CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 474

_id 807c
authors Kellett, Ronald
year 1996
title MEDIA MATTERS: NUDGING DIGITAL MEDIA INTO A MANUAL DESIGN PROCESS (AND VICE VERSA)
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 31-43
doi https://doi.org/10.52842/conf.acadia.1996.031
summary This paper reports on a media class offered during the 1995-96 academic year at the University of Oregon. This course, a renovation of an existing 'manual' media offering targeted intermediate Ievel graduate and undergraduate students who, while relatively experienced design students, were relatively inexperienced users of digital media for design. This course maintained a pedagogical emphasis on design process, a point of view that media are powerful influences on design thinking, and an attitude toward experimentation (and reflection) in matters of media and design process. Among the experiments explored were fitting together digital with manual media, and using digital media to collaborate in an electronic workspace. The experience offers opportunity to consider how digital media might be more widely integrated with what remains a predominantly 'manual' design process and media context for many architecture schools and practices.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id 6941
authors Dawidowski, Robert
year 1996
title CAD - The Step Towards the Aim as a Lot of Others or Something Else
source CAD Creativeness [Conference Proceedings / ISBN 83-905377-0-2] Bialystock (Poland), 25-27 April 1996 pp. 53-58
summary Right and left for years we have been swamped by information on equipment and software which is supposed change the quality and a designers' work style completely. In this computer and commercial deluge of words it is more and more difficult to get an understanding and clear attitude towards the dynamicly changing reality. Apart from the details of the CAD software and its influence on the effects of the architectural creative process, I would like to consider some problems connected with the influence of the CAD system on the architect's creative capabilities. Does it develope or limit these capabilities? Is a computer equipped with a CAD system a special tool (meaning the new values which it might give) or is it not?
series plCAD
last changed 1999/04/09 15:30

_id 6dda
authors Farin, Gerald E.
year 1996
title Curves and Surfaces for Computer-aided Geometric Design
source Morgan Kaufmann Publishers. San Francisco
summary System requirements: IBM and compatibles with DOS 2.0 or higher or UNIX. This book offers an introduction to the field that emphasizes Bernstein-Bezier methods and presents subjects in an informal, readable style, making this an ideal text for an introductory course at the advanced undergraduate or graduate level. This 3rd edition includes several new section and numerical examples, a treatment of the new blossoming principle, and new C programs. All C programs are available on a disk included with the book. The Problems Sections at the end of each chapter have also been extended.
series other
last changed 2003/04/23 15:14

_id b6a7
authors Jensen, K.
year 1996
title Coloured Petri Nets: Basic Concepts
source 2nd ed., Springer Verlag, Berlin
summary This book presents a coherent description of the theoretical and practical aspects of Coloured Petri Nets (CP-nets or CPN). It shows how CP-nets have been developed - from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and/or computers communicate by means of some more or less formal rules). The book contains the formal definition of CP-nets and the mathematical theory behind their analysis methods. However, it has been the intention to write the book in such a way that it also becomes attractive to readers who are more interested in applications than the underlying mathematics. This means that a large part of the book is written in a style which is closer to an engineering textbook (or a users' manual) than it is to a typical textbook in theoretical computer science. The book consists of three separate volumes. The first volume defines the net model (i.e., hierarchical CP-nets) and the basic concepts (e.g., the different behavioural properties such as deadlocks, fairness and home markings). It gives a detailed presentation of many small examples and a brief overview of some industrial applications. It introduces the formal analysis methods. Finally, it contains a description of a set of CPN tools which support the practical use of CP-nets. Most of the material in this volume is application oriented. The purpose of the volume is to teach the reader how to construct CPN models and how to analyse these by means of simulation. The second volume contains a detailed presentation of the theory behind the formal analysis methods - in particular occurrence graphs with equivalence classes and place/transition invariants. It also describes how these analysis methods are supported by computer tools. Parts of this volume are rather theoretical while other parts are application oriented. The purpose of the volume is to teach the reader how to use the formal analysis methods. This will not necessarily require a deep understanding of the underlying mathematical theory (although such knowledge will of course be a help). The third volume contains a detailed description of a selection of industrial applications. The purpose is to document the most important ideas and experiences from the projects - in a way which is useful for readers who do not yet have personal experience with the construction and analysis of large CPN diagrams. Another purpose is to demonstrate the feasibility of using CP-nets and the CPN tools for such projects. Together the three volumes present the theory behind CP-nets, the supporting CPN tools and some of the practical experiences with CP-nets and the tools. In our opinion it is extremely important that these three research areas have been developed simultaneously. The three areas influence each other and none of them could be adequately developed without the other two. As an example, we think it would have been totally impossible to develop the hierarchy concepts of CP-nets without simultaneously having a solid background in the theory of CP-nets, a good idea for a tool to support the hierarchy concepts, and a thorough knowledge of the typical application areas.
series other
last changed 2003/04/23 15:14

_id ca47
authors Lee, Shu Wan
year 1996
title A Cognitive Approach to Architectural Style Several Characteristics of Design Thinking in Architecture
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 223-226
doi https://doi.org/10.52842/conf.caadria.1996.223
summary Designing is a complicated human behaviour and method, and is often treated as a mysterious "black box” operation in human mind. In the early period as for theory-studying of design thinking, the way of thinking that the researchers took were mostly descriptive discussions. Therefore, they lacked direct and empirical evidence although those studies provided significant exploration of design thinking (Wang, 1995). In recent years as for the study of cognitive science, they have tried to make design "glass box”. That is to try to make the thinking processes embedded in designers publicized. That is also to externalize the design procedure which provided the design studies another theoretical basis of more accurate and deeply researched procedure (Jones, 1992). Hence the studying of design thinking has become more important and the method of designing has also progressed a lot. For example, the classification of the nature of design problem such as ill-defined and well-defined (Newell, Shaw, and Simon, 1967), and different theoretical procedure modes for different disciplines, such as viewing architectural models as conjecture-analysis models and viewing engineering models as analysis-synthesis (Cross, 1991).
series CAADRIA
last changed 2022/06/07 07:52

_id c71c
authors Li, Jian Cheng
year 1996
title Study on Computer-aided Design of Shading Device of a Building
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 143-151
doi https://doi.org/10.52842/conf.caadria.1996.143
summary The design of shading device is an important aspect of architectural heat-prevent design in sub-tropical climates of China. There is a large amount of calculation how to choose suitable style and size of shading device for various window in each exposure of a building, for the aim of both sheltering from sunlight indoors and preserving proper sun-shining time in a room. The solution of the calculation for the design of shading device is presented in this paper.
series CAADRIA
last changed 2022/06/07 07:59

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 5876
authors Tapia, Mark Andrew
year 1996
title From shape to style. Shape grammars: Issues in representation and computation, presentation and selection
source University of Toronto
summary Shape grammars provide a graphical mechanism for generating a variety of shapes. A shape grammar is a production system for specifying recursive graphical computations for shapes (finite arrangements of finite lines of non-zero length). The dissertation considers design as a plan in art and confines itself to abstract designs composed of lines of uniform color and thickness. The dissertation develops an implementation of shape grammars in which the drawing is the computation. Restricting itself to non-parametric shape grammars, the dissertation approaches the area as two related topics: computation and representation delineate the internal aspects of the problem; presentation and selection are crucial to the user interface. The dissertation applies shape grammars to design, promoting three claims: First, that this dissertation advances the field of shape grammars, by combining approaches in the humanities with those in science, articulating the issues and providing a solid foundation for future work. Second, supporting quality design depends on enumerating the alternatives and pruning the design space using the visual aspects of design. Third, the generative aspect of design is not as important as its presentation and selection.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 2b76
authors Winkenbach, G. and Salesin, D.H.
year 1996
title Rendering free-form surfaces in pen and ink
source Computer Graphics Proceedings, Annual Conference Series 1996. ACM SIGGRAPH, pp. 469-476.
summary This paper presents new algorithms and techniques for rendering parametric free-form surfaces in pen and ink. In particular, we introduce the idea of "controlled-density hatching" for conveying tone, texture, and shape. The fine control over tone this method provides allows the use of traditional texture mapping techniques for specifying the tone of pen-and-ink illustrations.We also show how a planar map, a data structure central to our rendering algorithm, can be constructed from parametric surfaces, and used for clipping strokes and generating outlines. Finally, we show how curved shadows can be cast onto curved objects for this style of illustration.
series other
last changed 2003/04/23 15:50

_id a9ca
authors Abadi Abbo, Isaac
year 1996
title EFFECTIVENESS OF MODELS
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary Architects use many types of models to simulate space either in their design process or as final specifications for building them. These models have been proved useful or effective for specific purposes. This paper evaluates architectural models in terms of five effectiveness components: time of development, cost, complexity, variables simulated and ecological validity. This series of models, used regularly in architecture, are analysed to finally produce a matrix that shows the effectiveness of the different models for specific purposes in architectural design, research and education. Special emphasis is given to three specific models: 1/10 scale, full-scale and computer generated.
keywords Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa/
last changed 2016/02/17 13:47

_id ascaad2004_paper11
id ascaad2004_paper11
authors Abdelfattah, Hesham Khairy and Ali A. Raouf
year 2004
title No More Fear or Doubt: Electronic Architecture in Architectural Education
source eDesign in Architecture: ASCAAD's First International Conference on Computer Aided Architectural Design, 7-9 December 2004, KFUPM, Saudi Arabia
summary Operating electronic and Internet worked tools for Architectural education is an important, and merely a prerequisite step toward creating powerful tele-collabortion and tele-research in our Architectural studios. The design studio, as physical place and pedagogical method, is the core of architectural education. The Carnegie Endowment report on architectural education, published in 1996, identified a comparably central role for studios in schools today. Advances in CAD and visualization, combined with technologies to communicate images, data, and “live” action, now enable virtual dimensions of studio experience. Students no longer need to gather at the same time and place to tackle the same design problem. Critics can comment over the network or by e-mail, and distinguished jurors can make virtual visits without being in the same room as the pin-up—if there is a pin-up (or a room). Virtual design studios (VDS) have the potential to support collaboration over competition, diversify student experiences, and redistribute the intellectual resources of architectural education across geographic and socioeconomic divisions. The challenge is to predict whether VDS will isolate students from a sense of place and materiality, or if it will provide future architects the tools to reconcile communication environments and physical space.
series ASCAAD
email
last changed 2007/04/08 19:47

_id ddssar9601
id ddssar9601
authors Achten, H.H., Bax, M.F.Th. and Oxman, R.M.
year 1996
title Generic Representations and the Generic Grid: Knowledge Interface, Organisation and Support of the (early) Design Process
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary Computer Aided Design requires the implementation of architectural issues in order to support the architectural design process. These issues consist of elements, knowledge structures, and design processes that are typical for architectural design. The paper introduces two concepts that aim to define and model some of such architectural issues: building types and design processes. The first concept, the Generic grid, will be shown to structure the description of designs, provide a form-based hierarchical decomposition of design elements, and to provide conditions to accommodate concurrent design processes. The second concept, the Generic representation, models generic and typological knowledge of building types through the use of graphic representations with specific knowledge contents. The paper discusses both concepts and will show the potential of implementing Generic representations on the basis of the Generic grid in CAAD systems.
series DDSS
last changed 2003/11/21 15:15

_id 2dbc
authors Achten, Henri
year 1996
title Teaching Advanced Architectural Issues Through Principles of CAAD
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 7-16
doi https://doi.org/10.52842/conf.ecaade.1996.007
summary The paper discusses the differences between teaching CAAD by using standard software ("off-the-shelf"-software) and teaching the principles of CAAD ("principles-teaching"). The paper distinguishes four kinds of application for design systems in education: social systems, professional systems, educational systems, and innovative systems. The paper furthermore proposes to distinguish between computational issues and architectural issues relative to design systems. It appears that there is not a principled distinction between software-teaching and principles-teaching when it comes to computational issues of design systems. However, when the architectural content of CAAD systems is concerned, then principles of CAAD systems seem to be more appropriate for teaching. The paper presents work on generic representations as a specific case. Generic representations can be used to teach one particular kind of architectural content of design systems. The paper ends with conclusions.
series eCAADe
email
more http://www.ds.arch.tue.nl/
last changed 2022/06/07 07:54

_id 846c
authors Achten, Henri
year 1996
title Generic Representations: Intermediate Structures in Computer Aided Architectural Composition.
source Approaches to Computer Aided Architectural Composition [ISBN 83-905377-1-0] 1996, pp. 9-24
summary The paper discusses research work on typological and generic knowledge in architectural design. Architectural composition occurs predominantly through drawings as a medium. Throughout the process, architects apply knowledge. The paper discusses the question how to accommodate this process in computers bearing in mind the medium of drawings and the application of knowledge. It introduces generic representations as one particular approach and discusses its implications by the concept of intermediate structures. The paper concludes with an evaluation of the presented ideas.
keywords
series other
email
last changed 1999/04/08 17:16

_id 765f
authors Adam, Holger
year 2002
title Reinterpretation or replacement? The effects of the information and communication technologies on urban space
source CORP 2002, Vienna, pp. 345-349
summary The timid question “Virtual spaces or real places?” forms the core of many debates within the spatial sciences addressing theconsequences of the rapid development of information and communication technologies1 on existing spatial structures. So far several opinions rival each other for the interpretation of current and the prediction of future spatial developments. The spacelessness ofcomputer networks and the possibility to transmit data in real-time have lead visionaries to predict a far-reaching devaluation of timeand space, so questioning the future importance of traditional spatial structures: The “annihilation of distance and time constraints [incomputer networks] could undermine the very rationale for the existence of the city by dissolving the need for physical proximity”(Graham and Marvin 1996: 318). The disappearance of the city into the net, therefore, seems to become a distinct possibility.
series other
email
more www.corp.at
last changed 2003/11/21 15:15

_id 4b55
authors Af Klercker, J. , Ekholm, A. and Fridqvist, S. (Ed.)
year 1996
title Education for Practice [Conference Proceedings]
source 14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2 / Lund (Sweden) 12-14 September 1996, 425 p.
doi https://doi.org/10.52842/conf.ecaade.1996
summary There are many of us trying to make place for CAAD in a natural way in the Curriculum of the Architect school. We would like to make CAAD useful to the students already during their studies. Even if we have the support of our collegues for running courses there is very often no space in the timetable. And even if we have all the entusiasm of our students it is hard to practice your CAAD knowledge on projects where it is not asked for.

