CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 487

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ddssup9604
id ddssup9604
authors Boelen, A.J.
year 1996
title Impact-Analysis of Urban Design Realtime impact-analysis models for urban designers
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary The past five years Prof Dr Jr T.M. de Jong, professor in environmental planning and sustainability at the Technical University of Delft, has developed a theoretical foundation for the analysis of urban design on the ecological, technical, economical, cultural and political impacts of morphologic interventions on different levels of scale. From september 1994 Jr AJ. Boelen (Urban Design Scientist and Knowledge Engineer) started a research project at the same university to further explore the possibilities of these theories and to develop impact evaluation models for urban design and development with the theoretical work of De Jong as a starting point. The paper discusses the development of a design and decision support system based on these theories. For the development of this system, techniques like object-orientation, genetic algorithms and knowledge engineering are used. The user interface, the relation between the real world, paper maps and virtual maps and the presentation of design-interventions and impacts caused by the interventions are important issues. The development-process is an interactive step by step process. It consists of the making of a prototype of the system, testing the theory and hypothe-sisses the system is based on, by applying tests end adjusting the theory and hypothesisses where needed. Eventually the system must be able to act as an integrator of many different models already developed or still to be developed. The structure of the system will allow easy future expansion and adjustment to changing insights. The logic used to develop the basic theory on which this system is founded makes it possible to even introduce and maintain rather subjective aspects like quality or appraisal as impacts that can be evaluated. In a previously developed system "Momentum" this was proved to work effectively for the national level. In this project we will - amongst other things - try to prove the effectiveness of impact-evaluation for other levels of scale.
series DDSS
email
last changed 2003/11/21 15:16

_id ddssar9603
id ddssar9603
authors Daru, R. and Snijder, H.P.S.
year 1996
title Morphogenetic Designing in Architecture resolving controversies in and between design, research and development
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary There is a dearth of software able to support the working styles of all types of designers and design scholars, spanning the whole spectrum of hermeneutical and empirical traditions. The development of morphogenetic designing in architecture opens new possibilities to bridge the gap between the different traditions. It can support the birth of forms evolving one from the other with the help of local and global rules in genetic algorithms and neural networks which translate the wishes of the designer. It can also support the communication about these forms and the testing of their adequacy. On the other hand the design process which is reflected in the sequence of form generating acts can be studied by design researchers better than by protocols alone.
series DDSS
last changed 2003/08/07 16:36

_id 3a63
authors Kaynak, O.
year 1998
title Computational intelligence: soft computing and fuzzy-neuro integration with applications
source Springer, Berlin
summary Soft computing is a consortium of computing methodologies that provide a foundation for the conception, design, and deployment of intelligent systems and aims to formalize the human ability to make rational decisions in an environment of uncertainty and imprecision. This book is based on a NATO Advanced Study Institute held in 1996 on soft computing and its applications. The distinguished contributors consider the principal constituents of soft computing, namely fuzzy logic, neurocomputing, genetic computing, and probabilistic reasoning, the relations between them, and their fusion in industrial applications. Two areas emphasized in the book are how to achieve a synergistic combination of the main constituents of soft computing and how the combination can be used to achieve a high Machine Intelligence Quotient.
series other
last changed 2003/04/23 15:14

_id c7e9
authors Maver, T.W.
year 2002
title Predicting the Past, Remembering the Future
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 2-3
summary Charlas Magistrales 2There never has been such an exciting moment in time in the extraordinary 30 year history of our subject area, as NOW,when the philosophical theoretical and practical issues of virtuality are taking centre stage.The PastThere have, of course, been other defining moments during these exciting 30 years:• the first algorithms for generating building layouts (circa 1965).• the first use of Computer graphics for building appraisal (circa 1966).• the first integrated package for building performance appraisal (circa 1972).• the first computer generated perspective drawings (circa 1973).• the first robust drafting systems (circa 1975).• the first dynamic energy models (circa 1982).• the first photorealistic colour imaging (circa 1986).• the first animations (circa 1988)• the first multimedia systems (circa 1995), and• the first convincing demonstrations of virtual reality (circa 1996).Whereas the CAAD community has been hugely inventive in the development of ICT applications to building design, it hasbeen woefully remiss in its attempts to evaluate the contribution of those developments to the quality of the built environmentor to the efficiency of the design process. In the absence of any real evidence, one can only conjecture regarding the realbenefits which fall, it is suggested, under the following headings:• Verisimilitude: The extraordinary quality of still and animated images of the formal qualities of the interiors and exteriorsof individual buildings and of whole neighborhoods must surely give great comfort to practitioners and their clients thatwhat is intended, formally, is what will be delivered, i.e. WYSIWYG - what you see is what you get.• Sustainability: The power of «first-principle» models of the dynamic energetic behaviour of buildings in response tochanging diurnal and seasonal conditions has the potential to save millions of dollars and dramatically to reduce thedamaging environmental pollution created by badly designed and managed buildings.• Productivity: CAD is now a multi-billion dollar business which offers design decision support systems which operate,effectively, across continents, time-zones, professions and companies.• Communication: Multi-media technology - cheap to deliver but high in value - is changing the way in which we canexplain and understand the past and, envisage and anticipate the future; virtual past and virtual future!MacromyopiaThe late John Lansdown offered the view, in his wonderfully prophetic way, that ...”the future will be just like the past, onlymore so...”So what can we expect the extraordinary trajectory of our subject area to be?To have any chance of being accurate we have to have an understanding of the phenomenon of macromyopia: thephenomenon exhibitted by society of greatly exaggerating the immediate short-term impact of new technologies (particularlythe information technologies) but, more importantly, seriously underestimating their sustained long-term impacts - socially,economically and intellectually . Examples of flawed predictions regarding the the future application of information technologiesinclude:• The British Government in 1880 declined to support the idea of a national telephonic system, backed by the argumentthat there were sufficient small boys in the countryside to run with messages.• Alexander Bell was modest enough to say that: «I am not boasting or exaggerating but I believe, one day, there will bea telephone in every American city».• Tom Watson, in 1943 said: «I think there is a world market for about 5 computers».• In 1977, Ken Olssop of Digital said: «There is no reason for any individuals to have a computer in their home».The FutureJust as the ascent of woman/man-kind can be attributed to her/his capacity to discover amplifiers of the modest humancapability, so we shall discover how best to exploit our most important amplifier - that of the intellect. The more we know themore we can figure; the more we can figure the more we understand; the more we understand the more we can appraise;the more we can appraise the more we can decide; the more we can decide the more we can act; the more we can act themore we can shape; and the more we can shape, the better the chance that we can leave for future generations a trulysustainable built environment which is fit-for-purpose, cost-beneficial, environmentally friendly and culturally significactCentral to this aspiration will be our understanding of the relationship between real and virtual worlds and how to moveeffortlessly between them. We need to be able to design, from within the virtual world, environments which may be real ormay remain virtual or, perhaps, be part real and part virtual.What is certain is that the next 30 years will be every bit as exciting and challenging as the first 30 years.
series SIGRADI
email
last changed 2016/03/10 09:55

_id 18bc
authors Clay, Sharon and Wilhelms, Jane
year 1996
title Put: Language-Based Interactive Manipulation of Objects
source IEEE Computer Graphics and Applications
summary Describing a scene to a computer is an inherent task of computer graphics applications. Modeled scenes are typically built with direct placement techniques or specialized scripting languages. The scene description task could be greatly eased if natural language were an interactive control option. However, natural language understanding is notoriously difficult for computers. This difficulty is exacerbated in the case of computer graphics by the need for geometric output, not just "conceptual understanding" or high-level inferencing. General text-understanding techniques have not been successfully applied to scene generation. Typically, a few task-specific commands, such as "walk," are implemented as an ad-hoc collection of procedures. Our approach aims to separate the expressive power of fundamental natural concepts from the difficult task of text understanding. We are developing a 3D object placement system based on a combination of natural commands and interactive techniques. Guided by research in cognitive linguistics, we use basic spatial relationships--such as in, on, and at--and fundamental scene parameters--such as viewer location and object dimensionality--to identify regions of placement for objects in a scene. These natural commands can be used to quickly prototype a complex scene and constrain object placement.
series journal paper
last changed 2003/04/23 15:14

_id 89ca
authors Garcia, Renato
year 1996
title Sound Structure: Using Data Sonification to Enhance Building Structures CAI
doi https://doi.org/10.52842/conf.caadria.1996.109
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 109-117
summary Although sound is now extensively used to enrich multimedia applications in the form of simple audio signals, earcons, musical passages and speech, it has unfortunately been under-utilized as a means of data representation. Sound, having many characteristics which enable it to convey multi-dimensional information, provides a broad channel for dynamically presenting data in a learning environment. This paper looks into how teaching concepts of building structures to students of architecture and engineering through computers and multimedia can be enhanced by enlisting the use of appropriate sound parameters. Sound is useful in presenting redundant or supplementary information such as in portraying building structural response to static and dynamic external loading. This process of audiolization, which refers to the use of sounds to present data, can alleviate much of the cognitive load that usually burdens visual displays and has been used to some degree of success in various studies on scientific representation. Where appropriate, audiolization can be synchronized to more established visualization processes to provide more effective multi-modal multimedia systems for the study of building structures.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ddss2008-02
id ddss2008-02
authors Gonçalves Barros, Ana Paula Borba; Valério Augusto Soares de Medeiros, Paulo Cesar Marques da Silva and Frederico de Holanda
year 2008
title Road hierarchy and speed limits in Brasília/Brazil
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary This paper aims at exploring the theory of the Social Logic of Space or Space Syntax as a strategy to define parameters of road hierarchy and, if this use is found possible, to establish maximum speeds allowed in the transportation system of Brasília, the capital city of Brazil. Space Syntax – a theory developed by Hillier and Hanson (1984) – incorporates the space topological relationships, considering the city shape and its influence in the distribution of movements within the space. The theory’s axiality method – used in this study – analyses the accessibility to the street network relationships, by means of the system’s integration, one of its explicative variables in terms of copresence, or potential co-existence between the through-passing movements of people and vehicles (Hillier, 1996). One of the most used concepts of Space Syntax in the integration, which represents the potential flow generation in the road axes and is the focus of this paper. It is believed there is a strong correlation between urban space-form configuration and the way flows and movements are distributed in the city, considering nodes articulations and the topological location of segments and streets in the grid (Holanda, 2002; Medeiros, 2006). For urban transportation studies, traffic-related problems are often investigated and simulated by assignment models – well-established in traffic studies. Space Syntax, on the other hand, is a tool with few applications in transport (Barros, 2006; Barros et al, 2007), an area where configurational models are considered to present inconsistencies when used in transportation (cf. Cybis et al, 1996). Although this is true in some cases, it should not be generalized. Therefore, in order to simulate and evaluate Space Syntax for the traffic approach, the city of Brasília was used as a case study. The reason for the choice was the fact the capital of Brazil is a masterpiece of modern urban design and presents a unique urban layout based on an axial grid system considering several express and arterial long roads, each one with 3 to 6 lanes,
keywords Space syntax, road hierarchy
series DDSS
last changed 2008/09/01 17:06

_id b6a7
authors Jensen, K.
year 1996
title Coloured Petri Nets: Basic Concepts
source 2nd ed., Springer Verlag, Berlin
summary This book presents a coherent description of the theoretical and practical aspects of Coloured Petri Nets (CP-nets or CPN). It shows how CP-nets have been developed - from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and/or computers communicate by means of some more or less formal rules). The book contains the formal definition of CP-nets and the mathematical theory behind their analysis methods. However, it has been the intention to write the book in such a way that it also becomes attractive to readers who are more interested in applications than the underlying mathematics. This means that a large part of the book is written in a style which is closer to an engineering textbook (or a users' manual) than it is to a typical textbook in theoretical computer science. The book consists of three separate volumes. The first volume defines the net model (i.e., hierarchical CP-nets) and the basic concepts (e.g., the different behavioural properties such as deadlocks, fairness and home markings). It gives a detailed presentation of many small examples and a brief overview of some industrial applications. It introduces the formal analysis methods. Finally, it contains a description of a set of CPN tools which support the practical use of CP-nets. Most of the material in this volume is application oriented. The purpose of the volume is to teach the reader how to construct CPN models and how to analyse these by means of simulation. The second volume contains a detailed presentation of the theory behind the formal analysis methods - in particular occurrence graphs with equivalence classes and place/transition invariants. It also describes how these analysis methods are supported by computer tools. Parts of this volume are rather theoretical while other parts are application oriented. The purpose of the volume is to teach the reader how to use the formal analysis methods. This will not necessarily require a deep understanding of the underlying mathematical theory (although such knowledge will of course be a help). The third volume contains a detailed description of a selection of industrial applications. The purpose is to document the most important ideas and experiences from the projects - in a way which is useful for readers who do not yet have personal experience with the construction and analysis of large CPN diagrams. Another purpose is to demonstrate the feasibility of using CP-nets and the CPN tools for such projects. Together the three volumes present the theory behind CP-nets, the supporting CPN tools and some of the practical experiences with CP-nets and the tools. In our opinion it is extremely important that these three research areas have been developed simultaneously. The three areas influence each other and none of them could be adequately developed without the other two. As an example, we think it would have been totally impossible to develop the hierarchy concepts of CP-nets without simultaneously having a solid background in the theory of CP-nets, a good idea for a tool to support the hierarchy concepts, and a thorough knowledge of the typical application areas.
series other
last changed 2003/04/23 15:14

_id 0ef8
authors Völker, H., Sariyildiz, S., Schwenck, M. and Durmisevic, S.
year 1996
title THE NEXT GENERATION OF ARCHITECTURE WITHIN COMPUTER SCIENCES
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary Considering architecture as a mixture of exact sciences and the art, we can state that as in all other sciences, every technical invention and development has resulted in advantages and disadvantages for the well-being and prosperity of mankind. Think about the developments in the fields of nuclear energy or space travel. Besides bringing a lot of improvements in many fields, it also has danger for the well-being of a mankind. The development of the advanced computer techniques has also influence on architecture, which is inevitable. How did the computer science influence architecture till now, and what is going to be the future of the architecture with this ongoing of computer science developments? The future developments will be both in the field of conceptual design (form aspect) and also in the area of materialization of the design process.

These all are dealing with the material world, for which the tools of computer science are highly appropriate. But what will happen to the immaterial world? How can we put these immaterial values into a computers model? Or can the computer be creative as a human being? Early developments of computer science in the field of architecture involved two-dimensional applications, and subsequently the significance of the third dimension became manifest. Nowadays, however, people are already speaking of a fourth dimension, interpreting it as time or as dynamics. And what, for instance, would a fifth, sixth or X-dimension represent?

In the future we will perhaps speak of the fifth dimension, comprising the tangible qualities of the building materials around us. And one day a sixth dimension might be created, when it will be possible to establish direct communication with computers, because direct exchange between the computer and the human brain has been realised. The ideas of designers can then be processed by the computer directly, and we will no longer be hampered by obstacles such as screen and keyboard. There are scientist who are working to realize bio-chips. If it will work, perhaps we can realise all these speculations. It is nearly sure that the emergence of new technologies will also affect our subject area, architecture and this will create fresh challenges, fresh concepts, and new buildings in the 21st century. The responsibility of the architects must be, to bear in mind that we are dealing with the well-being and the prosperity of mankind.

keywords Model Simulation, Real Environments
series other
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2004/05/04 14:43

_id avocaad_2001_17
id avocaad_2001_17
authors Ying-Hsiu Huang, Yu-Tung Liu, Cheng-Yuan Lin, Yi-Ting Cheng, Yu-Chen Chiu
year 2001
title The comparison of animation, virtual reality, and scenario scripting in design process
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Design media is a fundamental tool, which can incubate concrete ideas from ambiguous concepts. Evolved from freehand sketches, physical models to computerized drafting, modeling (Dave, 2000), animations (Woo, et al., 1999), and virtual reality (Chiu, 1999; Klercker, 1999; Emdanat, 1999), different media are used to communicate to designers or users with different conceptual levels¡@during the design process. Extensively employed in design process, physical models help designers in managing forms and spaces more precisely and more freely (Millon, 1994; Liu, 1996).Computerized drafting, models, animations, and VR have gradually replaced conventional media, freehand sketches and physical models. Diversely used in the design process, computerized media allow designers to handle more divergent levels of space than conventional media do. The rapid emergence of computers in design process has ushered in efforts to the visual impact of this media, particularly (Rahman, 1992). He also emphasized the use of computerized media: modeling and animations. Moreover, based on Rahman's study, Bai and Liu (1998) applied a new design media¡Xvirtual reality, to the design process. In doing so, they proposed an evaluation process to examine the visual impact of this new media in the design process. That same investigation pointed towards the facilitative role of the computerized media in enhancing topical comprehension, concept realization, and development of ideas.Computer technology fosters the growth of emerging media. A new computerized media, scenario scripting (Sasada, 2000; Jozen, 2000), markedly enhances computer animations and, in doing so, positively impacts design processes. For the three latest media, i.e., computerized animation, virtual reality, and scenario scripting, the following question arises: What role does visual impact play in different design phases of these media. Moreover, what is the origin of such an impact? Furthermore, what are the similarities and variances of computing techniques, principles of interaction, and practical applications among these computerized media?This study investigates the similarities and variances among computing techniques, interacting principles, and their applications in the above three media. Different computerized media in the design process are also adopted to explore related phenomenon by using these three media in two projects. First, a renewal planning project of the old district of Hsinchu City is inspected, in which animations and scenario scripting are used. Second, the renewal project is compared with a progressive design project for the Hsinchu Digital Museum, as designed by Peter Eisenman. Finally, similarity and variance among these computerized media are discussed.This study also examines the visual impact of these three computerized media in the design process. In computerized animation, although other designers can realize the spatial concept in design, users cannot fully comprehend the concept. On the other hand, other media such as virtual reality and scenario scripting enable users to more directly comprehend what the designer's presentation.Future studies should more closely examine how these three media impact the design process. This study not only provides further insight into the fundamental characteristics of the three computerized media discussed herein, but also enables designers to adopt different media in the design stages. Both designers and users can more fully understand design-related concepts.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ddssup9601
id ddssup9601
authors Aoke, Yoshitsugu and Muraoka, Naoto
year 1996
title An optimization method of the facility location by genetic algorithm
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary In planning of community-facilities, it is important to decide the facility location to provide the effective service for residents. The behavior of residents using the facility and the evaluation methods of the location have been studied. But, finding the optimum location is very hard in actual planning because the volume of calculation depends on the number of feasible locating points of facilities. To conquer the difficulty of searching the optimum location, we propose an optimization method using Genetic Algorithm. An alternative of location is expressed by a chromosome. Each chromosome consists of genes, and each gene expresses a located zone of the facility. We gave definitions of genetic procedures; crossing-over, mutation and selection. Alternatives of the facility location are generated by these genetic procedures like as life evolution. For each alternative, the behaviors of users are estimated by a spatial-interaction model, and the facilities that residents in each place choose are determined. The effectiveness of the location is measured by a total sum of distances between the facility and the user. After the confirmation of the effectiveness of our method by applying on ideal example problems, we applied it on the actual problem in Japanese town. By this method we could find the optimum location in about one-third time and effort as compared with the ordinal method.
series DDSS
last changed 2003/11/21 15:15

_id dba1
authors Hirschberg, Urs and Wenz, Florian
year 2000
title Phase(x) - memetic engineering for architecture
source Automation in Construction 9 (4) (2000) pp. 387-392
summary Phase(x) was a successful teaching experiment we made in our entry level CAAD course in the Wintersemester 1996/1997. The course was entirely organized by means of a central database that managed all the students' works through different learning phases. This set-up allowed that the results of one phase and one author be taken as the starting point for the work in the next phase by a different author. As students could choose which model they wanted to work with, the whole of Phase(x) could be viewed as an organism where, as in a genetic system, only the "fittest" works survived. While some discussion of the technical set-up is necessary as a background, the main topics addressed in this paper will be the structuring in phases of the course, the experiences we had with collective authorship, and the observations we made about the memes2 that developed and spread in the students' works. Finally we'll draw some conclusions in how far Phase(x) is relevant also in a larger context, which is not limited to teaching CAAD. Since this paper was first published in 1997, we have continued to explore the issues described here in various projects3 together with a growing number of other interested institutions worldwide. While leaving the paper essentially in its original form, we added a section at the end, in which we outline some of these recent developments.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 62a1
authors Maher, M.L. and Poon, J.
year 1996
title Modelling design exploration as co-evolution
source Microcomputers in Civil Engineering, 11:192-207
summary Most computer-based design tools assume designers work with a well defined problem. However, this assumption has been challenged by current research. The explorative aspect of design, especially during conceptual design, is not fully addressed. This paper introduces a model for problem-design exploration, and how this model can be implemented using the genetic algorithm (GA) paradigm. The basic GA, which does not support our exploration model, evaluates individuals from a population of design solutions with an unchanged fitness function. This approach to evaluation implements search with a prefixed goal. Modifications to the basic GA are required to support exploration. Two approaches to implement a co-evolving GA are presented and discussed in this paper: one in which the fitness function is represented within the genotype, and a second in which the fitness function is modelled as a separately evolving population of genotypes.
series journal paper
email
last changed 2003/04/23 15:50

_id acadia07_284
id acadia07_284
authors Robinson, Kirsten; Gorbet, Robert; Beesley, Philip
year 2007
title Evolving Cooperative Behaviour in a Reflexive Membrane
doi https://doi.org/10.52842/conf.acadia.2007.284
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 284-293
summary This paper describes the integration of machine intelligence into an immersive architectural sculpture that interacts dynamically with users and the environment. The system is conceived to function as an architectural envelope that might transfer air using a distributed array of components. The sculpture includes a large array of interconnected miniature structural and kinetic elements, each with local sensing, actuation, and machine intelligence. We demonstrate a model in which these autonomous, interconnected agents develop cooperative behaviour to maximize airflow. Agents have access to sensory data about their local environment and ‘learn’ to move air through the working of a genetic algorithm. Introducing distributed and responsive machine intelligence builds on work done on evolving embodied intelligence (Floreano et al. 2004) and architectural ‘geotextile’ sculptures by Philip Beesley and collaborators (Beesley et al. 1996-2006). The paper contributes to the general field of interactive art by demonstrating an application of machine intelligence as a design method. The objective is the development of coherent distributed kinetic building envelopes with environmental control functions. A cultural context is included, discussing dynamic paradigms in responsive architecture.
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id 6e46
authors Wenz, Florian and Hirschberg, Urs
year 1997
title Phase(x) - Memetic Engineering for ArchitectureArchitecture
doi https://doi.org/10.52842/conf.ecaade.1997.x.b1e
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
summary Phase(x) was a successful teaching experiment we made in our entry level CAAD course in the Wintersemester 1996/97. The course was entirely organized by means of a central database that managed all the students' works through different learning phases. This setup allowed that the results of one phase and one author be taken as the starting point for the work in the next phase by a different author. As students could choose which model they wanted to work with, the whole of Phase(x) could be viewed as an organism where, as in a genetic system, only the "fittest" works survived.

While some discussion of the technical set-up is necessary as a background, the main topics addressed in this paper will be the structuring in phases of the course, the experiences we had with collective authorship, and the observations we made about the memes hat developed and spread in the students' works. Finally we'll draw some conclusions in how far Phase(x) is relevant also in a larger context, that is not limited to teaching CAAD.

keywords memetic process, collaborative creative work, collective authorship, caad education
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/wenz/wenz.htm
last changed 2022/06/07 07:50

