CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 477

_id a4a4
authors Pellegrino, Anna and Caneparo, Luca
year 1996
title Lighting Simulation for Architectural Design: a Case Study
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 335-346
doi https://doi.org/10.52842/conf.ecaade.1996.335
summary The paper considers some of the lighting simulation instruments at present available to architects for lighting design. We study the usability and accuracy of various systems, scale models, numerical simulations, rendering programs. An already built environment is the reference comparison for the accuracy of the simulation systems. The accuracy of the systems is evaluated for respectively quantitative simulation and qualitative visualisation. Quantitatively, the programs compute photometric values in physical units in a discrete number of points of the environment. Qualitatively, the programs generate images of visible radiation comparable to photographs of the real environment. They combine calculations with computer graphics, that is, they translate numerical values into images.

series eCAADe
email
last changed 2022/06/07 07:59

_id e2c4
authors Comair, C., Kaga, A. and Sasada, T.
year 1996
title Collaborative Design System with Network Technologies in Design Projects
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 269-286
doi https://doi.org/10.52842/conf.caadria.1996.269
summary This paper depicts the work of the team of researchers at the Sasada Laboratory in the area of collaborative design and the integration of global area network such as the Internet in order to extend the architectural studio into cyber-space. The Sasada Laboratory is located at the University of Osaka, Faculty of Engineering, Department of Environmental engineering, Japan. The portfolio of the Laboratory is extensive and impressive. The projects which were produced by the men and women of the Laboratory range from the production of databases and computer simulation of several segments of different cities throughout the world to specific studies of architectural monuments. The work performed on the databases was varied and included simulation of past, present, and future events. These databases were often huge and very complex to build. They presented challenges that sometimes seemed impossible to overcome. Often, specialised software, and in some cases hardware, had to be designed on the "fly” for the task. In this paper, we describe the advances of our research and how our work led us to the development of hardware and software. Most importantly, it depicts the methodology of work which our lab undertook. This research led to the birth of what we call the "Open Development Environment” (ODE) and later to the networked version of ODE (NODE). The main purpose of NODE is to allow various people, usually separated by great distances, to work together on a given project and to introduce computer simulation into the working environment. Today, our laboratory is no longer limited to the physical location of our lab. Thanks to global area networks, such as the Internet, our office has been extended into the virtual space of the web. Today, we exchange ideas and collaborate on projects using the network with people that are spread over the five continents.
series CAADRIA
email
last changed 2022/06/07 07:56

_id 413e
authors Dalholm-Hornyansky, Elisabeth and Rydberg-Mitchell, Birgitta
year 1996
title SPATIAL NAVIGATION IN VIRTUAL REALITY
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary For the past decade, we have carried out a number of participation projects using full-scale modeling as an aid for communication and design. We are currently participating in an interdisciplinary research project which aims to combine and compare various visualization methods and techniques, among others, full-scale modeling and virtual reality, in design processes with users. In this paper, we will discuss virtual reality as a design tool in light of previous experience with full-scale modeling and literature on cognitive psychology. We describe a minor explorative study, which was carried out to elucidate the answers to several crucial questions: Is realism in movement a condition for the perception of space or can it be achieved while moving through walls, floors and so forth? Does velocity of movement and reduced visual field have an impact on the perception of space? Are landmarks vital clues for spatial navigation and how do we reproduce them in virtual environments? Can “daylight“, color, material and texture facilitate navigation and are details, furnishings and people important objects of reference? How could contextual information clues, like views and surroundings, be added to facilitate orientation? Do we need our other senses to supplement the visual experience in virtual reality and what is the role of mental maps in spatial navigation?
keywords Model Simulation, Real Environments
series other
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2004/05/04 14:49

_id 06e1
authors Keul, Alexander
year 1996
title LOST IN SPACE? ARCHITECTURAL PSYCHOLOGY - PAST, PRESENT, FUTURE
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary A methodological review by Kaminski (1995) summed up five perspectives in environmental psychology - patterns of spatial distribution, everyday “jigsaw puzzles”, functional everyday action systems, sociocultural change and evolution of competence. Architectural psychology (named so at the Strathclyde conference 1969; Canter, 1973) as psychology of built environments is one leg of environmental psychology, the second one being psychology of environmental protection. Architectural psychology has come of age and passed its 25th birthday. Thus, a triangulation of its position, especially in Central Europe, seems interesting and necessary. A recent survey mainly on university projects in German-speaking countries (Kruse & Trimpin, 1995) found a marked decrease of studies in psychology of built environments. 1994, 25% of all projects were reported in this category, which in 1975 had made up 40% (Kruse, 1975). Guenther, in an unpublished survey of BDP (association of professional German psychologists) members, encountered only a handful active in architectural psychology - mostly part-time, not full-time. 1996, Austria has two full-time university specialists. The discrepancy between the general interest displayed by planners and a still low institutionalization is noticeable.

How is the research situation? Using several standard research data banks, the author collected articles and book(chapter)s on architectural psychology in German- and English-language countries from 1990 to 1996. Studies on main architecture-psychology interface problems such as user needs, housing quality evaluations, participatory planning and spatial simulation / virtual reality did not outline an “old, settled” discipline, but rather the sketchy, random surface of a field “always starting anew”. E.g., discussions at the 1995 EAEA-Conference showed that several architectural simulation studies since 1973 caused no major impact on planner's opinions (Keul&Martens, 1996). “Re-inventions of the wheel” are caused by a lack of meetings (except this one!) and of interdisciplinary infrastructure in German-language countries (contrary to Sweden or the United States). Social pressures building up on architecture nowadays by inter-European competition, budget cuts and citizen activities for informed consent in most urban projects are a new challenge for planners to cooperate efficiently with social scientists. At Salzburg, the author currently manages the Corporate Design-process for the Chamber of Architecture, Division for Upper Austria and Salzburg. A “working group for architectural psychology” (Keul-Martens-Maderthaner) has been active since 1994.

keywords Model Simulation, Real Environments
series EAEA
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2005/09/09 10:43

_id 6237
authors Kiechle, Horst
year 1996
title CONSTRUCTING THE AMORPHOUS
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary Constructing the Amorphous entails the ongoing research into a concept which aims to develop a new understanding for Art, Design and Architecture within society. Rigid, reductivist and confrontational methods based on static geometry, prejudice and competition are to be replaced by dynamic, interdisciplinary and integrative models. In his current art practice the author simulates existing architectural spaces whose interior are re-designed into sculpted environments, based on creative irregularity rather than idealised geometry. All the computer simulated “soft” environments can be realised on an architectural scale as temporary installations with the curved surfaces approximated through planar polygons cut from sheet materials. Within this framework the Darren Knight Gallery Project represents the most recently example.

The paper discusses furthermore various 3D modeling options, such as standard CAD representations, high quality rendered video walk-throughs, VRML models and physically produced, full-scale models, made of corrugated cardboard. The cost and equipment requirements necessary for full-scale modeling in cardboard are outlined.

keywords VRML, CAD, 3D Modeling, Model Simulation, Real Environments
series other
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2004/05/04 14:40

_id 8ee5
authors Koutamanis, A., Mitossi, V.
year 1996
title SIMULATION FOR ANALYSIS: REQUIREMENTS FROM ARCHITECTURAL DESIGN
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary Computerization has been a positive factor in the evolution of both kinds of analysis with respect to cost, availability and efficiency. Knowledge-based systems offer an appropriate implementation environment for normative analysis which can be more reliable and economical than evaluation by human experts. Perhaps more significant is the potential of interactive computer simulation where designs can be examined intuitively in full detail and at the same time by quantitative models. The advantages of this coupling are evident in the achievements of scientific visualization. Another advantage of computational systems is that the analysis can be linked to the design representation, thereby adding feedback to the conventional visualization of designs in drawing and modeling systems. Such connections are essential for the development of design guidance systems capable of reflecting consequences of partial inadequacies or changes to other aspects in a transparent and meaningful network of design constraints.

