CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 491

_id 39fb
authors Langton, C.G.
year 1996
title Artificial Life
source Boden, M. A. (1996). The Philosophy of Artificial Life, 39-94.New York and Oxford: Oxford University Press
summary Artificial Life contains a selection of articles from the first three issues of the journal of the same name, chosen so as to give an overview of the field, its connections with other disciplines, and its philosophical foundations. It is aimed at those with a general background in the sciences: some of the articles assume a mathematical background, or basic biology and computer science. I found it an informative and thought-provoking survey of a field around whose edges I have skirted for years. Many of the articles take biology as their starting point. Charles Taylor and David Jefferson provide a brief overview of the uses of artificial life as a tool in biology. Others look at more specific topics: Kristian Lindgren and Mats G. Nordahl use the iterated Prisoner's Dilemma to model cooperation and community structure in artificial ecosystems; Peter Schuster writes about molecular evolution in simplified test tube systems and its spin-off, evolutionary biotechnology; Przemyslaw Prusinkiewicz presents some examples of visual modelling of morphogenesis, illustrated with colour photographs; and Michael G. Dyer surveys different kinds of cooperative animal behaviour and some of the problems synthesising neural networks which exhibit similar behaviours. Other articles highlight the connections of artificial life with artificial intelligence. A review article by Luc Steels covers the relationship between the two fields, while another by Pattie Maes covers work on adaptive autonomous agents. Thomas S. Ray takes a synthetic approach to artificial life, with the goal of instantiating life rather than simulating it; he manages an awkward compromise between respecting the "physics and chemistry" of the digital medium and transplanting features of biological life. Kunihiko Kaneko looks to the mathematics of chaos theory to help understand the origins of complexity in evolution. In "Beyond Digital Naturalism", Walter Fontana, Guenter Wagner and Leo Buss argue that the test of artificial life is to solve conceptual problems of biology and that "there exists a logical deep structure of which carbon chemistry-based life is a manifestation"; they use lambda calculus to try and build a theory of organisation.
series other
last changed 2003/04/23 15:14

_id ga9927
id ga9927
authors Neagu, Mariana
year 1999
title On Linguistic Aspects from a Cross-cultural Perspective
source International Conference on Generative Art
summary The goal of this paper is to discuss the issue of culture and its relationship to language and cognition by dealing with a number of lexical concepts, grammatical concepts and cultural scripts. Taking a moderate view, I reconcile universalism and ethnocentrism and argue that the study of culture-specific aspects of language has both a theoretical and practical importance. The role of universal semantic primes is obvious in culture-specific words such as the Japanese amae (a peculiarly Japanese emotion) which, though unique and untranslatable, can be accurately and intelligibly defined in terms of semantic primes (Wierzbicka, 1996). The view that meanings cannot be fully transferred from one language to another is supported by the difference in meaning manifested in the different range of use of the word happy (a common, everyday word in modern English) and joyful (a more literally and stylistically marked term.). A cross-linguistic analysis of the concept ‘happy’in English, Romanian, German, French, Italian, points to the so-called ‘traditional Anglo-Saxon distate for extreme emotions’. As far as aspects of grammar connected with culture are concerned, I compare expressive grammatical devices like intensifiers in English, Romanian and Italian. The question the paper addresses is whether constructions like syntactic reduplication(e.g. bella bella) and the absolute superlative (e.g. bellissimo) are indeed linked with what has been called ‘the theatrical quality’ of Italian life (Barzini, 1964) or not. Relative to Romanian, I assume that the idea of intensity of a state or action is conveyed, in certain registers, by terms and expressions pertaining to basic element source domains such as fire (e.g. frumoasa foc ‘fire-beautiful’) and earth (e.g. frumusetea pamantului ‘beauty of the earth’) and also by syntactic reduplication (e.g. frumoasa-frumoaselor ’beauty of the beauties’). Finally, I approach aspects of pragmatics which are culturally determined in the sense that they express cultural norms, values, ideals, attitudes. For instance, preferences are expressed directly in English while in Japanese this manner is contrary to the ideal of enryo ’restraint, reserve’.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 4daf
authors Berdinsky, Dimitry V.
year 1996
title CAAD Creations in Moscow
source CAD Creativeness [Conference Proceedings / ISBN 83-905377-0-2] Bialystock (Poland), 25-27 April 1996 pp. 27-30
summary In the history of architecture we saw changing ideas, styles and methods of designing. From the charcoal in an ancient man's hand, architectural tools transformed into contemporary pens, papers and copying machines. They made the creative architectural work more productive and informative. Today, in the last quarter of our century, evolution of the architectural design is influenced by brandnew intellectual tools and instruments. Invasion of those tools make new problems appear. All the people can be divided into two groups- the first group can be defined as mechanically or mathematically oriented one while the second group can be defined as art oriented one.
series plCAD
last changed 1999/04/09 15:30

