CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 487

_id 62a1
authors Maher, M.L. and Poon, J.
year 1996
title Modelling design exploration as co-evolution
source Microcomputers in Civil Engineering, 11:192-207
summary Most computer-based design tools assume designers work with a well defined problem. However, this assumption has been challenged by current research. The explorative aspect of design, especially during conceptual design, is not fully addressed. This paper introduces a model for problem-design exploration, and how this model can be implemented using the genetic algorithm (GA) paradigm. The basic GA, which does not support our exploration model, evaluates individuals from a population of design solutions with an unchanged fitness function. This approach to evaluation implements search with a prefixed goal. Modifications to the basic GA are required to support exploration. Two approaches to implement a co-evolving GA are presented and discussed in this paper: one in which the fitness function is represented within the genotype, and a second in which the fitness function is modelled as a separately evolving population of genotypes.
series journal paper
email
last changed 2003/04/23 15:50

_id acadia07_284
id acadia07_284
authors Robinson, Kirsten; Gorbet, Robert; Beesley, Philip
year 2007
title Evolving Cooperative Behaviour in a Reflexive Membrane
doi https://doi.org/10.52842/conf.acadia.2007.284
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 284-293
summary This paper describes the integration of machine intelligence into an immersive architectural sculpture that interacts dynamically with users and the environment. The system is conceived to function as an architectural envelope that might transfer air using a distributed array of components. The sculpture includes a large array of interconnected miniature structural and kinetic elements, each with local sensing, actuation, and machine intelligence. We demonstrate a model in which these autonomous, interconnected agents develop cooperative behaviour to maximize airflow. Agents have access to sensory data about their local environment and ‘learn’ to move air through the working of a genetic algorithm. Introducing distributed and responsive machine intelligence builds on work done on evolving embodied intelligence (Floreano et al. 2004) and architectural ‘geotextile’ sculptures by Philip Beesley and collaborators (Beesley et al. 1996-2006). The paper contributes to the general field of interactive art by demonstrating an application of machine intelligence as a design method. The objective is the development of coherent distributed kinetic building envelopes with environmental control functions. A cultural context is included, discussing dynamic paradigms in responsive architecture.
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id c8c8
authors Hendricx, A., Neuckermans, H., Vandevyvere, H. and Nuyts, K.
year 1996
title CAAD in Pedagogical Practice
doi https://doi.org/10.52842/conf.ecaade.1996.199
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 199-210
summary The course on CAAD at the KU Leuven is part of the course on design methodology and theory from which it is the most recent and natural extension. Attached to this course a series of assignments has been developed which bring the students in 45 hours to a non-trivial level of acquaintance with CAAD. Our assignments are primarily directed towards practice. They are built on top of AutoCAD to which we have added in-house developments in order to focus on specific pedagogical goals within a very limited time. After a general introduction on Windows (file management) and AutoCAD (basics) students make the following assignments (main pedagogical goals in between brackets). colophon (working with blocks), detail (2D-drawing, hatching, editing), facade design using a built-in system of proportion (slides, scriptfile), extraction (linking alphanumerical and graphical entities), container (level of detail, icon menus, viewports), surface modelling (modelling 3D-objects with surfaces), fractal tree (recursion in Autolisp), solid modelling (Leicester engineering building), lighting (integration of drawing and computation of illumination levels), pressure lines in an arc (interactive design of an arc), demos. The paper presents and comments these assignments and shows results from the last 2 years.

series eCAADe
email
last changed 2022/06/07 07:49

_id e02e
authors Mahdavi, A., Mathew, P., Lee, S., Brahme, R., Kumar, S., Liu, G., Ries, R. and Wong, N.H.
year 1996
title On the Structure and Elements of SEMPER
doi https://doi.org/10.52842/conf.acadia.1996.071
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 71-84
summary This paper introduces the concept, structure, components, and application results of "SEMPER", an active, multi-aspect computational tool for comprehensive simulation-based design assistance. Specifically, SEMPER seeks to meet the following requirements: a) a methodologically consistent (first- principles-based) performance modeling approach through the entire building design and engineering process; b) seamless and dynamic communication between the simulation models and an object- oriented space-based design environment using the structural homology of various domain representations; and c) "preference-based" performance-to-design mapping technology (bidirectional inference). SEMPER involves the integrated computational modeling of heat transfer, air flow, HVAC system performance, thermal comfort, daylighting and electrical lighting, acoustics, and life-cycle assessment.