The possibilities of computer simulation also extend to issues inadequately covered by normative analysis and in particular to dynamic aspects of design such as human movement and circulation. The paper reports on a framework for addressing two related problems, (a) the simulation of fire escape from buildings and (b) the simulation of human movement on stairs. In both cases we propose that current evaluation techniques and the underlying design norms are too abstract to offer a measure of design success, as testified by the number of fatal accidents in fires and on stairs. In addition, fire escape and stair climbing are characterized by great variability with respect to both the form of the possible designs and the profiles of potential users. This suggests that testing prototypical forms by typical users and publishing the results as new, improved norms is not a realistic proposition for ensuring a global solution. Instead, we should test every design individually, within its own context. The development of an affordable, readily available system for the analysis and evaluation of aspects such as fire escape and stair safety can be based on the combination of the technologies of virtual reality and motion capture. Testing of a design by a number of test people in an immersion space provides not only intuitive evaluations by actual users but also quantitative data on the cognitive and proprioceptive behaviour of the test people. These data can be compiled into profiles of virtual humans for further testing of the same or related designs.

keywords Model Simulation, Real Environments
series other
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2004/05/04 14:40

_id e02e
authors Mahdavi, A., Mathew, P., Lee, S., Brahme, R., Kumar, S., Liu, G., Ries, R. and Wong, N.H.
year 1996
title On the Structure and Elements of SEMPER
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 71-84
doi https://doi.org/10.52842/conf.acadia.1996.071
summary This paper introduces the concept, structure, components, and application results of "SEMPER", an active, multi-aspect computational tool for comprehensive simulation-based design assistance. Specifically, SEMPER seeks to meet the following requirements: a) a methodologically consistent (first- principles-based) performance modeling approach through the entire building design and engineering process; b) seamless and dynamic communication between the simulation models and an object- oriented space-based design environment using the structural homology of various domain representations; and c) "preference-based" performance-to-design mapping technology (bidirectional inference). SEMPER involves the integrated computational modeling of heat transfer, air flow, HVAC system performance, thermal comfort, daylighting and electrical lighting, acoustics, and life-cycle assessment.

series ACADIA
email
last changed 2022/06/07 07:59

_id 8b8d
authors Martens, B., Voigt, A. and Linzer, H.
year 1996
title Information Technologies within Academic Context: Remote Teamwork – A Challenge for the Future
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 227-232
doi https://doi.org/10.52842/conf.caadria.1996.227
summary "Remote Teamwork”, i.e. the substance-related cooperation of people over spatial distances in decision-situations relies on "CIVIC” (Computer-Integrated Video-Conferencing-audio-visual communication at spatial distances integrating interactively digital, spatial computer models) and "CISP” (Computer-Integrated Spatial Planning) aiming at the elaboration of suited remote-working structures of research, project transactions and teaching preferably on the basis of "ATM” (a technology of broad band telecommunications). The generation and manipulation of digital spatial models and their virtual transportation within large spatial distances represent the main research objectives. The efficient use of teaching resources calls for the integration of new teaching possibilities within the framework of "Remote Teamwork”, e.g. Distributed and Shared Modelling, Distant Learning and Remote Teaching. The Faculty of Architecture, Urban and Regional Planning therefore is stressing information technologies within academic context. The following contribution is dedicated to the focal field of research and teaching "Remote Teamwork” of the Vienna University of Technology. This project is carried out in cooperation with the Institute of Spatial Interaction and Simulation (IRIS-ISIS), Vienna and the Research Institute for Symbolic Computation (RISC Linz-Hagenberg). Teaching experience relevant for "Remote Teamwork” is derived from various experiments of cooperative teamwork.
series CAADRIA
email
last changed 2022/06/07 07:59

_id 44cc
authors Martens, Bob (ed.)
year 1996
title Full-scale Modeling in the Age of Virtual Reality
source Proceedings of the 6th European Full-scale Modeling Association Conference / ISBN 3-85437-132-2 / Vienna (Austria) 4-6 September 1996, 140 p.
summary In times characterized by the growing "architectural criticism"; to the same extent as by the helplessness of the anonymous user the communication process between contractors, planner and users gains in importance. If communication is successful will not only depend on the quality of the project but also on the means of conveyance, e.g. visualizing or model representation. Can planning evaluation be effectively supported by virtual reality (VR)?

The principal item of a full-scale lab preferably features a court-like facility where the 1:1 simulations are performed. Such lab facilities can be found at various architecture education centers throughout Europe. In the early eighties the European Full-scale Modeling Association (abrev. EFA, full-scale standing for 1:1 or simulation in full-scale) was founded acting as the patron of a conference every two years. In line with the conference title "Full-scale Modeling in the Age of Virtual Reality" the participants were particularly concerned with the relationship of physical 1:1 simulations and VR. The assumption that those creating architecture provide of a higher degree of affinity to physical than to virtual models and prototypes was subject of vivid discussions.