_id 8e02
authors Brown, A.G.P. and Coenen, F.P.
year 2000
title Spatial reasoning: improving computational efficiency
source Automation in Construction 9 (4) (2000) pp. 361-367
summary When spatial data is analysed the result is often very computer intensive: even by the standards of contemporary technologies, the machine power needed is great and the processing times significant. This is particularly so in 3-D and 4-D scenarios. What we describe here is a technique, which tackles this and associated problems. The technique is founded in the idea of quad-tesseral addressing; a technique, which was originally applied to the analysis of atomic structures. It is based on ideas concerning Hierarchical clustering developed in the 1960s and 1970s to improve data access time [G.M. Morton, A computer oriented geodetic database and a new technique on file sequencing, IBM Canada, 1996.], and on atomic isohedral (same shape) tiling strategies developed in the 1970s and 1980s concerned with group theory [B. Grunbaum, G.C. Shephard, Tilings and Patterns, Freeman, New York, 1987.]. The technique was first suggested as a suitable representation for GIS in the early 1980s when the two strands were brought together and a tesseral arithmetic applied [F.C. Holdroyd, The Geometry of Tiling Hierarchies, Ars Combanitoria 16B (1983) 211–244.; S.B.M. Bell, B.M. Diaz, F.C. Holroyd, M.J.J. Jackson, Spatially referenced methods of processing raster and vector data, Image and Vision Computing 1 (4) (1983) 211–220.; Diaz, S.B.M. Bell, Spatial Data Processing Using Tesseral Methods, Natural Environment Research Council, Swindon, 1986.]. Here, we describe how that technique can equally be applied to the analysis of environmental interaction with built forms. The way in which the technique deals with the problems described is first to linearise the three-dimensional (3-D) space being investigated. Then, the reasoning applied to that space is applied within the same environment as the definition of the problem data. We show, with an illustrative example, how the technique can be applied. The problem then remains of how to visualise the results of the analysis so undertaken. We show how this has been accomplished so that the 3-D space and the results are represented in a way which facilitates rapid interpretation of the analysis, which has been carried out.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 6941
authors Dawidowski, Robert
year 1996
title CAD - The Step Towards the Aim as a Lot of Others or Something Else
source CAD Creativeness [Conference Proceedings / ISBN 83-905377-0-2] Bialystock (Poland), 25-27 April 1996 pp. 53-58
summary Right and left for years we have been swamped by information on equipment and software which is supposed change the quality and a designers' work style completely. In this computer and commercial deluge of words it is more and more difficult to get an understanding and clear attitude towards the dynamicly changing reality. Apart from the details of the CAD software and its influence on the effects of the architectural creative process, I would like to consider some problems connected with the influence of the CAD system on the architect's creative capabilities. Does it develope or limit these capabilities? Is a computer equipped with a CAD system a special tool (meaning the new values which it might give) or is it not?
series plCAD
last changed 1999/04/09 15:30