series ACADIA
email
last changed 2022/06/07 07:59

_id 149d
authors Rosenman, M.A.
year 1996
title The generation of form using an evolutionary approach
source J.S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design Ì96, 643-662
summary Design is a purposeful knowledge-based human activity whose aim is to create form which, when realized, satisfies the given intended purposes.1 Design may be categorized as routine or non-routine with the latter further categorized as innovative or creative. The lesser the knowledge about existing relationships between the requirements and the form to satisfy those requirements, the more a design problem tends towards creative design. Thus, for non-routine design, a knowledge-lean methodology is necessary. Natural evolution has produced a large variety of forms well-suited to their environment suggesting that the use of an evolutionary approach could provide meaningful design solutions in a non-routine design environment. This work investigates the possibilities of using an evolutionary approach based on a genotype which represents design grammar rules for instructions on locating appropriate building blocks. A decomposition/aggregation hierarchical organization of the design object is used to overcome combinatorial problems and to maximize parallelism in implementation.
series other
last changed 2003/04/23 15:50

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2012/12/04 07:53

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ddssar9613
id ddssar9613
authors de Groot, E.H. and Louwers, F.H.
year 1996
title The TIE-system, a KBS for the Evaluation of Thermal Indoor office Environments
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary A Knowledge-Based System [KBS] for the evaluation of Thermal Indoor office Environments [TIE] (in the Netherlands) was the product of a one-year project, undertaken by researchers of the Physical Aspects of the Built Environment group [FAGO] in cooperation with the Knowledge-Based System Section of the TNO-Building & Construction research Institute in Delft. The objective of the project was to develop a KBS capable of evaluating thermal indoor environments of existing or proposed office buildings designs. The approach used in this study was based on a traditional method of predicting thermal sensation by calculating Fanger's 'Predicted Mean Vote' [PMV]. PMV is influenced by four environmental parameters of a room: air temperature, radiant temperature, air velocity and relative humidity, and by two personal parameters of the employees: metabolic rate and clothing insulation. The knowledge required to determine these six parameters was placed in KBS-databases and tables using a KBS-building tool called Advanced Knowledge Transfer System [AKTS]. By questioning the user, the TIE-system is capable of determining the PMV for a particular office room. The system also provides conclusions and advice on improving the thermal comfort. The TIE-system was a pilot-study for the long-term Building Evaluation research project, being undertaken at FAGO, that examines in all aspects of office building performance, and in which KBS may play a major pole.
series DDSS
last changed 2003/08/07 16:36

_id f5ee
authors Erhorn, H., De Boer, J. and Dirksmueller, M.
year 1997
title ADELINE, an Integrated Approach to Lighting Simulation
source Proceedings of Right Light 4, 4th European Conference on Energy-Efficient Lighting, pp.99-103
summary The use of daylighting and artificial lighting simulation programs to calculate complex systems and models in the design practice often is impeded by the fact that the operation of these programs, especially the model input, is extremely complicated and time-consuming. Programs that are easier to use generally do not show the calculation capabilities required in practice. A second obstacle arises as the lighting calculations often do not allow any statements regarding the interactions with the energetic and thermal building performance. Both problems are mainly due to a lacking integration of the design tools of other building design practitioners as well as due to insufficient user interfaces. The program package ADELINE (Advanced Daylight and Electric Lighting Integrated New Environment) being available since May 1996 as completely revised version 2.0 presents a promising approach to solve these problems. This contribution describes the approaches and methods used within the international project IEA Task 21 for a further development of the ADELINE system. Aim of this work is a further improvement of user interfaces based on the inclusion of new dialogs and on a portation of the program system from MS-DOS to the Windows NT platform. Additional focus is laid on the use of recent developments in the field of information technology and experiences gained in other projects on integrated building design systems, like for example EU-COMBINE, in a pragmatical way. An integrated building design system with open standardized interfaces is to be achieved inter alia by using ISOSTEP formats, database technologies and a consequent, object-oriented design.
series other
last changed 2003/04/23 15:50