Furthermore, the participants devoted some time to issues such as the integration of model-like ideas and built reality thus uncovering any such synergy-effects. Thus some major considerations had to be given to the question of how the architectís model-like ideas and built reality would correspond, also dealing with user-suitability as such: what the building artist might be thrilled with might not turn out to be the residentsí and usersí everyday delight. Aspects of this nature were considered at the îArchitectural Psychology Meeting” together with specialists on environment and aesthetics. As individual space perception as well as its evaluation differ amongst various architects, and these being from various countries furnishing cultural differences, lively discussions were bound to arise.

keywords VR, Virtual Reality, Simulation in Full-scale, Model Simulation, Real Environments
series other
email
more http://info.tuwien.ac.at/efa/EFA-Proceedings.html
last changed 2003/08/25 10:12

_id 4710
authors Senyapili, Burcu
year 1996
title THE TRUE MODEL CONCEPT IN COMPUTER GENERATED SIMULATIONS
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary Each design product depends on a design model originated in the designer's mind. From initial design decisions even to the final product, each design step is a representation of this design model. Designers create and communicate using the design models in their minds. They solve design problems by recreating and transforming the design model and utilize various means to display the final form of the model. One of these means, the traditional paper-based media of design representation (drawings, mockup models) alienate the representation from the design model, largely due to the lack of the display of the 4th dimension. Architecture is essentially a four-dimensional issue, incorporating the life of the edifice and the dynamic perception of the space by people. However, computer generated simulations (walkthrough, flythrough, virtual reality applications) of architectural design give us the chance to represent the design model in 4D, which is not possible in the traditional media. Thus, they introduce a potential field of use and study in architectural design.

Most of the studies done for the effective use of this potential of computer aid in architectural design assert that the way architects design without the computer is not "familiar" to the way architects are led to design with the computer. In other words, they complain that the architectural design software does not work in the same way as the architects think and design the models in their brains. Within the above framework, this study initially discusses architectural design as a modeling process and defines computer generated simulations (walkthrough, flythrough, virtual reality) as models. Based on this discussion, the "familiarity" of architectural design and computer aided design is displayed. And then, it is asserted that the issue of familiarity should be discussed not from the point of the modeling procedure, but from the "trueness" of the model displayed.

Therefore, it is relevant to ask to what extent should the simulation simulate the design model. The simulation, actually, simulates not what is real, but what is unreal. In other words, the simulation tells lies in order to display the truth. Consequently, the study proposes measures as to how true a simulation model should be in order to represent the design model best.

keywords Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa/
last changed 2004/05/04 14:45

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 0ef8
authors Völker, H., Sariyildiz, S., Schwenck, M. and Durmisevic, S.
year 1996
title THE NEXT GENERATION OF ARCHITECTURE WITHIN COMPUTER SCIENCES
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary Considering architecture as a mixture of exact sciences and the art, we can state that as in all other sciences, every technical invention and development has resulted in advantages and disadvantages for the well-being and prosperity of mankind. Think about the developments in the fields of nuclear energy or space travel. Besides bringing a lot of improvements in many fields, it also has danger for the well-being of a mankind. The development of the advanced computer techniques has also influence on architecture, which is inevitable. How did the computer science influence architecture till now, and what is going to be the future of the architecture with this ongoing of computer science developments? The future developments will be both in the field of conceptual design (form aspect) and also in the area of materialization of the design process.

These all are dealing with the material world, for which the tools of computer science are highly appropriate. But what will happen to the immaterial world? How can we put these immaterial values into a computers model? Or can the computer be creative as a human being? Early developments of computer science in the field of architecture involved two-dimensional applications, and subsequently the significance of the third dimension became manifest. Nowadays, however, people are already speaking of a fourth dimension, interpreting it as time or as dynamics. And what, for instance, would a fifth, sixth or X-dimension represent?

