CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures
Hits 1 to 20 of 492
Reformat results as: short short into frame detailed detailed into frame
The problem resides in how realistic these Computer Generated Models (CGM) are. Moss & Banks (1958) considered realism “the capacity to reproduce as exactly as possible the object of study without actually using it”. He considers that realism depends on: 1)The number of elements that are reproduced; 2) The quality of those elements; 3) The similarity of replication and 4) Replication of the situation. CGM respond well to these considerations, they can be very realistic. But, are they capable of reproducing the same impressions on people as a real space?
Research has debated about the problems of the mode of representation and its influence on the judgement which is made. Wools (1970), Lau (1970) and Canter, Benyon & West (1973) have demonstrated that the perception of a space is influenced by the mode of presentation. CGM are two-dimensional representations of three-dimensional space. Canter (1973) considers the three-dimensionality of the stimuli as crucial for its perception. So, can a CGM afford as much as a three-dimensional model?
The “Laboratorio de Experimentacion Espacial” (LEE) has been concerned with the problem of reality of the models used by architects. We have studied the degree in which models can be used as reliable and representative of real situations analyzing the Ecological Validity of several of them, specially the Real-Scale Model (Abadi & Cavallin, 1994). This kind of model has been found to be ecologically valid to represent real space. This research has two objectives: 1) to study the Ecological Validity of a Computer Generated Model; and 2) compare it with the Ecological Validity of a Real Scale Model in representing a real space.
1. How do architects currently use CAD systems to produce drawings?
2. What are the effects of current CAD usage on product and performance?
3. What are the possible causes of current CAD usage?
4. What are the capabilities of the CAD medium and how can they be used efficiently?
The above four questions were addressed through the qualitative, quantitative, and cognitive analysis of data collected during an ethnographic study of architects working in their natural environment. The qualitative and quantitative analysis revealed that users missed many opportunities to use strategies that delegated iteration to the computer. The cognitive analysis revealed that missed opportunities to use such delegation strategies caused an increase in execution time, and an increase in errors many of which went undetected leading to the production of inaccurate drawings. These analyses pointed to plausible cognitive and contextual explanations for the inefficient use of CAD systems, and to a framework to identify and teach efficient CAD strategies. The above results were found to be neither unique to the CAD domain, nor to the office where the data were collected. The generality of these results motivated the identification of seven claims towards a general theory to explain and identify efficient strategies for a wide range of devices. This thesis contributes to the field of architecture by providing a detailed analysis of real-world CAD usage, and an approach to improve the performance of CAD users. The thesis also contributes to the field of human-computer interaction by demonstrating the generality of these results and by laying the framework for a general theory of efficient strategies which could be used to improve the performance of users of current and future computer applications.
The study of imaginary worlds in this design studio case study is limited to motion pictures that postulate unique, or new environments rather than those films that faithfully attempt to document or reconstruct reality. In this sense, the movies used for study have a lineage traceable to Georges Melies "who came to film from illusionism and the "heater," rather than to the reality of the Lumiere brothers who came from photography which ultimately would lead to "cinema-verite."
Discussions, assignments and presentations in the studio are organized to provide students with an opportunity to gain a different awareness of architecture and use varying stimuli as source material for design. The study of architectural history, art, formal principles of design, visual perception, and media are required in order to complete the reconstructions and creations of proposed environments.
All student work throughout the entire semester is created with electronic media and the computer is used as an integral component of the studio enabling analysis and study, design, model creation, and animation. The available capabilities of computer graphics in the studio enables students to explore analytic and synthetic issues of design in motion pictures in a manner not readily available when restricted to traditional media. Through the use of digital media we have an opportunity to better understand the imaginary worlds for what they communicate and the ideas they contain, and therefore create an opportunity to modify our own concept of architecture.
This paper outlines a proposal for an alternative method for teaching daylight and artificial lighting design for both architectural students and practitioners. It is based on photorealistic images as well as numbers, and employs the Lumen Micro 6.0 programme. This software package is a complete indoor lighting design and analysis programme which generates perspective renderings and animated walk-throughs of the space lighted naturally and artificially.
The paper also presents the findings of an empirical case study to validate Lumen Micro 6.0 by comparing simulated output with field monitoring of horizontal and vertical illuminance and luminance inside the highly acclaimed GSA building in Glasgow. The monitoring station was masterminded by the author and uses the Megatron lighting sensors, Luscar dataloggers and the Easylog analysis software. In addition photographs of a selected design studio inside the GSA building were contrasted with computer generated perspective images of the same space.
For more results click below: