CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 489

_id 0cdb
authors Vaz, M. and Dunignan, P.
year 1996
title Industrial Light and Magic: Into the Digital Realm
source Ballantine Books, New York
summary A new decade at Industrial Light and Magic has brought us such movies as Terminator 2, Jurassic Park, The Mask, and Forrest Gump. Lavishly illustrated in full color throughout, this successor and companion to the bestselling ILM: The Art of Special Effects re-creates all the magic and technology of ILM's second groundbreaking decade.
series other
last changed 2003/04/23 15:14

_id avocaad_2001_16
id avocaad_2001_16
authors Yu-Ying Chang, Yu-Tung Liu, Chien-Hui Wong
year 2001
title Some Phenomena of Spatial Characteristics of Cyberspace
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary "Space," which has long been an important concept in architecture (Bloomer & Moore, 1977; Mitchell, 1995, 1999), has attracted interest of researchers from various academic disciplines in recent years (Agnew, 1993; Benko & Strohmayer, 1996; Chang, 1999; Foucault, 1982; Gould, 1998). Researchers from disciplines such as anthropology, geography, sociology, philosophy, and linguistics regard it as the basis of the discussion of various theories in social sciences and humanities (Chen, 1999). On the other hand, since the invention of Internet, Internet users have been experiencing a new and magic "world." According to the definitions in traditional architecture theories, "space" is generated whenever people define a finite void by some physical elements (Zevi, 1985). However, although Internet is a virtual, immense, invisible and intangible world, navigating in it, we can still sense the very presence of ourselves and others in a wonderland. This sense could be testified by our naming of Internet as Cyberspace -- an exotic kind of space. Therefore, as people nowadays rely more and more on the Internet in their daily life, and as more and more architectural scholars and designers begin to invest their efforts in the design of virtual places online (e.g., Maher, 1999; Li & Maher, 2000), we cannot help but ask whether there are indeed sensible spaces in Internet. And if yes, these spaces exist in terms of what forms and created by what ways?To join the current interdisciplinary discussion on the issue of space, and to obtain new definition as well as insightful understanding of "space", this study explores the spatial phenomena in Internet. We hope that our findings would ultimately be also useful for contemporary architectural designers and scholars in their designs in the real world.As a preliminary exploration, the main objective of this study is to discover the elements involved in the creation/construction of Internet spaces and to examine the relationship between human participants and Internet spaces. In addition, this study also attempts to investigate whether participants from different academic disciplines define or experience Internet spaces in different ways, and to find what spatial elements of Internet they emphasize the most.In order to achieve a more comprehensive understanding of the spatial phenomena in Internet and to overcome the subjectivity of the members of the research team, the research design of this study was divided into two stages. At the first stage, we conducted literature review to study existing theories of space (which are based on observations and investigations of the physical world). At the second stage of this study, we recruited 8 Internet regular users to approach this topic from different point of views, and to see whether people with different academic training would define and experience Internet spaces differently.The results of this study reveal that the relationship between human participants and Internet spaces is different from that between human participants and physical spaces. In the physical world, physical elements of space must be established first; it then begins to be regarded as a place after interaction between/among human participants or interaction between human participants and the physical environment. In contrast, in Internet, a sense of place is first created through human interactions (or activities), Internet participants then begin to sense the existence of a space. Therefore, it seems that, among the many spatial elements of Internet we found, "interaction/reciprocity" Ñ either between/among human participants or between human participants and the computer interface Ð seems to be the most crucial element.In addition, another interesting result of this study is that verbal (linguistic) elements could provoke a sense of space in a degree higher than 2D visual representation and no less than 3D visual simulations. Nevertheless, verbal and 3D visual elements seem to work in different ways in terms of cognitive behaviors: Verbal elements provoke visual imagery and other sensory perceptions by "imagining" and then excite personal experiences of space; visual elements, on the other hand, provoke and excite visual experiences of space directly by "mapping".Finally, it was found that participants with different academic training did experience and define space differently. For example, when experiencing and analyzing Internet spaces, architecture designers, the creators of the physical world, emphasize the design of circulation and orientation, while participants with linguistics training focus more on subtle language usage. Visual designers tend to analyze the graphical elements of virtual spaces based on traditional painting theories; industrial designers, on the other hand, tend to treat these spaces as industrial products, emphasizing concept of user-center and the control of the computer interface.The findings of this study seem to add new information to our understanding of virtual space. It would be interesting for future studies to investigate how this information influences architectural designers in their real-world practices in this digital age. In addition, to obtain a fuller picture of Internet space, further research is needed to study the same issue by examining more Internet participants who have no formal linguistics and graphical training.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ffe2
authors Carrar, G., Luna, F. and Rajchman, A.
year 1999
title Cúpulas Telefónicas - Mobiliario Urbano, Diseño Industrial aplicado a una empresa de servicios (Telephone Cupolas - Urban Furniture, Industrial Design Applied to a Company of Services)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 426-409
summary By november 1996, the state telecomunication company called for a national booth design contest. The idea was to use the awarded design shortly as part of the renovation of the public phone service. Gruppo MDM won the design contest and was contracted to do the manufacture technical drawings and a prototype which was tested during 1997. By 1997, an international bid was held, including the awarded project. Gruppo MDM was contracted for the follow up of the manufacture process, including research of suppliers worldwide, materials arriving on time with the quality required, verifying local suppliers with deadlines and quality controlls according to the specifications.
series SIGRADI
email
last changed 2016/03/10 09:48

_id b4c4
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2000
title A framework for an Architectural Collaborative Design
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 57-60
doi https://doi.org/10.52842/conf.ecaade.2000.057
summary The building industry involves a larger number of disciplines, operators and professionals than other industrial processes. Its peculiarity is that the products (building objects) have a number of parts (building elements) that does not differ much from the number of classes into which building objects can be conceptually subdivided. Another important characteristic is that the building industry produces unique products (de Vries and van Zutphen, 1992). This is not an isolated situation but indeed one that is spreading also in other industrial fields. For example, production niches have proved successful in the automotive and computer industries (Carrara, Fioravanti, & Novembri, 1989). Building design is a complex multi-disciplinary process, which demands a high degree of co-ordination and co-operation among separate teams, each having its own specific knowledge and its own set of specific design tools. Establishing an environment for design tool integration is a prerequisite for network-based distributed work. It was attempted to solve the problem of efficient, user-friendly, and fast information exchange among operators by treating it simply as an exchange of data. But the failure of IGES, CGM, PHIGS confirms that data have different meanings and importance in different contexts. The STandard for Exchange of Product data, ISO 10303 Part 106 BCCM, relating to AEC field (Wix, 1997), seems to be too complex to be applied to professional studios. Moreover its structure is too deep and the conceptual classifications based on it do not allow multi-inheritance (Ekholm, 1996). From now on we shall adopt the BCCM semantic that defines the actor as "a functional participant in building construction"; and we shall define designer as "every member of the class formed by designers" (architects, engineers, town-planners, construction managers, etc.).
keywords Architectural Design Process, Collaborative Design, Knowledge Engineering, Dynamic Object Oriented Programming
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id ddssar9619
id ddssar9619
authors Kanoglu, Aiaattin
year 1996
title A Site-Based Computerized Production Planning & Control Model for The Plants which Produce Prefabricated Building Components
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary The "open systems" in building prefabrication may be qualified more flexible to some extent compared to the closed ones and may use the tools and approaches used in industrial production areas for the estimation of demand and production. As for the closed systems in particular, it is not possible for these systems to apply this kind of approach. Their production must be based on absolutely assured demands and projects. Because of this, they need detailed projects and assembly schedules for produc-tion. As a result of this, their production modes can be qualified "custom-made" type and production planning functions must provide the demand values from the assembly schedules of contracted proj-ects. The problem can be solved by integrating the work schedules of the sites that are served by fac-tory. Integration of data on a computerized system will be preferable and it is possible to realize the model in two alternative ways. The first is developing a new conceptual model and convert it into a software and the second is developing an approach for customizing general purpose project planning and programming software for using them in production planning. The second solution is studied in the paper following this. The aim of this study is to develop the principals of a conceptual model for an Integrated Data Flow and Evaluation System for production planning in prefabrication and to con-vert this model into an applicable and objective computer-aided model.
series DDSS
last changed 2003/08/07 16:36