The education of architects in the use of computers has lead me to try to find "the roots of education of architects" in general. A collegue of mine in a bookshelf of course litterature in Informatics found and put into my hands "Educating the reflective practitioner" by Donald Schön. It lead to an interesting process of personal reflection and discussion within our CAAD team.

We think by the way that the theme of the conference points to the heart of the message in Donald Schöns book and we are inviting him as a key note speaker at the Conference.

series eCAADe
type normal paper
email
more http://www.caad.lth.se/ECAADE/
last changed 2022/06/07 07:49

_id 63e6
authors Af Klercker, Jonas
year 1996
title Visualisation for Clients - One Example of Educating CAAD for Practice
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 17-24
doi https://doi.org/10.52842/conf.ecaade.1996.017
summary During the spring term 1996, 13 students of the 3rd and 4th year at the School of Architecture at Lund University had the opportunity to make a one semester CAAD project. 11 students chose the individual exercise to use computer media for developing a small architectural design in interaction with a client. The focus was set more on visualization and the process of communicating ideas, feelings and practical solutions between architect and client and visa versa rather than concentrated on the final product.

This paper describes the process of the project and the reflections of the participants. It will discuss problems from the teachers point of view.

series eCAADe
email
more http://www.caad.lth.se/ECAADE/
last changed 2022/06/07 07:54

_id 0ec9
authors Agranovich-Ponomareva. E., Litvinova, A. And Mickich, A.
year 1996
title Architectural Computing in School and Real Designing
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 25-28
doi https://doi.org/10.52842/conf.ecaade.1996.025
summary The existing system of architectural education ( including computer ) as has shown practice has appeared not absolutly perfect. It not capable to dynamic changes, active introduction of a new engineering and computer technologies, to realization about of the inquiries of a modern time. It suggest of a way of search of new models of computer training. The computer education is represented by us as certain a universal system, which permits to solve the problem of arcitectural education at a higher level. The opportunities of computers and computer technologies at such approach are used as means of increase of efficiency teaching and training. The orientation goes on final result: a opportunity to generate of the creative decisions by learnees, based on attraction of received knowledge and use for their realization of arsenal of practical skills and skills. The system represents not only certain set of experiences elements, necessary and final result sufficient for achievement, but also quite certain interrelation between them. It means, that the knowledge from a initial rate " The Introduction in computer training" must be secured and transformed for utilization in special rates and through them- in practice. The functional nucleus of the software package of such universal system is under construction as opened, apparatus an independent system. A central part of a system is a database, the structure of which is uniform for all other modules and side of enclosures. The conceptual model of a system is under construction on principles structure idea, visualization, multimedia. The listed principles are realized in model so that to encourage the user to independent creative work.

series eCAADe
last changed 2022/06/07 07:54

_id 1fb3
authors Akin, O., Cumming, M., Shealey, M. and Tuncer, B.
year 1997
title An electronic design assistance tool for case-based representation of designs
source Automation in Construction 6 (4) (1997) pp. 265-274
summary In precedent based design, solutions to problems are developed by drawing from an understanding of landmark designs. Many of the key design operations in this mode are similar to the functionalities present in case-based reasoning systems: case matching, case adapting, and case representation. It is clear that a rich case-base, encoding all major product types in a design domain would be the centerpiece of such an approach. EDAT (Electronic Design Assistance Tool) is intended to assist in precedent based design in the studio with the potential of expansion into the office setting. EDAT has been designed using object oriented system development methods. EDAT was used in a design studio at Carnegie Mellon University, during Spring 1996.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 4cda
authors Akin, O., Cumming, M. , Shealey, M. and Tuncer, B.
year 1996
title An Electronic Design Assistance Tool for Case Based Representation of Designs
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 123-132
doi https://doi.org/10.52842/conf.acadia.1996.123
summary In precedent based design, solutions to problems are developed by drawing from an understanding of landmark designs. Many of the key design operations in this mode are similar to the functionalities present in case based reasoning systems: case matching, case adapting, and case representation. It is clear that a rich case base, encoding all major product types in a design domain would be the centerpiece of such an approach. EDAT (Electronic Design Assistance Tool) is intended to assist in precedent based design in the studio with the potential of expansion into the office setting. EDAT has been designed using object oriented system development methods. EDAT was used in a design studio at Carnegie Mellon University, during Spring 1996, and will be used in future studios, as well.
series ACADIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 23HOMELOGIN (you are user _anon_765314 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002