CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures
Hits 1 to 20 of 468
Reformat results as: short short into frame detailed detailed into frame
A Real Scale Model of the basic unit was built by the students of the course Spatial Design Ability dictated by the LEE. The model was first evaluated empty and then a furnishing solution was proposed, built and evaluated. These evaluations were done by another group of students of the Faculty of Architecture and Planning using the Psychological Impressions Measuring Test (IMIP) developed by Luis La Scalea (1991). This test was designed to measure people’s psychological impressions produced by a space, and consists of a semantic differential structured by eleven pairs of opposing adjectives set on a scale of seven levels. The results of this first evaluation were analysed used to modify the prototype which was evaluated again in order to produce a final layout.
Another of the built examples at Trondheim University which will be presented, is a doctor's waitingroom. It is a case study of special interest because it often appears to be a neglected area. Let us start asking: What do we have in common when we are waiting to come in to a doctor? We are nervous and we feel sometimes miserable. Analysing the situation we understand the need for an interior that cares for our state of mind. The level of light is important in this situation. Light has to speak softly. Instead of the ordinary strong light in the middle of the ceiling, several spots are selected to lighten the small tables separating the seats. The separation is supposed to give a feeling of privacy. By the low row of reflected planes we experience an intimate and warming atmosphere in the room. A special place for children contributes to the total impression of calm. In this corner the inside of some shelves are lit by indirect light, an effect which puts emphasis on the small scale suitable for a child. And it also demonstrates the good results of variation. The light setting in this room shows how light is “caught” two different ways.
How is the research situation? Using several standard research data banks, the author collected articles and book(chapter)s on architectural psychology in German- and English-language countries from 1990 to 1996. Studies on main architecture-psychology interface problems such as user needs, housing quality evaluations, participatory planning and spatial simulation / virtual reality did not outline an “old, settled” discipline, but rather the sketchy, random surface of a field “always starting anew”. E.g., discussions at the 1995 EAEA-Conference showed that several architectural simulation studies since 1973 caused no major impact on planner's opinions (Keul&Martens, 1996). “Re-inventions of the wheel” are caused by a lack of meetings (except this one!) and of interdisciplinary infrastructure in German-language countries (contrary to Sweden or the United States). Social pressures building up on architecture nowadays by inter-European competition, budget cuts and citizen activities for informed consent in most urban projects are a new challenge for planners to cooperate efficiently with social scientists. At Salzburg, the author currently manages the Corporate Design-process for the Chamber of Architecture, Division for Upper Austria and Salzburg. A “working group for architectural psychology” (Keul-Martens-Maderthaner) has been active since 1994.
The principal item of a full-scale lab preferably features a court-like facility where the 1:1 simulations are performed. Such lab facilities can be found at various architecture education centers throughout Europe. In the early eighties the European Full-scale Modeling Association (abrev. EFA, full-scale standing for 1:1 or simulation in full-scale) was founded acting as the patron of a conference every two years. In line with the conference title "Full-scale Modeling in the Age of Virtual Reality" the participants were particularly concerned with the relationship of physical 1:1 simulations and VR. The assumption that those creating architecture provide of a higher degree of affinity to physical than to virtual models and prototypes was subject of vivid discussions.
Furthermore, the participants devoted some time to issues such as the integration of model-like ideas and built reality thus uncovering any such synergy-effects. Thus some major considerations had to be given to the question of how the architectís model-like ideas and built reality would correspond, also dealing with user-suitability as such: what the building artist might be thrilled with might not turn out to be the residentsí and usersí everyday delight. Aspects of this nature were considered at the îArchitectural Psychology Meeting” together with specialists on environment and aesthetics. As individual space perception as well as its evaluation differ amongst various architects, and these being from various countries furnishing cultural differences, lively discussions were bound to arise.
Most of the studies done for the effective use of this potential of computer aid in architectural design assert that the way architects design without the computer is not "familiar" to the way architects are led to design with the computer. In other words, they complain that the architectural design software does not work in the same way as the architects think and design the models in their brains. Within the above framework, this study initially discusses architectural design as a modeling process and defines computer generated simulations (walkthrough, flythrough, virtual reality) as models. Based on this discussion, the "familiarity" of architectural design and computer aided design is displayed. And then, it is asserted that the issue of familiarity should be discussed not from the point of the modeling procedure, but from the "trueness" of the model displayed.
Therefore, it is relevant to ask to what extent should the simulation simulate the design model. The simulation, actually, simulates not what is real, but what is unreal. In other words, the simulation tells lies in order to display the truth. Consequently, the study proposes measures as to how true a simulation model should be in order to represent the design model best.
For more results click below: