perceptual foreground, an improved awareness of the underlying workspace and preservation of context are possible. However, transparent overlapping objects introduce visual interference which may degrade task performance, through reduced legibility. This dissertation explores a new interface technique (i.e., transparent layering) and, more importantly, undertakes a deeper investigation into the underlying issues that have implications for the design and use of this new technique. We have conducted a series of experiments, progressively more representative of the complex stimuli from real task domains. This enables us to systematically evaluate a variety of transparent user interfaces, while remaining confident of the applicability of the results to actual task contexts. We also describe prototypes and a case study evaluation of a working system using transparency based on our design parameters and experimental findings. Our findings indicate that similarity in both image color and in image content affect the levels of visual interference. Solid imagery in either the user interface tools (e.g., icons) or in the work space content (e.g., video, rendered models) are highly interference resistant and work well up to 75% transparent (i.e., 25% of foreground image and 75% of background content). Text and wire frame images (or line drawings) perform equally poorly but are highly usable up to 50% transparent, with no apparent performance penalty. Introducing contrasting outlining techniques improves the usability of transparent text menu interfaces up to 90% transparency. These results suggest that transparency is a usable and promising interface alternative. We suggest several methods of overcoming today's technical challenges in order to integrate transparency into existing applications.  
series thesis:PhD
email
last changed 2003/02/12 22:37

_id ddssar9615
id ddssar9615
authors Hill, S.M., Sinclair, B.S., Sandall, D., Butt, T.S., Sampson, N. and Blackie, N.
year 1996
title A Computer-Facilitated Approach for Development, Visualization and Testing of Functional Programming Information
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary Functional programming processes for complex architectural projects have traditionally been hampered by the static nature of available tools and technologies. Connection with user groups have likewise been disadvantaged through the employment of sender-oriented communications models that limit feedback and interaction. In addition, diminishing project budgets place increasing pressure on clients and consult-ants to develop more effective and efficient methods for the design and construction of buildings. This paper discusses a case-study involving the design of a highly complex medical laboratory wherein infoc mation technologies were used to facilitate the development, visualization and testing of functional pro-gramming information. The objectives for the project involved creating an environment where users and clients actively participate in consideration of programming directions and implications in a manner that would not only increase confidence that the program would meet user requirements now and in the future, but also would reduce redundant and or inefficient space within the overall building programme. In the approach used the distinction between programming and design is diminished to improve communication of desires and design responses. The findings of the study indicate that the computer-facilitated approach met the objectives of the project and that the methods developed hold promise for application across a broader range of project types.
series DDSS
last changed 2003/08/07 16:36

_id a022
authors Hirschberg, U. and Streilein, A.
year 1996
title CAAD meets digital photogrammetry: modelling _weak forms_ for computer measurement
source Automation in Construction 5 (3) (1996) pp. 171-183
summary The integration of state-of-the-art photogrammetric methods with the capabilities of CAAD has great potential for a variety of architectural applications. This paper describes the current status of an ongoing research project which aims to develop an easy to use tool for the photogrammetric generation of accurate, reliable and well structured 3D CAAD models of architectural objects. The project adresses the whole range of issues that arise from the digital image acquisition to the data processing, the data integration between photogrammetry and CAAD and the architectural structuring of the geometric data. While also giving a brief overview of the project, the paper concentrates on one central aspect of the system: a method to model what we will define as 'weak forms' as the basis for qualitatively controlled computer measurement.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 010d
authors Kokosalakis, Jen
year 1996
title The Role and Status of Computing and Participation of Design Clients in the Curriculum
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 227-238
doi https://doi.org/10.52842/conf.ecaade.1996.227
summary This paper is not intended as a fully researched exploration into architecture course coverage, but an attempt to introduce debate regarding some concerns on the role and status of Computing and consumer participation in the hope that CAAD peers will discuss and reflect with other specialists. A number of commentaries on serious deficiencies in the education of architects point to poor take-up of computing into the curriculum and an almost disassociation of the eventual designed building user from decisions on the design. By comparison it seems easier to find architects today who involve clients almost throughout the design process and increasing competency and continuity of CAAD usage in practices. The few brief references to Schools’ curricula are not formalised random studies. Certainly many excellent features will have been omitted. The intention is to start the debate. Finally a few directions are noted and some conclusions proffered. An argument is made for 3D CAAD models as the backbone and direct negotiating focus for design arbitration between consumer, designer [or students] and other professional collaborators in tesigning buildings, particularly where complex forms and spatial relationships are involved.