In the future we will perhaps speak of the fifth dimension, comprising the tangible qualities of the building materials around us. And one day a sixth dimension might be created, when it will be possible to establish direct communication with computers, because direct exchange between the computer and the human brain has been realised. The ideas of designers can then be processed by the computer directly, and we will no longer be hampered by obstacles such as screen and keyboard. There are scientist who are working to realize bio-chips. If it will work, perhaps we can realise all these speculations. It is nearly sure that the emergence of new technologies will also affect our subject area, architecture and this will create fresh challenges, fresh concepts, and new buildings in the 21st century. The responsibility of the architects must be, to bear in mind that we are dealing with the well-being and the prosperity of mankind.

keywords Model Simulation, Real Environments
series other
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2004/05/04 14:43

_id e7e0
authors Watanabe, Shun
year 1996
title Computer Literacy in Design Education
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 1-10
doi https://doi.org/10.52842/conf.caadria.1996.001
summary Many Schools of Architecture in Japan installed many computers in their class rooms, and have already begun courses for CAAD skill. But in many cases, few teachers make their efforts for this kind of education personally. Having limited staff prevents one from making the global program of design education by using computers.

On the other hand, only teaching how to use individual CAD/CG software in architectural and urban design is already out of date in education. Students will be expected to adapt themselves to the coming multi-media society. For example, many World Wide Web services were started commercially and the Internet has become very familiar within the last year. But I dare to say that a few people can enjoy Internet services actually in schools of Architecture and construction companies.

Students should be brought up to improve their ability of analysing, planning and designing by linking various software technologies efficiently in the word-wide network environment and using them at will. In future design education, we should teach that computers can be used not only as a presentation media of architectural form, but also as a simulation media of architectural and urban design from various points of view.

The University of Tsukuba was established about 25 years ago, and its system is different from the other universities in Japan. In comparison with other faculties of Architecture and Urban Planning, our Faculty is very multi-disciplinary, and ability of using computers has been regarded as the essential skill of foundation. In this paper, I will introduce how CAAD education is situated in our global program, and discuss the importance of computer literacy in architectural and urban design education.

keywords Computer Literacy, Design Education, CAD, Internet
series CAADRIA
last changed 2022/06/07 07:58

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ddssar9631
id ddssar9631
authors Stouffs, Rudi and Krisbnamurti, Ramesh
year 1996
title The Extensibility and Applicability of Geometric Representations
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary As designers pose new questions, within the context of computational design, that go beyond geometry and require other information to be included, there is, now more than ever, a need for extensible geometric representations. We believe that such can best be achieved using abstract data types defined over a set of basic operations, common to all data types. At the same time, we must consider the applicability of such a representation with respect to the functionalities of the application. In this paper, we explore these issues of extensibility and applicability as these relate to the questions of standardization and adaptability of representations. As a particular example, we consider an algebraic model, with a corresponding representation, that defines arithmetic operations that operate uniformly and consistently on geometries and on non-geometric attributes of various kinds.
series DDSS
last changed 2003/08/07 16:36

_id 6dda
authors Farin, Gerald E.
year 1996
title Curves and Surfaces for Computer-aided Geometric Design
source Morgan Kaufmann Publishers. San Francisco
summary System requirements: IBM and compatibles with DOS 2.0 or higher or UNIX. This book offers an introduction to the field that emphasizes Bernstein-Bezier methods and presents subjects in an informal, readable style, making this an ideal text for an introductory course at the advanced undergraduate or graduate level. This 3rd edition includes several new section and numerical examples, a treatment of the new blossoming principle, and new C programs. All C programs are available on a disk included with the book. The Problems Sections at the end of each chapter have also been extended.
series other
last changed 2003/04/23 15:14

_id e29d
authors Arvesen, Liv
year 1996
title LIGHT AS LANGUAGE
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary With the unlimited supply of electric light our surroundings very easily may be illuminated too strongly. Too much light is unpleasant for our eyes, and a high level of light in many cases disturbs the conception of form. Just as in a forest, we need shadows, contrasts and variation when we compose with light. If we focus on the term compose, it is natural to conceive our environment as a wholeness. In fact, this is not only aesthetically important, it is true in a physical context. Inspired by old windows several similar examples have been built in the Trondheim Full-scale Laboratory where depth is obtained by constructing shelves on each side of the opening. When daylight is fading, indirect artificial light from above gradually lightens the window. The opening is perceived as a space of light both during the day and when it is dark outside.