_id 3386
authors Gavin, L., Keuppers, S., Mottram, C. and Penn, A.
year 2001
title Awareness Space in Distributed Social Networks
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 615-628
summary In the real work environment we are constantly aware of the presence and activity of others. We know when people are away from their desks, whether they are doing concentrated work, or whether they are available for interaction. We use this peripheral awareness of others to guide our interactions and social behaviour. However, when teams of workers are spatially separated we lose 'awareness' information and this severely inhibits interaction and information flow. The Theatre of Work (TOWER) aims to develop a virtual space to help create a sense of social awareness and presence to support distributed working. Presence, status and activity of other people are made visible in the theatre of work and allow one to build peripheral awareness of the current activity patterns of those who we do not share space with in reality. TOWER is developing a construction set to augment the workplace with synchronous as well as asynchronous awareness. Current, synchronous activity patterns and statuses are played out in a 3D virtual space through the use of symbolic acting. The environment itself however is automatically constructed on the basis of the organisation's information resources and is in effect an information space. Location of the symbolic actor in the environment can therefore represent the focus of that person's current activity. The environment itself evolves to reflect historic patterns of information use and exchange, and becomes an asynchronous representation of the past history of the organisation. A module that records specific episodes from the synchronous event cycle as a Docudrama forms an asynchronous information resource to give a history of team work and decision taking. The TOWER environment is displayed using a number of screen based and ambient display devices. Current status and activity events are supplied to the system using a range of sensors both in the real environment and in the information systems. The methodology has been established as a two-stage process. The 3D spatial environment will be automatically constructed or generated from some aspect of the pre-existing organisational structure or its information resources or usage patterns. The methodology must be extended to provide means for that structure to grow and evolve in the light of patterns of actual user behaviour in the TOWER space. We have developed a generative algorithm that uses a cell aggregation process to transcribe the information space into a 3d space. In stage 2 that space was analysed using space syntax methods (Hillier & Hanson, 1984; Hillier 1996) to allow the properties of permeability and intelligibility to be measured, and then these fed back into the generative algorithm. Finally, these same measures have been used to evaluate the spatialised behaviour that users of the TOWER space show, and will used to feed this back into the evolution of the space. The stage of transcription from information structure to 3d space through a generative algorithm is critical since it is this stage that allows neighbourhood relations to be created that are not present in the original information structure. It is these relations that could be expected to help increase social density.
keywords Algorithmic Form Generation, Distributed Workgroups, Space Syntax
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 2f5f
id 2f5f
authors Gero, J. S.
year 1996
title Design tools that learn: A possible CAD future
source B. Kumar (ed.), Information Processing in Civil and Structural Design, Civil-Comp Press, Edinburgh, pp. 17-22
summary This paper describes the concept of tools that learn. these are design support tools that acquire problem-specific knowledge as they are used to solve a problem. This knoweldge is then reused in the solution of similar problems. The effect of this is that the tool is more efficient. An example is presetned to demonstrate the idea.
keywords tools, learning, emergence, knowledge
series other
type normal paper
email
more http://www.arch.usyd.edu.au/~john/
last changed 2006/05/27 18:14

_id 0a80
authors Gero, J.S.
year 1996
title Creativity, emergence and evolution in design: concepts and framework
source Knowledge-Based Systems 9(7): 435-448
summary This paper commences by outlining notions of creativity before examining the role of emergence in creative design. Various process models of emergence are presented; these are based on notions of additive and substitutive variables resulting in additive and substitutive schemas. Frameworks for both representation and process for a computational model of creative design are presented. The representational framework is based on design prototypes whilst the process framework is based on an evolutionary model. The computational model brings both representation and process together.
series other
email
last changed 2003/04/06 07:32

_id ddssar9612
id ddssar9612
authors Gorawara-Bhat, Rita
year 1996
title The physical context of social order
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary The present ethnographic study of work settings in an established survey research center (Midwest Survey) is unique in that it combines both social organizational specifcs j4 interior physical context in contrast to previous studies that have focussed either on physical aspects or on the social dimensions of work settings. For more than four years the author observed the spatial adaptation by personnel of Midwest Survey. The dates under consideration roughly coincide with a move of Midwest Survey from an original facility to a new (and larger) set of offices. Anchored by seventy three open-ended interviews (constituing roughly 30% of the staff) the observations were carried on during and after the interviews. The synthesis of the ethnographic material revealed that physical settings act not only as a background for facilities, but they become a salient aspect of work life as indicators of status /role congruency and incongruency. Physical settings, therefore, are proposed as "extension" attributes of role structure. In doing so, Nadel's conceptualization of role structure as comprising pivotal arid peripheral attributes (1957) is amplified to include the physical setting as an "extension" attribute. Theoretical and practical implications of the study are suggested.
series DDSS
last changed 2003/08/07 16:36