series eCAADe
email
last changed 2022/06/07 07:51

_id c7e9
authors Maver, T.W.
year 2002
title Predicting the Past, Remembering the Future
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 2-3
summary Charlas Magistrales 2There never has been such an exciting moment in time in the extraordinary 30 year history of our subject area, as NOW,when the philosophical theoretical and practical issues of virtuality are taking centre stage.The PastThere have, of course, been other defining moments during these exciting 30 years:• the first algorithms for generating building layouts (circa 1965).• the first use of Computer graphics for building appraisal (circa 1966).• the first integrated package for building performance appraisal (circa 1972).• the first computer generated perspective drawings (circa 1973).• the first robust drafting systems (circa 1975).• the first dynamic energy models (circa 1982).• the first photorealistic colour imaging (circa 1986).• the first animations (circa 1988)• the first multimedia systems (circa 1995), and• the first convincing demonstrations of virtual reality (circa 1996).Whereas the CAAD community has been hugely inventive in the development of ICT applications to building design, it hasbeen woefully remiss in its attempts to evaluate the contribution of those developments to the quality of the built environmentor to the efficiency of the design process. In the absence of any real evidence, one can only conjecture regarding the realbenefits which fall, it is suggested, under the following headings:• Verisimilitude: The extraordinary quality of still and animated images of the formal qualities of the interiors and exteriorsof individual buildings and of whole neighborhoods must surely give great comfort to practitioners and their clients thatwhat is intended, formally, is what will be delivered, i.e. WYSIWYG - what you see is what you get.• Sustainability: The power of «first-principle» models of the dynamic energetic behaviour of buildings in response tochanging diurnal and seasonal conditions has the potential to save millions of dollars and dramatically to reduce thedamaging environmental pollution created by badly designed and managed buildings.• Productivity: CAD is now a multi-billion dollar business which offers design decision support systems which operate,effectively, across continents, time-zones, professions and companies.• Communication: Multi-media technology - cheap to deliver but high in value - is changing the way in which we canexplain and understand the past and, envisage and anticipate the future; virtual past and virtual future!MacromyopiaThe late John Lansdown offered the view, in his wonderfully prophetic way, that ...”the future will be just like the past, onlymore so...”So what can we expect the extraordinary trajectory of our subject area to be?To have any chance of being accurate we have to have an understanding of the phenomenon of macromyopia: thephenomenon exhibitted by society of greatly exaggerating the immediate short-term impact of new technologies (particularlythe information technologies) but, more importantly, seriously underestimating their sustained long-term impacts - socially,economically and intellectually . Examples of flawed predictions regarding the the future application of information technologiesinclude:• The British Government in 1880 declined to support the idea of a national telephonic system, backed by the argumentthat there were sufficient small boys in the countryside to run with messages.• Alexander Bell was modest enough to say that: «I am not boasting or exaggerating but I believe, one day, there will bea telephone in every American city».• Tom Watson, in 1943 said: «I think there is a world market for about 5 computers».• In 1977, Ken Olssop of Digital said: «There is no reason for any individuals to have a computer in their home».The FutureJust as the ascent of woman/man-kind can be attributed to her/his capacity to discover amplifiers of the modest humancapability, so we shall discover how best to exploit our most important amplifier - that of the intellect. The more we know themore we can figure; the more we can figure the more we understand; the more we understand the more we can appraise;the more we can appraise the more we can decide; the more we can decide the more we can act; the more we can act themore we can shape; and the more we can shape, the better the chance that we can leave for future generations a trulysustainable built environment which is fit-for-purpose, cost-beneficial, environmentally friendly and culturally significactCentral to this aspiration will be our understanding of the relationship between real and virtual worlds and how to moveeffortlessly between them. We need to be able to design, from within the virtual world, environments which may be real ormay remain virtual or, perhaps, be part real and part virtual.What is certain is that the next 30 years will be every bit as exciting and challenging as the first 30 years.
series SIGRADI
email
last changed 2016/03/10 09:55