_id 5fc4
authors Fruchter, R.
year 1996
title Conceptual Collaborative Building Design Through Shared Graphics
source IEEE Expert special issue on Al in Civil Engineering, June vol. 33-41
summary The Interdisciplinary Communication Medium computer environment integrates a shared graphic modeling environment with network-based services to accommodate many perspectives in an architecture/engineering/construction team. Communication is critical for achieving better cooperation and coordination among professionals in a multidisciplinary building team. The complexity of large construction projects, the specialization of the project participants, and the different forms of synchronous and asynchronous collaborative work increase the need for intensive information sharing and exchange. Architecture/engineering/construction (A/E/C) professionals use computers to perform a specific discipline's tasks, but they still exchange design decisions and data using paper drawings and documents. Each project participant investigates and communicates alternative solutions through representational idioms that are private to that member's profession. Other project participants must then interpret, extract, and reenter the relevant information using the conventional idioms of their disciplines and in the format required by their tools. The resulting communication difficulties often affect the quality of the final building and the time required to achieve design consensus. This article describes a computer environment, the Interdisciplinary Communication Medium (ICM), that supports conceptual, collaborative building design. The objective is to help improve communication among professionals in a multidisciplinary team. Collaborative teamwork is an iterative process of reaching a shared understanding of the design and construction domains, the requirements, the building to be built, and the necessary commitments. The understanding emerges over time, as team members begin to grasp their own part of the project, and as they provide information that lets others progress. The fundamental concepts incorporated in ICM include A communication cycle for collaborative teamwork that comprises propose-interpret-critique-explain-change notifications. An open system-integration architecture. A shared graphic modeling environment for design exploration and communication. A Semantic Modeling Extension (SME), which introduces a structured way to capture design intent. A change-notification mechanism that documents notes on design changes linked to the graphic models, and routes change notifications. Thus, the process involves communication, negotiation, and team learning.
series journal paper
last changed 2003/04/23 15:14

_id 89ca
authors Garcia, Renato
year 1996
title Sound Structure: Using Data Sonification to Enhance Building Structures CAI
doi https://doi.org/10.52842/conf.caadria.1996.109
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 109-117
summary Although sound is now extensively used to enrich multimedia applications in the form of simple audio signals, earcons, musical passages and speech, it has unfortunately been under-utilized as a means of data representation. Sound, having many characteristics which enable it to convey multi-dimensional information, provides a broad channel for dynamically presenting data in a learning environment. This paper looks into how teaching concepts of building structures to students of architecture and engineering through computers and multimedia can be enhanced by enlisting the use of appropriate sound parameters. Sound is useful in presenting redundant or supplementary information such as in portraying building structural response to static and dynamic external loading. This process of audiolization, which refers to the use of sounds to present data, can alleviate much of the cognitive load that usually burdens visual displays and has been used to some degree of success in various studies on scientific representation. Where appropriate, audiolization can be synchronized to more established visualization processes to provide more effective multi-modal multimedia systems for the study of building structures.
series CAADRIA
email
last changed 2022/06/07 07:50

_id 6e0f
authors Goldstein, Laurence
year 1996
title Teaching Creativity with Computers
doi https://doi.org/10.52842/conf.caadria.1996.307
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 307-316
summary Using computers as an aid to architectural design promotes efficiency – of that there is no doubt – but its real merit must surely lie in provoking inventiveness. The medium makes possible the speedy creation and manipulation of images, a holistic, integrational approach to design, the exploration of virtual environments, the real time collaboration in design by individuals at remote sites and so on – these all fall under my heading of ‘efficiency’, since more or less the same ends can be achieved, albeit much more slowly and tediously, by traditional methods. But inventiveness, that’s something different. For comparison, think of the advent of reinforced concrete. In the early years, the new medium was used, roughly speaking, as a substitute for timber beams; but the genius of Le Corbusier was required to appreciate that concrete had fluid qualities which afforded completely different kinds of design opportunities. Can computers likewise revolutionise design? Will new kinds of building get constructed as a result of the advent of computers into the design arena?
series CAADRIA
last changed 2022/06/07 07:51