Another of the built examples at Trondheim University which will be presented, is a doctor's waitingroom. It is a case study of special interest because it often appears to be a neglected area. Let us start asking: What do we have in common when we are waiting to come in to a doctor? We are nervous and we feel sometimes miserable. Analysing the situation we understand the need for an interior that cares for our state of mind. The level of light is important in this situation. Light has to speak softly. Instead of the ordinary strong light in the middle of the ceiling, several spots are selected to lighten the small tables separating the seats. The separation is supposed to give a feeling of privacy. By the low row of reflected planes we experience an intimate and warming atmosphere in the room. A special place for children contributes to the total impression of calm. In this corner the inside of some shelves are lit by indirect light, an effect which puts emphasis on the small scale suitable for a child. And it also demonstrates the good results of variation. The light setting in this room shows how light is “caught” two different ways.

keywords Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa/
last changed 2004/05/04 14:34

_id 215e
authors Bai, Rui-Yuan and Liu, Yu-Tung
year 1998
title Towards a Computerized Procedure for Visual Impact Analysis and Assessment - The Hsinchu Example
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 67-76
doi https://doi.org/10.52842/conf.caadria.1998.067
summary This paper examines the procedure of visual impact analysis and assessment proposed by Rahman and reviews the use of CAD applications in urban projects in the real world. A preliminary computerized procedure for visual impact analysis and assessment is proposed. An experiments was conducted in our laboratory to verify the preliminary procedure. In order to further study the revised procedure in real urban projects, it was also applied into the renew project of The Eastern Gate Plaza located in the center of city Hsinchu, Taiwan from 1996 to 1998. According to several face-to-face discussions with Hsinchu habitants, government officials, and professional designers, a final computerized procedure for visual impact analysis and assessment is concluded.
keywords Environmental Simulation, Visual Impact Analysis and Assessment, Virtual Reality
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:54

_id c4be
authors Bock, T., Stricker, D., Fliedner, J. and Huynh, T.
year 1996
title Automatic generation of the controlling-system for a wall construction robot
source Automation in Construction 5 (1) (1996) pp. 15-21
summary In this article we present several important aspects of a software system control. This is designed and developed for a wall assembly robot in an European Esprit III project called ROCCO, RObot assembly system for Computer integrated COnstruction. The system consists of an off-line program for planning of complex assembly tasks and for generating robot actions. The execution is controlled through an adaptive user interface and gives the user the possibilities to switch in an on-line mode command. All the software is designed with the object-oriented concept and implemented in C + +. The wall assembly system is organized on the base of the successive generation of different types of actions, called "Mission", "Task", and "Action". They represent different levels of assembly complexities. Those different actions are organized in a tree structure. Furthermore, the software system can be connected to a CAD-robot simulation software for checking the robot assembly motions. Added to the control system, a recovery module has been implemented for all possible errors during the construction. First the OO-model of the world and of robot activities will be presented. Secondly, several aspects of the algorithm will be explained and at the end we will show the strategy used for the robot motion.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 4931
authors Breen, Jack
year 1996
title Learning from the (In)Visible City
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 65-78
doi https://doi.org/10.52842/conf.ecaade.1996.065
summary This paper focuses on results and findings of an educational project, in which the participating students had to develop a design strategy for an urban plan by using and combining endoscopic and computational design visualisation techniques. This educational experiment attempted to create a link between the Media research programme titled 'Dynamic Perspective' and an educational exercise in design composition. It was conceived as a pilot study, aimed at the investigation of emerging applications and possible combinations of different imaging techniques which might be of benefit in architectural and urban design education and potentially for the (future) design practice. The aim of this study was also to explore the relationship between spatial perception and design simulation. The point of departure for the student exercise was an urban masterplan which the Dynamic Perspective research team prepared for the workshop 'the (in)visible city' as part of the 1995 European Architectural Endoscopy Association Conference in Vienna, Austria. The students taking part in the exercise were asked to develop, discuss and evaluate proposals for a given part of this masterplan by creating images through different model configurations using optical and computer aided visualisation techniques besides more traditional design media.The results of this project indicate that an active and combined use of visualisation media at a design level, may facilitate communication and lead to a greater understanding of design choices, thus creating insights and contributing to design decision-making both for the designers and for the other participants in the design process.
series eCAADe
email
more http://www.bk.tudelft.nl/Media/
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 23HOMELOGIN (you are user _anon_337108 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002