CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 486

_id 08af
authors Gross, M.D. and Do, E.
year 1996
title Ambiguous Intentions: a Paper-like Interface for Creative Design
source Proceedings UIST ’96 Seattle Washington, pp. 183-192
summary Interfaces for conceptual and creative design should recognize and interpret drawings. They should also capture users' intended ambiguity, vagueness, and imprecision and convey these qualities visually and through interactive behavior. Freehand drawing can provide this information and it is a natural input mode for design. We describe a pen-based interface that acquires information about ambiguity and precision from freehand input, represents it internally, and echoes it to users visually and through constraint based edit behavior.
series other
email
last changed 2003/04/23 15:50

_id ddssup9604
id ddssup9604
authors Boelen, A.J.
year 1996
title Impact-Analysis of Urban Design Realtime impact-analysis models for urban designers
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary The past five years Prof Dr Jr T.M. de Jong, professor in environmental planning and sustainability at the Technical University of Delft, has developed a theoretical foundation for the analysis of urban design on the ecological, technical, economical, cultural and political impacts of morphologic interventions on different levels of scale. From september 1994 Jr AJ. Boelen (Urban Design Scientist and Knowledge Engineer) started a research project at the same university to further explore the possibilities of these theories and to develop impact evaluation models for urban design and development with the theoretical work of De Jong as a starting point. The paper discusses the development of a design and decision support system based on these theories. For the development of this system, techniques like object-orientation, genetic algorithms and knowledge engineering are used. The user interface, the relation between the real world, paper maps and virtual maps and the presentation of design-interventions and impacts caused by the interventions are important issues. The development-process is an interactive step by step process. It consists of the making of a prototype of the system, testing the theory and hypothe-sisses the system is based on, by applying tests end adjusting the theory and hypothesisses where needed. Eventually the system must be able to act as an integrator of many different models already developed or still to be developed. The structure of the system will allow easy future expansion and adjustment to changing insights. The logic used to develop the basic theory on which this system is founded makes it possible to even introduce and maintain rather subjective aspects like quality or appraisal as impacts that can be evaluated. In a previously developed system "Momentum" this was proved to work effectively for the national level. In this project we will - amongst other things - try to prove the effectiveness of impact-evaluation for other levels of scale.
series DDSS
email
last changed 2003/11/21 15:16

_id ec0e
authors Engeli, M. and Kurmann, D.
year 1996
title A Virtual Reality Design Environment with Intelligent Objects and Autonomous Agents
source H.J.P. Timmermans (ed.), Design and Decision Support Systems in Architecture and Urban Planning Conference, Vol. 1: Architecture Proceedings, pp. 132-142
summary New technological achievements and research results allow for the creation of innovative design tools for architects, that do not originate from paper-based paradigms but instead make optimised use of the present technology and programming concepts. The core of our system is comprised of an intuitive interactive modelling tool. It runs in a virtual reality set-up, where the user can use 3D glasses to experience rooms and 3D input devices to model in three dimensions. The interface is free from widget-like buttons or menus, so that the user is undisturbed when moving into the virtual world of the design. The system can also run in a distributed fashion, so that a number of users can look at and modify the same design. The 3D model can be generated in a sketch-like fashion using solids and voids, void modelling turns out to be very valuable for architectural design. The objects in this system can contain forms of intelligence to produce such behaviour as: falling because of gravity, collision avoidance, and autonomous motion. Interactive behaviour can also be assigned to the objects. Autonomous Agents are added to the system to enhance the designer support. These are agents that enhance the virtual environment, agents that take over tasks, and agents that help to test the design. The system shows new interface and interaction approaches that support the architectural design process intelligently.
series other
last changed 2003/04/23 15:50