_id fb63
id fb63
authors Jabi, Wassim
year 1996
title An Outline of the Requirements for a Computer-Supported Collaborative Design System
source Open House International, vol 21, no 1, March 1996
summary Computer-Aided Architectural Design (CAAD) systems have adequately satisfied several needs so far. They have dramatically improved the accuracy and consistency of working drawings, enabled designers to visualize their design ideas in three-dimensions, allowed the analysis of designs through data exchange and integrated databases, and even allowed the designers to evaluate (and in some cases generate) designs based on comparisons to previous cases and/or the formalization of grammars. Yet, there is a consensus that CAAD systems have not yet achieved their full potential. First, most systems employ a single-user approach to solving architectural problems which fails to grapple with the fact that most design work is done through teamwork. Second, current systems still can not support early design stages which involve client briefing, data collection, building program formulation, and schematic design generation. This paper seeks to study remedies to both of the afore-mentioned limitations through focusing on the fundamental dialectic and collaborative nature of what is called designing: a concerned social activity that proceeds by creating architectural elements to address a set of requirements and their re-thinking as a result of architectural conjecture. To investigate this relationship, it is proposed to build a computer-supported collaborative design environment using the tools of conceptual modeling, object-oriented algorithms, and distributed agents. Based on findings regarding the role of artifacts in collaborative design and a literature survey, this paper concludes with an outline of the requirements for the above system.
series journal paper
type normal paper
email
last changed 2008/06/12 16:34

_id 2f3c
authors Jabi, Wassim
year 1996
title An Outline of the Requirements for a Computer-Supported Collaborative Design System
source Open House International, vol. 21 no 1, March 1996, pp. 22-30
summary Computer-Aided Architectural Design (CAAD) systems have adequately satisfied several needs so far. They have dramatically improved the accuracy and consistency of working drawings, enabled designers to visualize their design ideas in three-dimensions, allowed the analysis of designs through data exchange and integrated databases, and even allowed the designers to evaluate (and in some cases generate) designs based on comparisons to previous cases and/or the formalization of grammars. Yet, there is a consensus that CAAD systems have not yet achieved their full potential. First, most systems employ a single-user approach to solving architectural problems which fails to grapple with the fact that most design work is done through teamwork. Second, current systems still can not support early design stages which involve client briefing, data collection, building program formulation, and schematic design generation. This paper seeks to study remedies to both of the afore-mentioned limitations through focusing on the fundamental dialectic and collaborative nature of what is called designing: a concerned social activity that proceeds by creating architectural elements to address a set of requirements and their re-thinking as a result of architectural conjecture. To investigate this relationship, it is proposed to build a computer-supported collaborative design environment using the tools of conceptual modeling, object-oriented algorithms, and distributed agents. Based on findings regarding the role of artifacts in collaborative design and a literature survey, this paper concludes with an outline of the requirements for the above system.
keywords Computer Supported Collaborative Design
series other
email
last changed 2002/03/05 19:54

_id ddssar9619
id ddssar9619
authors Kanoglu, Aiaattin
year 1996
title A Site-Based Computerized Production Planning & Control Model for The Plants which Produce Prefabricated Building Components
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary The "open systems" in building prefabrication may be qualified more flexible to some extent compared to the closed ones and may use the tools and approaches used in industrial production areas for the estimation of demand and production. As for the closed systems in particular, it is not possible for these systems to apply this kind of approach. Their production must be based on absolutely assured demands and projects. Because of this, they need detailed projects and assembly schedules for produc-tion. As a result of this, their production modes can be qualified "custom-made" type and production planning functions must provide the demand values from the assembly schedules of contracted proj-ects. The problem can be solved by integrating the work schedules of the sites that are served by fac-tory. Integration of data on a computerized system will be preferable and it is possible to realize the model in two alternative ways. The first is developing a new conceptual model and convert it into a software and the second is developing an approach for customizing general purpose project planning and programming software for using them in production planning. The second solution is studied in the paper following this. The aim of this study is to develop the principals of a conceptual model for an Integrated Data Flow and Evaluation System for production planning in prefabrication and to con-vert this model into an applicable and objective computer-aided model.
series DDSS
last changed 2003/08/07 16:36

_id ddssar9618
id ddssar9618
authors Kanoglu, Alaattin
year 1996
title Application of General Purpose Project Planning & Programming Software for Production Planning & Control in Plants which Produce Prefabricated Building Components
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary The "open systems" in building prefabrication may be qualified more flexible to some extent compared to the closed ones and may use the tools and approaches used in industrial production areas for the es-timation of demand and production. As for the closed systems in particular, it is not possible for these systems to apply this kind of an approach. Their production must be based on absolutely assured de-mands and projects. Because of this, they need detailed projects and assembly schedules for produc-tion. As a result of this, their production modes can be qualified "custom-made" type and production planning functions must provide the demand values from the assembly schedules of contracted pro-jects. The problem can be solved by integrating the work schedules of the sites that are served by fac-tory. Integration of data on a computerized system will be preferable and it is possible to realize the model in two alternative ways. The first is developing a new conceptual model and convert it into a software and the second is developing an approach for customizing general purpose project planning and programming software for using them in production planning. The second solution is studied in the paper following this. The aims of this study are analyzing outstanding general purpose project planning & programming software from the point of view of requirements of production planning function and their customizability; comparing the requirements of the model designed for production planning and capabilities of general purpose planning software and developing the conceptual and practical dimensions and basic principals of the model for using the general purpose planning and programming software for production planning.
series DDSS
last changed 2003/08/07 16:36