_id ddssup9608
id ddssup9608
authors Gupta, M.K., Groves M. and Moran, J.D.
year 1996
title An EMIC approach to design: Methodology for creating supportive environments for young children
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary The responsibility of the designer is to understand the unique perspective of the users, in order to create functional and efficient environments. The task of creating supportive environments often becomes more difficult when there is discrepancy between the perspective of the designer and that of the user, which is the case when designing spaces for children. The interaction of children with their environment has been identified as the basis of their development Most of the previous research has focused on the perspectives that adults have of spaces for children (etic), rather than an understanding of the child's view as the primary user of the playspace (emic). Children's perceptions are influenced by their physical and cognitive perspectives thus posing a unique challenge for designers. The objective of this study was to learn about the perception and perspective of four-and five-year-olds of their favorite playspaces. The children needed to identify their favorite spaces and also be able to verbalize the activities and meanings associated with these spaces. To avoid adult bias at the onset, the idea of utilizing a Polaroid Captiva camera was formulated, facilitating an extremely short latency period between the child taking the pictures and the opportunity to talk about their favorite playspace. The process was extremely successful, and provides first hand insight into children's perception of their built environment Photographs taken by the young children include many spaces not designed for play. The emerging themes are a source of invaluable information for designers and planners for making informed design decisions and for creating supportive environments.
series DDSS
email
last changed 2003/08/07 16:36

_id e902
authors Kadysz, A.
year 1996
title Alternative Space for Creation
source CAD Creativeness [Conference Proceedings / ISBN 83-905377-0-2] Bialystock (Poland), 25-27 April 1996 pp. 137-145
summary What is a computer in the hands of an architect? What it can develop into? This paper is an attempt at determining the main limitations and possibilities of the digital-circuit engineering with regard to the creation of three-dimensional forms. All the limitations seem to have a common reason, namely the user's lack of self-awareness. It is user who decides whether the instrument is just a secondary carrier of information about the designed object or whether it serves as a medium for the creation of three-dimensional designs, an environment for the incubation and presentation of the very idea. The reader will find here some remarks on creation in virtual space as a separate phenomenon of creating forms which are no longer restricted by reality. It presents a global computer network on the threshold of the era of three-dimensional virtual space with unlimited creation possibilities.
series plCAD
last changed 1999/04/09 15:30

_id 06e1
authors Keul, Alexander
year 1996
title LOST IN SPACE? ARCHITECTURAL PSYCHOLOGY - PAST, PRESENT, FUTURE
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary A methodological review by Kaminski (1995) summed up five perspectives in environmental psychology - patterns of spatial distribution, everyday “jigsaw puzzles”, functional everyday action systems, sociocultural change and evolution of competence. Architectural psychology (named so at the Strathclyde conference 1969; Canter, 1973) as psychology of built environments is one leg of environmental psychology, the second one being psychology of environmental protection. Architectural psychology has come of age and passed its 25th birthday. Thus, a triangulation of its position, especially in Central Europe, seems interesting and necessary. A recent survey mainly on university projects in German-speaking countries (Kruse & Trimpin, 1995) found a marked decrease of studies in psychology of built environments. 1994, 25% of all projects were reported in this category, which in 1975 had made up 40% (Kruse, 1975). Guenther, in an unpublished survey of BDP (association of professional German psychologists) members, encountered only a handful active in architectural psychology - mostly part-time, not full-time. 1996, Austria has two full-time university specialists. The discrepancy between the general interest displayed by planners and a still low institutionalization is noticeable.

How is the research situation? Using several standard research data banks, the author collected articles and book(chapter)s on architectural psychology in German- and English-language countries from 1990 to 1996. Studies on main architecture-psychology interface problems such as user needs, housing quality evaluations, participatory planning and spatial simulation / virtual reality did not outline an “old, settled” discipline, but rather the sketchy, random surface of a field “always starting anew”. E.g., discussions at the 1995 EAEA-Conference showed that several architectural simulation studies since 1973 caused no major impact on planner's opinions (Keul&Martens, 1996). “Re-inventions of the wheel” are caused by a lack of meetings (except this one!) and of interdisciplinary infrastructure in German-language countries (contrary to Sweden or the United States). Social pressures building up on architecture nowadays by inter-European competition, budget cuts and citizen activities for informed consent in most urban projects are a new challenge for planners to cooperate efficiently with social scientists. At Salzburg, the author currently manages the Corporate Design-process for the Chamber of Architecture, Division for Upper Austria and Salzburg. A “working group for architectural psychology” (Keul-Martens-Maderthaner) has been active since 1994.

keywords Model Simulation, Real Environments
series EAEA
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2005/09/09 10:43

_id 6153
authors Korbel, Wojciech
year 1996
title The Present and Future, Development of CAD Exploration in the Office of City’s Architect
source CAD Creativeness [Conference Proceedings / ISBN 83-905377-0-2] Bialystock (Poland), 25-27 April 1996 pp. 147-157
summary The usage of computer as a standard tool for an architect became obvious in the past few years. Late 90's along with their rapid development of technology, followed by the growing amount of computer hardware on the market /constantly better and cheaper at the same time/ caused the big changes in the possibilities of project's presentation. The lack of necessary memory to perform proper calculations for high quality rendered images no longer exists. The question raised most commonly by all leading computer software producers concerns the amount of time in which those calculations can be carried out. The race continues while once again, the price of already existing hardware drops rapidly. All these facts make computer more accessible for a potential user such as an architect. Additionally CAD programmers try to make programs as friendly as possible, reducing constantly the amount of time required to learn the program, at least at its bases. As the result, in the next few years, computer may become a standard, at least in some ways of project's presentation. Once again we may face the problem, when the everyday life goes far beyond the expectations. The question appears, how can all kinds of architectural authorities be prepared for constant changes in this field.
series plCAD
last changed 1999/04/09 15:30

_id ce1b
authors Kvan, Th., Lee, A. and Ho, L.
year 2000
title Anthony Ng Architects Limited: Building Towards a Paperless Future
source Case Study and Teaching Notes number 99/65, 10 pages, distributed by HKU Centre for Asian Business Cases, Harvard Business School Publishing (HBSP) and The European Case Clearing House (ECCH), June 2000
summary In early 1997; Mr. Anthony Ng; managing director of Anthony Ng Architects Ltd.; was keenly looking forward to a high-tech; paperless new office; which would free his designers from paperwork and greatly improve internal and external communication – a vision that he had had for a couple of years. In 1996; he brought on board a friend and expert in Internet technology to help him realise his vision. In July 1997; his company was to move into its new office in Wan Chai. Their plan was to have in place an Intranet and a web-based document management system when they moved into the new office. But he had to be mindful of resulting changes in communication patterns; culture and expectations. Resistance from within his company was also threatening to ruin the grand plan. Several senior executives were fiercely opposed to the proposal and refused to read a document off a computer screen. But Ng knew it was an important initiative to move his practice forward. Once the decision was made there would be no chance to reconsider; given the workload demands of the new HK$12 billion project. And this decision would mark a watershed in the company’s evolution. This case study examines the challenges and implications of employing IT to support an architectural office.
keywords IT In Practice; Professional Practice; Archives
series other
email
last changed 2002/11/15 18:29

_id e02e
authors Mahdavi, A., Mathew, P., Lee, S., Brahme, R., Kumar, S., Liu, G., Ries, R. and Wong, N.H.
year 1996
title On the Structure and Elements of SEMPER
doi https://doi.org/10.52842/conf.acadia.1996.071
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 71-84
summary This paper introduces the concept, structure, components, and application results of "SEMPER", an active, multi-aspect computational tool for comprehensive simulation-based design assistance. Specifically, SEMPER seeks to meet the following requirements: a) a methodologically consistent (first- principles-based) performance modeling approach through the entire building design and engineering process; b) seamless and dynamic communication between the simulation models and an object- oriented space-based design environment using the structural homology of various domain representations; and c) "preference-based" performance-to-design mapping technology (bidirectional inference). SEMPER involves the integrated computational modeling of heat transfer, air flow, HVAC system performance, thermal comfort, daylighting and electrical lighting, acoustics, and life-cycle assessment.

series ACADIA
email
last changed 2022/06/07 07:59

_id 0443
id 0443
authors Maver, Thomas W.
year 1996
title The Virtual City
source CAD Creativeness [Conference Proceedings / ISBN 83-905377-0-2] Bialystock (Poland), 25-27 April 1996 pp. 181-184
summary Europe's architectural heritage is immensely rich and diverse; it contributes to the quality of life in our cities and attracts hundreds of thousands of visitors from all corners of the world. Yet it is under increasing threat from insensitive planning, atmospheric pollution and commercial exploitation. There is urgent need to understand the complex evolutionary development of our urban habitats, to reconstruct what once existed, to archive what currently exists and to test, in context, proposed future architectural and planning interventions. The emerging multimedia technologies offer an unprecedented opportunity to make all this accessible to a wide range of interested agents - from citizens to tourists, from students to scholars, from conservationists to developers.
keywords 3D City modeling
series plCAD
email
last changed 2003/09/24 13:45

_id 2ca1
authors Montagu, A. and Bermudez, J.
year 1998
title Datarq: The Development of a Website of Modern Contemporary Architecture
doi https://doi.org/10.52842/conf.ecaade.1998.x.p7a
source Computerised Craftsmanship [eCAADe Conference Proceedings] Paris (France) 24-26 September 1998
summary The pedagogic approach in the architectural field is suffering a deep change taking in consideration the impact that has been produced mainly by the CAD and multimedia procedures. An additional view to be taken in consideration is the challenge produced by the influence of advanced IT which since 1990-92, has affected positively the exchange of information among people of the academic environment. Several studies confirm this hypothesis, from the wide cultural spectrum when the digitalization process was emerging as an alternative way to data processing (Bateson 1976) to the pedagogical-computational side analyzed by (Papert 1996). One of the main characteristics indicated by S. Papert (op.cit) is the idea of "self teaching" which students are used everywhere due to the constant augment of "friendly" software and the decreasing costs of hardware. Another consequences to point out by S. Paper (op.cit) is that will be more probably that students at home will have more actualized equipment that most of the computer lab. of schools in general. Therefore, the main hypothesis of this paper is, "if we are able to combine usual tutorials design methods with the concept of "self-teaching" regarding the paradigmatic architectural models that are used in practically all the schools of architecture (Le Corbusier, F.L.Wright, M.v. der Rohe, M.Botta, T.Ando, etc.) using a Web site available to everybody, what we are doing is expanding the existing knowledge in the libraries and fulfill the future requirements of the newly generations of students".
series eCAADe
email
more http://www.paris-valdemarne.archi.fr/archive/ecaade98/html/35montagu/index.htm
last changed 2022/06/07 07:50

_id 096e
authors Papamichael, K., Porta, J.L., Chauvet, H., Collins, D., Trzcinski, T. , Thorpe, J. and Selkowitz, S.
year 1996
title The Building Design Advisor
doi https://doi.org/10.52842/conf.acadia.1996.085
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 85-97
summary The Building Design Advisor (BDA) is a software environment that supports the integrated use of multiple analysis and visualization tools throughout the building design process, from the initial, schematic design phases to the detailed specification of building components and systems. Based on a comprehensive design theory, the BDA uses an object-oriented representation of the building and its context, and acts as a data manager and process controller to allow building designers to benefit from the capabilities of multiple tools.

The BDA provides a graphical user interface that consists of two main elements: the Building Browser and the Decision Desktop. The Browser allows building designers to quickly navigate through the multitude of descriptive and performance parameters addressed by the analysis and visualization tools linked to the BDA. Through the Browser the user can edit the values of input parameters and select any number of input and/or output parameters for display in the Decision Desktop. The Desktop allows building designers to compare multiple design alternatives with respect to any number of parameters addressed by the tools linked to the BDA.

The BDA is implemented as a Windows-based application for personal computers. Its initial version is linked to a Schematic Graphic Editor (SGE), which allows designers to quickly and easily specify the geometric characteristics of building components and systems. For every object created in the SGE, the BDA supplies “smart” default values from a Prototypical Values Database (PVD) for all non-geometric parameters required as input to the analysis and visualization tools linked to the BDA. In addition to the SGE and the PVD, the initial version of the BDA is linked to a daylight analysis tool, an energy analysis tool, and a multimedia Case Studies Database (CSD). The next version of the BDA will be linked to additional tools, such as a photo-accurate rendering program and a cost analysis program. Future versions will address the whole building life-cycle and will be linked to construction, commissioning and building monitoring tools.

series ACADIA
email
last changed 2022/06/07 08:00

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 149d
authors Rosenman, M.A.
year 1996
title The generation of form using an evolutionary approach
source J.S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design Ì96, 643-662
summary Design is a purposeful knowledge-based human activity whose aim is to create form which, when realized, satisfies the given intended purposes.1 Design may be categorized as routine or non-routine with the latter further categorized as innovative or creative. The lesser the knowledge about existing relationships between the requirements and the form to satisfy those requirements, the more a design problem tends towards creative design. Thus, for non-routine design, a knowledge-lean methodology is necessary. Natural evolution has produced a large variety of forms well-suited to their environment suggesting that the use of an evolutionary approach could provide meaningful design solutions in a non-routine design environment. This work investigates the possibilities of using an evolutionary approach based on a genotype which represents design grammar rules for instructions on locating appropriate building blocks. A decomposition/aggregation hierarchical organization of the design object is used to overcome combinatorial problems and to maximize parallelism in implementation.
series other
last changed 2003/04/23 15:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_220936 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002