_id ddssar9609
id ddssar9609
authors Engeli, Maia and Kurmann, David
year 1996
title A Virtual Reality Design Environment with Intelligent Objects and Autonomous Agents
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary New technological achievements and research results allow for the creation of innovative design tools for architects, that do not originate from paper-based paradigms but instead make optimised use of the present technology and programming concepts. The core of our system is comprised of an intuitive interactive modelling tool. It runs in a virtual reality set-up, where the user can use 3D glasses to expe-rience rooms and 31) input devices to model in three dimensions. The interface is free from widget-like buttons or menus, so that the user is undisturbed when moving into the virtual world of the design. The system can also run in a distributed fashion, so that a number of users can look at and modify the same design. The 31) model can be generated in a sketch-like fashion using solids and voids, void modelling turns out to be very valuable for architectural design. The objects in this system can contain forms of intelligence to produce such behaviour as: falling because of gravity, collision avoidance, and autonomous motion. Interactive behaviour can also be assigned to the objects. Autonomous Agents are added to the system to enhance the designer support. These are agents that enhance the virtual environment, agents that take over tasks, and agents that help to test the design. The system shows new interface and interaction approaches that support the architectural design process intelligently.
series DDSS
last changed 2003/08/07 16:36

_id maver_084
id maver_084
authors Maver, T.W., Frame, I. and Chen, Y.
year 1996
title The Development of a Virtual Studio Environment to Support Collaborative Building Design
source Design, Synergy, Collaboration - selected papers from DEcon Conference
summary This paper describes the development of a virtual studio environment to support collaborative working in the domain of building design. By applying and extending the real-world design studio model within the Internet-based distributed computing environments, the virtual studio concept has been refined as computerised settings, which integrate both the dispersed human designers and the distributed CAD applications. The hope is to achieve the similar effect as physical co-presence while providing extra advantages such as the support for automatic communication archiving and being less obtrusive than sharing a physical office. Like its real-world counterpart (which usually consists of the office, desks, file cabinets, instruments etc), such a virtual studio consists of the several major components, including a multi-user graphical user interface displaying the shared virtual workspace on each designer's workstation, distributed multimedia databases and CAD tools for processing the domain tasks, and rich human-human interaction facilities supporting a variety of communication modes. Advance distributed object computing technologies (0MG CORBA in particular) have been adopted for modelling and implementing the distributed systems, W3 (world-wide-web) technologies have also been exploited for constructing the distributed multi-media databases and an image communication kit. In contrast to the traditional CAD integration which is usually focused solely on the well-structured technical part of the product and process, the described research advocates a human-centred systems development strategy in which design is first of all taken as a process of social construction.
series other
email
last changed 2003/09/03 15:01

_id ddssar9601
id ddssar9601
authors Achten, H.H., Bax, M.F.Th. and Oxman, R.M.
year 1996
title Generic Representations and the Generic Grid: Knowledge Interface, Organisation and Support of the (early) Design Process
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary Computer Aided Design requires the implementation of architectural issues in order to support the architectural design process. These issues consist of elements, knowledge structures, and design processes that are typical for architectural design. The paper introduces two concepts that aim to define and model some of such architectural issues: building types and design processes. The first concept, the Generic grid, will be shown to structure the description of designs, provide a form-based hierarchical decomposition of design elements, and to provide conditions to accommodate concurrent design processes. The second concept, the Generic representation, models generic and typological knowledge of building types through the use of graphic representations with specific knowledge contents. The paper discusses both concepts and will show the potential of implementing Generic representations on the basis of the Generic grid in CAAD systems.
series DDSS
last changed 2003/11/21 15:15

_id aa7c
authors Amirante, M. Isabella and Burattini, Ernesto
year 1996
title Automatic Procedures for Bio-Climatic Control
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 29-40
doi https://doi.org/10.52842/conf.ecaade.1996.029
summary The experiences illustrated here are related to the new regulation of teaching architecture in Italy and these ones in particular have been concentrated on the technological aspects of teaching architecture. We can consider the evolution of the architect from the individual operator to the manager multi- disciplinary aspects of the building process ( building process manager) as a reality today. Information technology, specifically applied to bio-climatic architecture and environmental control, can be of great importance for this professional role, and for this reason it is very useful to include these topics at the beginning the teaching design process. This paper describes a particular approach to bio-climatic problems of the architectural project. An experimental course has been performed by the second year students of the "Laboratorio di Construzione dell' Architettura", at the School of Architecture of the Second University of Naples, in Aversa. Analysing old and new buildings, they used some flow charts for the evaluation and representation of energetic behaviour of buildings regarding their climatic and geographical environment. In the flow charts the decisions are represented by boxes that allow to determine "rightness index" related to: morphological characters of the site and environment, typology and particular organisation of the inside spaces, shape of building, technological solution of the building "skin". The navigation through the decision boxes is made with simple options like; "winds: protected or exposed site", "shape of building; free, close or cross plane", "presence of trees on the south,; yes or not",; it shows the students the bio-climatic quality of the building and, through numeric value assigned to each option, determines the "weight" of its climatic comfort.

series eCAADe
last changed 2022/06/07 07:54

_id cf57
authors Anumba, C.J.
year 1996
title Functional Integration in CAD Systems
source Advances in Engineering Software, 25, 103-109
summary This paper examines the issue of integration in CAD systems and argues that for integration to be effective, it must address the functional aspects of a CAD system. It discusses the need for integrated systems and, within a structural engineering context, identifies several facets of integration that should be targeted. These include 2-D drafting and 3-D modelling, graphical and non-graphical design information, the CAD data structure and its user interface, as well as integration of the drafting function with other engineering applications. Means of achieving these levels of integration are briefly discussed and a prognosis for the future development of integrated systems explored. Particular attention is paid to the emergence (and potential role) of `product models' which seek to encapsulate the full range of data elements required to define completely an engineering artefact.
series journal paper
last changed 2003/04/23 15:14

_id e309
authors Breen, Jack and Stellingwerff, Martijn
year 1996
title A Case for Computer-Assisted Creativity through Clarity, Project 12 CAD and Beyond
source CAD Creativeness [Conference Proceedings / ISBN 83-905377-0-2] Bialystock (Poland), 25-27 April 1996 pp. 31-35
summary A paper exploring the opportunities of different Design Media for the benefit of Architectural and Urban Composition. It is argued that during the design process, the designer develops Models for a projected end result, which are visualised in the form of Images using traditional media. The Computer affords the possibility of creating (virtual) Models from which Images can be taken. Current types of Computer Interfaces still form an obstacle for creative computer assisted design, comparable to Sketching. It is argued that the Clarity of the medium will need to be enhanced, if it is to become an Instrument for truly creative design. Using the example of an educational, practical CAD exercise, the case for' Clarity for the benefit of creative Computing is put forward.
series plCAD
email
last changed 2003/05/17 10:01

_id a0d3
authors Breen, Jack and Stellingwerff, Martijn
year 1996
title A Case For Computer Assisted Creativity Through Clarity - Project 12 CAD and Beyond ...
source Approaches to Computer Aided Architectural Composition [ISBN 83-905377-1-0] 1996, pp. 45-60
summary A paper exploring the opportunities of different Design Media for the benefit of Architectural and Urban Composition. It is argued that during the design process, the designer develops Models for a projected end result, which are visualised in the form of Images using traditional media. The Computer affords the possibility of creating (virtual) Models from which Images can be taken. Current types of Computer Interfaces still form an obstacle for creative computer assisted design, comparable to Sketching. It is argued that the Clarity of the medium will need to be enhanced, if it is to become an Instrument for truly creative design. Using the example of an educational, practical CAD exercise, the case for Clarity for the benefit of creative Computing is put forward.
series other
last changed 1999/04/08 17:16