_id 2192
authors Mahdavi, A., Mathew, P., Hartkopf, V. and Loftness, V.
year 1996
title Bi-directional Inference in Thermal Design
doi https://doi.org/10.52842/conf.acadia.1996.133
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 133-143
summary This paper demonstrates a computational bi-directional energy modeling approach for building design development. Conventional simulation tools may be labeled as mono-directional in that they require a more or Iess complete design definition in order to derive performance indicators. However, in certain circumstances, it may be desirable to reverse this process: a bi-directional (or "open") inference mechanism would allow for the identification of those changes in the design variables that would accommodate a desired change in a performance indicator. The performance-to-design mapping process is an ambiguous one: the same performance (e.g. energy use of a building, temperature variations in a space) may be achieved by different design configurations (various wall and window dimensions/properties, building orientation/massing, etc.). As a result, the actual implementation of a bi-directional inference tool is a rather difficult task. The development described in this paper utilizes a preference-based approach that involves the formalization of various external or internal constraints and preferences (such as code and standard requirements, results of post-occupancy studies, individual priorities of designers and their clients, etc.) in terms of normalized numeric scales.

After a brief review of the underlying technology for the implementation of the inference engine, the paper demonstrates an actual design session using a bi-directional thermal simulation tool. Specifically, a use-scenario is described in which the designer explores the tradeoffs between various design variables (glazing area, glazing type, and floor mass) in view of the resulting energy performance of a typical residential building. The paper concludes with a discussion of the potential and limitations of the bi-directional approach toward active convergence support for performance-oriented design development.

series ACADIA
email
last changed 2022/06/07 07:59

_id f5a3
authors Maher, M.L. and Gomez de Silva Garza, A.
year 1996
title Developing case-based reasoning for structural design
source IEEE Expert
summary Case-based systems enable users to retrieve previously known designs from memory and adapt them to fit the current design problem. The four case-based design systems described here illustrate how various implementations achieve design assistance or design automation objectives. Case-based reasoning is a problem-solving technique that makes analogies between a problem and previously encountered situations (cases) relevant to solving the problem. Using CBR as a design process model involves the subtasks of recalling previously known designs from memory and adapting these design cases or subcases to fit the current design context. The detailed development of this process model for a particular design domain proceeds in parallel with the development of the case representation, the case memory organization, and the necessary design knowledge. The selection of an information representation paradigm and the details of its use for a problem-solving domain depend on the intended use of the information, the project information available, and the nature of the domain. CBR could be used to develop and implement a CBR system. Although that sounds circular, if CBR is a viable approach to problem solving, it can be applied to the development of the reasoning system itself. Toward that end, this article presents four "cases" of case-based building design systems that we've developed at the University of Sydney: CaseCAD, CADsyn, Win, and Demex. These systems exemplify alternative case memory contents and organizations and provide insight into different potential implementations of the recall and adaptation subprocesses.
series journal paper
email
last changed 2003/04/23 15:14

_id ddssar9624
id ddssar9624
authors Nguyen, T.H., Ha, K.H. and Bddard, C.
year 1996
title Architectural and structural design with code compliance checking
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary This paper focuses on the development of an integrated information model suitable for a knowledge-based system to automate the building design process including code compliance checking. The development of such a data model is based on object-oriented knowledge representation techniques in which building entities and relationships are represented by objects and attributes through appropriate frame-based forms, whereas rule-based representations are used to describe the knowledge contained in building regulations. The proposed approach integrates all relevant information among different disciplines such as architecture, engineering, and building regulations in an object-oriented model capable of exchanging all the information by means of a common database. The implementation of a prototype system is also described.
series DDSS
last changed 2003/08/07 16:36

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_177411 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002