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ddssar9630
id ddssar9630
authors Stark, S.L. and Phillips, R.G.
year 1996
title Occupational Performance Theory as a Support to Design of the Built Environment for Persons with Disabilities
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary Architectural practice should not be considered only a method of building buildings, but also a process of creating places for those who will use them. The interdependent nature of humans and the environment has provided architects and designers with a challenge; to build not only a space, but also a place in which human performance occurs. Environment -- behavior relations are complex and transactional. An understanding of this relationship facilitates the creation of environments that improve the quality of life for the buildings users. A strong understanding of the complexities of the environment is greatly enhanced by knowledge of the performance of the person. Knowledge of the person as a unique being who assumes different roles, possesses skills, and has attributes (abilities) allows the designer a greater respect of the dynamic experience of a person engaged in activity within an environment. The theory of occupational performance supports the understanding of the person and the persons daily tasks. These models describe human performance components and human performance areas. They also acknowledge that the person is engaged in activity within an environment. These models could prove to be invaluable to designers and architects interested in using knowledge of the persons in conjunction with knowledge of the environment to create spaces for people with disabilities.
series DDSS
last changed 2003/08/07 16:36

_id 88a2
authors Zhang, Lei
year 1996
title The Design of a Test Program for Basic Design
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 253-267
doi https://doi.org/10.52842/conf.caadria.1996.253
summary Within the whole range of methods available in the teaching of design with computer the "Exercise" made, seems to be one of the most productive. Not only the student but also the teacher is involved in a step by step process of search, discovery and development. The continuous and controlled building of complexity in architecture design are the underlying issues. The student models in desecrate steps, exploring, testing, discovering and thus build a "repertoire" which combines knowledge skills, experience, attitudes as well as methodology. Symbiotically related the teacher prepares the exercise, one might call the process applied design research. Since based upon research, the teacher structures the learning process defining the what and why by indirect means. Leaving the how to the student's initiative and inventiveness. The design of the design or the design of the learning process poses one of the real challenges to the teacher. In the case of chains of exercise the interactiveness of the student and teacher are of specific interest, since feedback loops add to the process. The following test program is directly related to this line of thinking. In it a "teacher" is asked to develop a simple chain of exercises based on a given "theoretical model". Thus building his own experience in basic design. In this test run the student is introduced to the concept of continuous space as well as the notion of architecture form as the interaction between space, site and structure a course. It could be seen as a basic model since we could have much more complex resolutions if we change the given elements and limitations.
series CAADRIA
last changed 2022/06/07 07:57

_id ascaad2004_paper11
id ascaad2004_paper11
authors Abdelfattah, Hesham Khairy and Ali A. Raouf
year 2004
title No More Fear or Doubt: Electronic Architecture in Architectural Education
source eDesign in Architecture: ASCAAD's First International Conference on Computer Aided Architectural Design, 7-9 December 2004, KFUPM, Saudi Arabia
summary Operating electronic and Internet worked tools for Architectural education is an important, and merely a prerequisite step toward creating powerful tele-collabortion and tele-research in our Architectural studios. The design studio, as physical place and pedagogical method, is the core of architectural education. The Carnegie Endowment report on architectural education, published in 1996, identified a comparably central role for studios in schools today. Advances in CAD and visualization, combined with technologies to communicate images, data, and “live” action, now enable virtual dimensions of studio experience. Students no longer need to gather at the same time and place to tackle the same design problem. Critics can comment over the network or by e-mail, and distinguished jurors can make virtual visits without being in the same room as the pin-up—if there is a pin-up (or a room). Virtual design studios (VDS) have the potential to support collaboration over competition, diversify student experiences, and redistribute the intellectual resources of architectural education across geographic and socioeconomic divisions. The challenge is to predict whether VDS will isolate students from a sense of place and materiality, or if it will provide future architects the tools to reconcile communication environments and physical space.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 6ec6
authors Alsayyad, Nezar, Elliott, Ame and Kalay, Yehuda
year 1996
title Narrative Models: A Database Approach to Modeling Medieval Cairo
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 247-254
doi https://doi.org/10.52842/conf.acadia.1996.247
summary This paper explores the use of three-dimensional simulations to investigate transformations of urban form in medieval Cairo, and lessons about using computers to support historical visualization. Our first attempt to create a single extremely detailed model of Cairo proved unworkable. From this experience we developed a database approach to organizing modeling projects of complex urban environments. The database consists of several complete models at different levels of abstraction. This approach has three advantages over the earlier one: the model is never viewed as incomplete, the framework supports both additive and subtractive chronological studies, and finally, the database is viewed as infinitely expandable. Using modeling software as a tool for inquiry into architectural history becomes more feasible with this new approach.
series ACADIA
email
last changed 2022/06/07 07:54