_id ddssar9618
id ddssar9618
authors Kanoglu, Alaattin
year 1996
title Application of General Purpose Project Planning & Programming Software for Production Planning & Control in Plants which Produce Prefabricated Building Components
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary The "open systems" in building prefabrication may be qualified more flexible to some extent compared to the closed ones and may use the tools and approaches used in industrial production areas for the es-timation of demand and production. As for the closed systems in particular, it is not possible for these systems to apply this kind of an approach. Their production must be based on absolutely assured de-mands and projects. Because of this, they need detailed projects and assembly schedules for produc-tion. As a result of this, their production modes can be qualified "custom-made" type and production planning functions must provide the demand values from the assembly schedules of contracted pro-jects. The problem can be solved by integrating the work schedules of the sites that are served by fac-tory. Integration of data on a computerized system will be preferable and it is possible to realize the model in two alternative ways. The first is developing a new conceptual model and convert it into a software and the second is developing an approach for customizing general purpose project planning and programming software for using them in production planning. The second solution is studied in the paper following this. The aims of this study are analyzing outstanding general purpose project planning & programming software from the point of view of requirements of production planning function and their customizability; comparing the requirements of the model designed for production planning and capabilities of general purpose planning software and developing the conceptual and practical dimensions and basic principals of the model for using the general purpose planning and programming software for production planning.
series DDSS
last changed 2003/08/07 16:36

_id 20ff
id 20ff
authors Derix, Christian
year 2004
title Building a Synthetic Cognizer
source Design Computation Cognition conference 2004, MIT
summary Understanding ‘space’ as a structured and dynamic system can provide us with insight into the central concept in the architectural discourse that so far has proven to withstand theoretical framing (McLuhan 1964). The basis for this theoretical assumption is that space is not a void left by solid matter but instead an emergent quality of action and interaction between individuals and groups with a physical environment (Hillier 1996). In this way it can be described as a parallel distributed system, a self-organising entity. Extrapolating from Luhmann’s theory of social systems (Luhmann 1984), a spatial system is autonomous from its progenitors, people, but remains intangible to a human observer due to its abstract nature and therefore has to be analysed by computed entities, synthetic cognisers, with the capacity to perceive. This poster shows an attempt to use another complex system, a distributed connected algorithm based on Kohonen’s self-organising feature maps – SOM (Kohonen 1997), as a “perceptual aid” for creating geometric mappings of these spatial systems that will shed light on our understanding of space by not representing space through our usual mechanics but by constructing artificial spatial cognisers with abilities to make spatial representations of their own. This allows us to be shown novel representations that can help us to see new differences and similarities in spatial configurations.
keywords architectural design, neural networks, cognition, representation
series other
type poster
email
more http://www.springer.com/computer/ai/book/978-1-4020-2392-7
last changed 2012/09/17 21:13

_id 3386
authors Gavin, L., Keuppers, S., Mottram, C. and Penn, A.
year 2001
title Awareness Space in Distributed Social Networks
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 615-628
summary In the real work environment we are constantly aware of the presence and activity of others. We know when people are away from their desks, whether they are doing concentrated work, or whether they are available for interaction. We use this peripheral awareness of others to guide our interactions and social behaviour. However, when teams of workers are spatially separated we lose 'awareness' information and this severely inhibits interaction and information flow. The Theatre of Work (TOWER) aims to develop a virtual space to help create a sense of social awareness and presence to support distributed working. Presence, status and activity of other people are made visible in the theatre of work and allow one to build peripheral awareness of the current activity patterns of those who we do not share space with in reality. TOWER is developing a construction set to augment the workplace with synchronous as well as asynchronous awareness. Current, synchronous activity patterns and statuses are played out in a 3D virtual space through the use of symbolic acting. The environment itself however is automatically constructed on the basis of the organisation's information resources and is in effect an information space. Location of the symbolic actor in the environment can therefore represent the focus of that person's current activity. The environment itself evolves to reflect historic patterns of information use and exchange, and becomes an asynchronous representation of the past history of the organisation. A module that records specific episodes from the synchronous event cycle as a Docudrama forms an asynchronous information resource to give a history of team work and decision taking. The TOWER environment is displayed using a number of screen based and ambient display devices. Current status and activity events are supplied to the system using a range of sensors both in the real environment and in the information systems. The methodology has been established as a two-stage process. The 3D spatial environment will be automatically constructed or generated from some aspect of the pre-existing organisational structure or its information resources or usage patterns. The methodology must be extended to provide means for that structure to grow and evolve in the light of patterns of actual user behaviour in the TOWER space. We have developed a generative algorithm that uses a cell aggregation process to transcribe the information space into a 3d space. In stage 2 that space was analysed using space syntax methods (Hillier & Hanson, 1984; Hillier 1996) to allow the properties of permeability and intelligibility to be measured, and then these fed back into the generative algorithm. Finally, these same measures have been used to evaluate the spatialised behaviour that users of the TOWER space show, and will used to feed this back into the evolution of the space. The stage of transcription from information structure to 3d space through a generative algorithm is critical since it is this stage that allows neighbourhood relations to be created that are not present in the original information structure. It is these relations that could be expected to help increase social density.
keywords Algorithmic Form Generation, Distributed Workgroups, Space Syntax
series CAAD Futures
email
last changed 2006/11/07 07:22

_id ddssup9614
id ddssup9614
authors Loughreit, Fouad
year 1996
title Methods to assist the design of road surfaces with a reservoir structure: To improve flood risk management
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary Reservoir road surfaces can be seen as equipment of the future, in that they have two functions in the same structure (circulation and hydraulic functions). They can thus be laid without immobilising land, which is very expensive and prized in urban areas. Furthermore, they enable the limitation of the flow or volumes of running water, and thus help control rainwater, resulting in better flood risk management. The questions asked by drainage designers are how can we design these structures in the best way? How are they going to work for different types of rain (rain from storms, prolonged winter rain ....)? As for the public administrators, they wonder how a series of areas equipped with this type of technique (total flow management) would work. By solving this latter problem, we could really arouse interest in flood risk management. Given the diversity of structures possible for reservoir road surfaces (regulated, non-regulated, draining surface, dispersion surface...), we suggest comparing design and simulation methods, taking into account the measurement and total flow management problems mentioned above. So as to validate these comparisons and to give some directions concerning the use of one or the other methods, we use flow-metre measures on two different sites in Lyons. One of these sites is a car- park on a tertiary activity zone on the La Doua campus in Villeurbanne, the other a refuse dump in the Greater Lyons area in the town of Craponne. They are both interesting as they have different features. The first is non-regulated downstream and is used on a car-park for light motor-vehicles. The other is regulated and the traffic on it is made up of lorries. These sites will be described in this article.
series DDSS
email
last changed 2003/08/07 16:36

_id 2319
authors Schreibmayer, Peter
year 1996
title FULL-SCALE OR THE TRUTH IN “TRUE-SCALE”
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary Before architecture is put into reality it is simulated, either by means of drafts, or plans, models, or videos etc. .All these simulations represent anticipations of a later reality, instructions for action, sometimes they are no more than forecasts. Whether they hold true is up to the built object to prove. Only the full-scale throws light on spatial impact, the quality of design, the environmental compatibility, the value in use and finally, on the constructional accuracy regarding any decisions followed through with. The focus of working at the Department for Experimental Building Construction of the Graz University of technology is aimed at getting the students acquainted with these possibilities during their studies. Planning as well as building is carried out right on the spot and thus the process starting with the mere idea right down to the architectural reality, as well as the feedback, however in reverse, can be witnessed and perceived.
keywords Model Simulation, Real Environments
series other
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2004/05/04 14:44

_id ae9f
authors Damer, B.
year 1996
title Inhabited Virtual Worlds: A New Frontier for Interaction Design
source Interactions, Vol.3, No.5 ACM
summary In April of 1995 the Internet took a step into the third dimension with the introduction of the Virtual Reality Modeling Language (VRML) as a commercial standard. Another event that month caused fewer headlines but in retrospect was just as significant. A small company from San Francisco, Worlds Incorporated, launched WorldsChat, a three dimensional environment allowing any Internet user to don a digital costume, or avatar, and travel about and converse with other people inhabiting the space. WorldsChat was appropriately modeled on a space station complete with a central hub, hallways, sliding doors, windows, and escalators to outlying pods.
series journal paper
last changed 2003/04/23 15:50

_id ijac20075301
id ijac20075301
authors de Velasco, Guillermo Vasquez
year 2007
title A Group of Friends: The Las Americas Network, Virtual Studios, and Distance Education in Architecture
source International Journal of Architectural Computing vol. 5 - no. 3, pp. 455-468
summary This paper celebrates the human factor by describing how our collective vocation towards innovation in design education has inspired the development of an active network across the Americas. Ten years after its creation, the Las Americas Digital Research Network has generated a stream of innovative implementations. This is the first time that the main stream of these research activities is articulated into a peer-reviewed journal publication. The narrative of the paper follows a time-line that starts with the creation of the Las Americas Digital Research Network in 1996. Supported by such a framework the paper continues to describe the implementation of virtual design studios as collaborations nested at the core of the network. Finally, the paper explains how the virtual design studios provide fundamental feasibility for the development of network-mediated distance education curricula in architecture and the opening of a new dimension in the development and deployment of collaborative networks.
series journal
email
last changed 2007/11/20 18:06

_id cc4f
authors Donath, Dirk
year 1996
title University CAAD-Education for Architectural Students - A Report on the Realisation of a User-oriented Computer Education at the Bauhaus University Weimar
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 143-154
doi https://doi.org/10.52842/conf.ecaade.1996.143
summary Practically no other field of human creativity is evolving as fast and innovatively as the development and integration of the computer into every possible area imaginable. The computer has today become a natural tool in the fields of architecture and space-planning. The changing form of professional practice due to the increasing application of computerassisted work techniques results in the need, currently being addressed in the education of future architects and town planners, to bring these new mediums into the realm between architecture - art - and building - science.
series eCAADe
email
more http://www.uni-weimar.de/architektur/InfAR/
last changed 2022/06/07 07:55

_id e902
authors Kadysz, A.
year 1996
title Alternative Space for Creation
source CAD Creativeness [Conference Proceedings / ISBN 83-905377-0-2] Bialystock (Poland), 25-27 April 1996 pp. 137-145
summary What is a computer in the hands of an architect? What it can develop into? This paper is an attempt at determining the main limitations and possibilities of the digital-circuit engineering with regard to the creation of three-dimensional forms. All the limitations seem to have a common reason, namely the user's lack of self-awareness. It is user who decides whether the instrument is just a secondary carrier of information about the designed object or whether it serves as a medium for the creation of three-dimensional designs, an environment for the incubation and presentation of the very idea. The reader will find here some remarks on creation in virtual space as a separate phenomenon of creating forms which are no longer restricted by reality. It presents a global computer network on the threshold of the era of three-dimensional virtual space with unlimited creation possibilities.
series plCAD
last changed 1999/04/09 15:30

_id 807c
authors Kellett, Ronald
year 1996
title MEDIA MATTERS: NUDGING DIGITAL MEDIA INTO A MANUAL DESIGN PROCESS (AND VICE VERSA)
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 31-43
doi https://doi.org/10.52842/conf.acadia.1996.031
summary This paper reports on a media class offered during the 1995-96 academic year at the University of Oregon. This course, a renovation of an existing 'manual' media offering targeted intermediate Ievel graduate and undergraduate students who, while relatively experienced design students, were relatively inexperienced users of digital media for design. This course maintained a pedagogical emphasis on design process, a point of view that media are powerful influences on design thinking, and an attitude toward experimentation (and reflection) in matters of media and design process. Among the experiments explored were fitting together digital with manual media, and using digital media to collaborate in an electronic workspace. The experience offers opportunity to consider how digital media might be more widely integrated with what remains a predominantly 'manual' design process and media context for many architecture schools and practices.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id 7f0f
authors Naai-Jung, S.
year 1996
title A study of 2D- and 3D-oriented architectural drawing production methods
source Automation in Construction 5 (4) (1996) pp. 273-283
summary The purpose of this paper is to present drawing production methods based on the difference between 2D- and 3D-oriented approaches. This study emphasizes the comparison of the two approaches in data production, updating and analysis. Architectural CAD drawings are outputted from design information through a computational interface. A drawing production model (P) can be represented by a database (DB) and an interface (I). The input interface is the input or update method between users and application systems. The output interface is the method of presenting architecture drawings like plans, elevations, sections and details based on input data. Under the constraints of a predefined data structure, the computational interface determines the efficiency and characteristics of input and output data. Drawing production methods can be classified into three types: segregating drawing files, applying reference files and constructing a virtual building model. These types come with different interfaces: 2D drafting has the same input and output interface, whereas constructing a 3D model is achieved using a different interface. A digital building model is defined as the electronic information of a whole building which is assembled by components with attributes. 2D- and 3D-oriented drawing methods are compared, based on items such as the required preparation before drafting, consistency of plans, elevations and sections, ease of modification, drafting efficiency, number of persons involved, and analysis potential.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id 82d3
authors Park, Hoon
year 1996
title Digital and Manual Media in Design
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 325-334
doi https://doi.org/10.52842/conf.ecaade.1996.325
summary Although there is an important commitment to the use of Computer Aided Design (CAD) systems in the design studio, there are still technologies that are not broadly accepted as useful to the designer especially in the early design stage. This is because CAD systems use the monitor and mouse which differ from the sketch paper and pen of manual media. This presentation explores how CAD systems can be applicable and integrated to this early design stage by allowing paper as a digital medium. With this exploration, I look at some ways for bridging manual media and digital media. For accommodating this approach, this article includes the evaluation of a prototype CAD system that discusses enhancing the role of CAD systems in the early design stage and linking the realms of the two currently distinct media — manual and digital. This system allows the designer to work with computer based and paper based tools in the same conventional environment. The method provides interesting insights into the relationship between digital and manual media.

series eCAADe
last changed 2022/06/07 08:00

_id ebb2
authors Proctor, George
year 2000
title Reflections on the VDS, Pedagogy, Methods
source ACADIA Quarterly, vol. 19, no. 1, pp. 15-16
doi https://doi.org/10.52842/conf.acadia.2000.015.2
summary After having conducted a Digital Media based design studio at Cal Poly for six years, we have developed a body of experience I feel is worth sharing. When the idea of conducting a studio with the exclusive use of digital tools was implemented at our college, it was still somewhat novel, and only 2 short years after the first VDS- Virtual Design Studio (UBC, UHK et.al.-1993). When we began, most of what we explored required a suspension of disbelief on the part of both the students and faculty reviewers of studio work. In a few short years the notions we examined have become ubiquitous in academic architectural discourse and are expanding into common use in practice. (For background, the digital media component of our curriculum owes much to my time at Harvard GSD [MAUD 1989-91] and the texts of: McCullough/Mitchell 1990, 1994; McCullough 1998; Mitchell 1990,1992,1996; Tufte 1990; Turkel 1995; and Wojtowicz 1993; and others.)
series ACADIA
email
last changed 2022/06/07 08:00

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id c96b
authors Sanchez del Valle, Carmina
year 1996
title Transformable, Folding Space
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 45-54
doi https://doi.org/10.52842/conf.acadia.1996.045
summary A group of architectural students in an advanced computer applications course were asked to design a folding or transformable personal space. They were to approach the design using two metaphors - Origami (or papiroflexia ) and Transformer robot toys - in a digital environment. These are familiar ideas evident in toys and furniture. Students found this way of thinking about architectural design foreign and unusual. The results were tentative, but insightful. New architectural forms emerged out of the plasticity, temporality, and speed of the digital medium. Origami and Transformer robots are more than toys. Through them, the Bauhaus notion of point transforms into line, line into plane, plane into solid can now be stretched to include space generated from motion.

The argument for conceptualizing and developing the design within a digital environment was that the operations implied by Origami and Transformers, can be carefully studied in this context. Both processes, or types of objects, are best understood in teens of change in time and space. Digital media offers the dynamic capabilities needed to study distortions, step transformations & movement.

series ACADIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_187973 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002