_id c872
authors Beliveau, Y.J., Fithian, J.E. and Deisenroth, M.P.
year 1996
title Autonomous vehicle navigation with real-time 3D laser based positioning for construction
source Automation in Construction 5 (4) (1996) pp. 261-272
summary Autonomous Guided Vehicles (AGVs) are a way of life in manufacturing where navigation can be done in a structured environment. Construction is an unstructured environment and requires a different type of navigation system to deal with three dimensional control and rough terrain. This paper provides a review of navigation systems that utilize dead-reckoning in conjunction with absolute referencing systems such as beacon-based systems, and vision and mapping based system. The use of a real-time laser based technology is demonstrated as a new form of navigation. This, technology does not rely on dead reckoning. The paper outlines the issues and strategies in guiding an autonomous vehicle utilizing only the laser-based positioning system. Algorithms were developed to provide real-time control of the AGV. The laser based positioning system is unique in that it provides three dimensional position data with five updates per second. No other system can provide this level of performance. This allows for control of end effectors and autonomous vehicles in complex and unstructured three dimensional environments. The use of this new type of navigation makes possible the automation of large complex assemblies in rough terrain such as construction.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 2ca3
authors Curless, Brian and Levoy, Marc
year 1996
title A Volumetric Method for Building Complex Models from Range Images
source Stanford University
summary A number of techniques have been developed for reconstructing surfaces by integrating groups of aligned range images. A desirable set of properties for such algorithms includes: incremental updating, representation of directional uncertainty, the ability to fill gaps in the reconstruction, and robustness in the presence of outliers. Prior algorithms possess subsets of these properties. In this paper, we present a volumetric method for integrating range images that possesses all of these properties. Our volumetric representation consists of a cumulative weighted signed distance function. Working with one range image at a time, we first scan-convert it to a distance function, then combine this with the data already acquired using a simple additive scheme. To achieve space efficiency, we employ a run-length encoding of the volume. To achieve time efficiency, we resample the range image to align with the voxel grid and traverse the range and voxel scanlines synchronously. We generate the final manifold by extracting an isosurface from the volumetric grid. We show that under certain assumptions, this isosurface is optimal in the least squares sense. To fill gaps in the model, we tessellate over the boundaries between regions seen to be empty and regions never observed. Using this method, we are able to integrate a large number of range images (as many as 70) yielding seamless, high-detail models of up to 2.6 million triangles.
series other
last changed 2003/04/23 15:50

_id 5e49
authors Deering, Michael F.
year 1996
title HoloSketch: A Virtual Reality Sketching/Animation Tool Special Issue on Virtual Reality Software and Technology
source Transactions on Computer-Human Interaction 1995 v.2 n.3 pp. 220-238
summary This article describes HoloSketch, a virtual reality-based 3D geometry creation and manipulation tool. HoloSketch is aimed at providing nonprogrammers with an easy-to-use 3D "What-You-See-Is-What-You-Get" environment. Using head-tracked stereo shutter glasses and a desktop CRT display configuration, virtual objects can be created with a 3D wand manipulator directly in front of the user, at very high accuracy and much more rapidly than with traditional 3D drawing systems. HoloSketch also supports simple animation and audio control for virtual objects. This article describes the functions of the HoloSketch system, as well as our experience so far with more-general issues of head-tracked stereo 3D user interface design.
keywords Computer Graphics; Picture/Image Generation; Display Algorithms; Computer Graphics; Three-Dimensional Graphics and Realism; Human Factors; 3D Animation; 3D Graphics; Graphics Drawing Systems; Graphics Painting Systems; Man-Machine Interface; Virtual Reality
series other
last changed 2002/07/07 16:01

_id 1aa5
authors Huangb, X., Gub, P. and Zernickea, R.
year 1996
title Localization and comparison of two free-form surfaces
source Computer-Aided Design, Vol. 28 (12) (1996) pp. 1017-1022
summary Comparison of two free-form surfaces based on discrete data points is of paramount importance for reverse engineering. It can be used to assess the accuracy of the reconstructed surfaces and to quantify thedifference between two such surfaces. The entire process involves three main steps: data acquisition, 3D feature localization and quantitative comparison. This paper presents models and algorithms for 3D featurelocalization and quantitative comparison. Complex free-form surfaces are represented by bicubic parametric spline surfaces using discrete points. A simple yet effective pseudoinverse algorithm was developed andimplemented for localization. It consists of two iterative operations, namely, constructing a pseudo transformation matrix and point matching. A computing algorithm was developed to compare two such surfacesusing optimization techniques. Since this approach does not involve solving non-linear equations for the parameters of positions and orientations, it is fast and robust. The algorithm was implemented and testedwith several examples. It is effective and can be used in industry for sculptured surface comparison.
keywords Free-Form Sculptured Surface, Localization, Point Matching, Surface Comparison
series journal paper
last changed 2003/05/15 21:33

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_578486 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002