_id d610
authors Burdea, G.C.
year 1996
title Force and Touch Feedback for Virtual Reality
source New York: John Wiley & Sons
summary Could weight, temperature, and texture combine to bring simulated objects to life? Describing cutting-edge technology that will influence the way we interact with computers for years to come, this pioneering book answers yes: not only is it possible, but devices capable of providing force and tactile sensory feedback already exist. Force and Touch Feedback for Virtual Reality is the first comprehensive source of information on the design, modeling, and applications of force and tactile interfaces for VR. It is a must have for scientists, engineers, psychologists, and developers involved in VR, and for anyone who would like to gain a deeper understanding of this exciting and fast-growing field. Complete with hundreds of tables, figures, and color illustrations, Force and Touch Feedback for Virtual Reality offers * Basic information on human tactile sensing and control and feedback actuator technology * A worldwide survey of force and tactile interface devices, from the simple joystick to full-body instrumented suits based on human factor tests * Step-by-step instructions for realistic physical modeling of virtual object characteristics such as weight, surface smoothness, compliance, and temperature * A unified treatment of the benefits of the new haptic interface technology for simulation and training based on human factor tests * A detailed analysis of optimum control requirements for force and tactile feedback devices * A review of emerging applications in areas ranging from surgical training and entertainment to telerobotics and the military
series other
last changed 2003/04/23 15:14

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2012/12/04 07:53

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 413e
authors Dalholm-Hornyansky, Elisabeth and Rydberg-Mitchell, Birgitta
year 1996
title SPATIAL NAVIGATION IN VIRTUAL REALITY
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary For the past decade, we have carried out a number of participation projects using full-scale modeling as an aid for communication and design. We are currently participating in an interdisciplinary research project which aims to combine and compare various visualization methods and techniques, among others, full-scale modeling and virtual reality, in design processes with users. In this paper, we will discuss virtual reality as a design tool in light of previous experience with full-scale modeling and literature on cognitive psychology. We describe a minor explorative study, which was carried out to elucidate the answers to several crucial questions: Is realism in movement a condition for the perception of space or can it be achieved while moving through walls, floors and so forth? Does velocity of movement and reduced visual field have an impact on the perception of space? Are landmarks vital clues for spatial navigation and how do we reproduce them in virtual environments? Can “daylight“, color, material and texture facilitate navigation and are details, furnishings and people important objects of reference? How could contextual information clues, like views and surroundings, be added to facilitate orientation? Do we need our other senses to supplement the visual experience in virtual reality and what is the role of mental maps in spatial navigation?
keywords Model Simulation, Real Environments
series other
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2004/05/04 14:49

_id acb9
authors Do, Ellen Yi-Luen
year 1996
title The Right Tool at the Right Time - Drawing as an Interface to Knowledge Based Design Aids
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 191-199
doi https://doi.org/10.52842/conf.acadia.1996.191
summary Designers use different symbols and diagrams in their drawings to explore alternatives and to communicate with each other. Therefore, a useful design environment should attempt to infer the designer's intentions from the drawing and, based on this inference, suggest appropriate computational tools for the task at hand. For example, a layout bubble diagram might activate design cases with similar configurations. Scribbles of view lines on a floor plan might bring up a spatial analysis tool. This research aims to develop an integrated digital sketching environment to support early design activities. The paper proposes RT, an intelligent sketch environment that provides the designers with the right tools at the right time.
series ACADIA
email
last changed 2022/06/07 07:55

_id 656d
authors Donath , Dirk and Regenbrecht, Holger
year 1996
title Using Virtual Reality Aided Design Techniques for Three-dimensional Architectural Sketching
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 199-212
doi https://doi.org/10.52842/conf.acadia.1996.199
summary With this paper we would like to introduce a system which supports the early phases of the architectural design process. The system consists of two main components: the software solution "voxDesign" and the physical environment "platform". Our aims are: to formulate, develop, and evaluate an architectural design system through the use of VR (virtual reality) space. The exploration and development of design intentions is supplemented by a new method of three dimensional sketching. In the second part of this paper we will show how these components were used to train students in architecture and design at our university. Parts of this paper were published to the academic public at "Designing Digital Space". (Regenbrecht 1996)
keywords Virtual Reality, Architectural Design, Human-computer interfaces, Design Techniques
series ACADIA
email
last changed 2022/06/07 07:55

_id diss_fox
id diss_fox
authors Fox, M.A.
year 1996
title Novel Affordances of Computation to the Design Process of Kinetic Structures
source Massachusetts Institute of Technology, Cambridge, MA
summary This paper is a discourse into the relationship between the process, computational tools and the role which symbolic structure can play in both. I argue the relationship of the process and tools is dialectic, whereby the tools we utilize in design develop new heuristics, the methodologies in turn, if reflectively understood, can be more aptly facilitated through the development of novel tools. The tools and the process then evolve together. A theory is laid out exploring the human visual information processing systems pertinence to the limitations in mental three-dimensional imaging and transformation operations as relevant to the operations of drawing and mental visualization within the architectural design processes, substantiating the designers necessity to draw (by traditional means, but more importantly here, through the inclusive integration of CAD within the process). The necessity to draw is explored as a representational process to the visual system as predicated upon the existence of a structured internal library of diagram-like representations in our heads. I argue that the ways we utilize such idiosyncratic libraries is predicated upon the ways in which we go about structuring the perceived experienced world around us into symbol systems. And finally, the ways we utilize our reflective understanding of the heuristic transformations of these symbols within the design process in the context of a CAD environment are explored as a means to an enhanced understanding of that which is being designed and consequently as a vehicle for the development of future CAD systems to better facilitate such methodologies of designing. A personal design process of several kinetic structures is carried out in order to arrive at a localized process analysis within computer-aided design environment. Through an interactive, reflective process analysis, conclusions are drawn as to the affordances and limitations of such tools as suggestive of the operations a CAD environment might perform so as to better foster future methodologies of designing. The design experiments are utilized as a vehicle to understand the process. Specifically three kinetic projects are exploited for the prototypical operations they display. When difficulties or mental limitations are encountered with the operations, specific tools are developed to facilitate the limitation or to overcome the problem.
series thesis:MSc
more http://www.mafox.net/sm_thesis/Thesis11.pdf
last changed 2003/11/28 07:35

_id ee14
authors Fukai, Dennis
year 1996
title A World of Data: An Animated Construction Information System as a Virtual Hypergraphic Environment
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 267-274
doi https://doi.org/10.52842/conf.acadia.1996.267
summary This paper describes research on an animated construction information system organized as a hypergraphic virtual environment. The user enters this environment to interact with the information it contains. A matrix of cubes sits as the gateway to an array of data chambers that give this information its virtual form. A mouse click on one of these cubes leads to a three-dimensional interface that is a simulation of the object to be constructed. Reflective-transparent panels surround the simulation and display two-dimensional projections of its pieces. These panels capture projections of slices through the pieces of the object represented by the simulation. Below the zero plane are slices of floor framing, foundation, excavation, utilities, and soil conditions. Above are ceilings, framing, and roofing. To the sides are finishes, wall framing, fixtures, and elevations. This immersive virtual environment extends as an array of data chambers partitioned by the suspended reflective-transparent panels. Pathways around these partitions lead to secondary chambers that contain sub-simulations of the plumbing, electrical, and HVAC systems. Design-team members access these chambers to coordinate the document's development, review progress, and make changes to the information system. The result is a WORLD of data where graphic information defines both space and time. This breaks with the notion of a construction document as an object-of-exchange and suggests a new focus for the use of computers in the design and construction process.
series ACADIA
last changed 2022/06/07 07:50

_id 0a80
authors Gero, J.S.
year 1996
title Creativity, emergence and evolution in design: concepts and framework
source Knowledge-Based Systems 9(7): 435-448
summary This paper commences by outlining notions of creativity before examining the role of emergence in creative design. Various process models of emergence are presented; these are based on notions of additive and substitutive variables resulting in additive and substitutive schemas. Frameworks for both representation and process for a computational model of creative design are presented. The representational framework is based on design prototypes whilst the process framework is based on an evolutionary model. The computational model brings both representation and process together.
series other
email
last changed 2003/04/06 07:32

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_448156 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002