_id af94
authors Anumba, C.J.
year 1996
title Data structures and DBMS for computer-aided design systems
source Advances in Engineering Software, 25(2/3), 123-129
summary The structures for the storage of data in CAD systems influence to a large extent the effectiveness of the system. This paper reviews the wide range of data structures and database management systems (DBMS) available for structuring CAD data. Examples of basic data types are drawn from the MODULA-2 language. The relationship between these basic data types, their composite structures and the classical data models (on which many DBMS are based) is discussed, and the limitations of existing DBMS in modelling CAD data highlighted. A set of requirements for CAD database management systems is drawn up and the emerging role of product models (which seek to encapsulate the totality of data elements required to define fully an engineering artefact) is explored.
series journal paper
last changed 2003/04/23 15:14

_id e309
authors Breen, Jack and Stellingwerff, Martijn
year 1996
title A Case for Computer-Assisted Creativity through Clarity, Project 12 CAD and Beyond
source CAD Creativeness [Conference Proceedings / ISBN 83-905377-0-2] Bialystock (Poland), 25-27 April 1996 pp. 31-35
summary A paper exploring the opportunities of different Design Media for the benefit of Architectural and Urban Composition. It is argued that during the design process, the designer develops Models for a projected end result, which are visualised in the form of Images using traditional media. The Computer affords the possibility of creating (virtual) Models from which Images can be taken. Current types of Computer Interfaces still form an obstacle for creative computer assisted design, comparable to Sketching. It is argued that the Clarity of the medium will need to be enhanced, if it is to become an Instrument for truly creative design. Using the example of an educational, practical CAD exercise, the case for' Clarity for the benefit of creative Computing is put forward.
series plCAD
email
last changed 2003/05/17 10:01

_id a0d3
authors Breen, Jack and Stellingwerff, Martijn
year 1996
title A Case For Computer Assisted Creativity Through Clarity - Project 12 CAD and Beyond ...
source Approaches to Computer Aided Architectural Composition [ISBN 83-905377-1-0] 1996, pp. 45-60
summary A paper exploring the opportunities of different Design Media for the benefit of Architectural and Urban Composition. It is argued that during the design process, the designer develops Models for a projected end result, which are visualised in the form of Images using traditional media. The Computer affords the possibility of creating (virtual) Models from which Images can be taken. Current types of Computer Interfaces still form an obstacle for creative computer assisted design, comparable to Sketching. It is argued that the Clarity of the medium will need to be enhanced, if it is to become an Instrument for truly creative design. Using the example of an educational, practical CAD exercise, the case for Clarity for the benefit of creative Computing is put forward.
series other
last changed 1999/04/08 17:16

_id c05e
authors Brown, Andy and Nahab, May
year 1996
title Human Interpretation of Computer Generated Architectural Images
source Approaches to Computer Aided Architectural Composition [ISBN 83-905377-1-0] 1996, pp. 61-70
summary The hardware and software used by architects to produce drawings and rendered images (static and dynamic) has advanced over the past decade to the point where it is now routine for architects to add rendered (and otherwise manipulated) images to the more routine 2D drawing as a product to convey the building to others. Although the 2D drawing (as plan section, elevation or detail) remains the fundamental and most prevalent kind of image being produced by architects, we regard it as timely to take stock of the effect of how we interpret the computer generated images that are being produced. We want to address the question of how humans, with a wide range of backgrounds and predispositions interpret such images. This paper takes previous studies which consider image interpretation and image generation by computer and begins to apply the techniques and jcndings to contemporary CAD image making.
keywords
series other
email
last changed 1999/04/08 17:16

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 23HOMELOGIN (you are user _anon_466221 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002