CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 494

_id cc90
authors Kolarevic, Branko
year 1998
title CAD@HKU
doi https://doi.org/10.52842/conf.acadia.1998.016
source ACADIA Quarterly, vol. 17, no. 4, pp. 16-17
summary Since 1993, we have experimented with Virtual Design Studios (VDS) as an on-going research project that investigates the combination of current computer-aided design (CAD), computer networks (Internet), and computer supported collaborative work (CSCW) techniques to bring together studentsat geographically distributed locations to work in a virtual atelier. In 1993 the theme of the first joint VDS project was in-fill housing for the traditional Chinese walled village of Kat Hing Wai in the New Territories north of Hong Kong, and our partners included MIT and Harvard in Boston (USA), UBC in Vancouver (Canada), and Washington University in St. Louis (USA). In 1994 we were joined by Cornell (USA) and Escola Tecnica Superior d’Arquitectura de Barcelona (Spain) to re-design Li Long housing in Shanghai, and 1995 added the Warsaw Institute of Technology (Poland) for the ACSA/Dupont competition to design a Center for Cultural and Religious Studies in Japan. The 1996 topic was an international competition to design a monument located in Hong Kong to commemorate the return of Hong Kong to Chinese sovereignty in 1997. Communication was via e-mail, the WorldWide Web with limited attempts at VRML, and network video. Several teaching and research experiments conducted through these projects have demonstrated the viability and potential of using electronic, telecommunications, and videoconferencing technologies in collaborative design processes. Results of these VDS have been presented at conferences worldwide, explained in journal papers and published in Virtual Design Studio, edited by J. Wojtowicz, published by HKU Press.
series ACADIA
email
last changed 2022/06/07 07:51

_id 88f9
authors Carrara, G., Novembri, G., Zorgno, A.M., Brusasco, P.L.
year 1997
title Virtual Studio of Design and Technology on Internet (I) - Educator's approach
doi https://doi.org/10.52842/conf.ecaade.1997.x.n2w
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
summary This paper presents a teaching experience involving students and professors from various universities, in Italy and abroad, which began in 1996 and is still on going. The Virtual Studios on the Internet (VSI) have some features in common with the Teaching Studios planned for the new programme of the faculties of Architecture in Italian universities. These are the definition of a common design theme, and the participation of disciplinary teachers. The greatest difference is in the modes of collaboration, which is achieved through information and communication technologies. The chief result of this is that the various work groups in different places can work and collaborate at the same time: the computer networks provide the means to express, communicate and share the design project.
keywords CAAD, Teaching of architectural design, Shared virtual reality, Virtualdesign studio, Collective intelligence.
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/lvi_i&ii/zorgno.html
last changed 2022/06/07 07:50

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 2192
authors Mahdavi, A., Mathew, P., Hartkopf, V. and Loftness, V.
year 1996
title Bi-directional Inference in Thermal Design
doi https://doi.org/10.52842/conf.acadia.1996.133
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 133-143
summary This paper demonstrates a computational bi-directional energy modeling approach for building design development. Conventional simulation tools may be labeled as mono-directional in that they require a more or Iess complete design definition in order to derive performance indicators. However, in certain circumstances, it may be desirable to reverse this process: a bi-directional (or "open") inference mechanism would allow for the identification of those changes in the design variables that would accommodate a desired change in a performance indicator. The performance-to-design mapping process is an ambiguous one: the same performance (e.g. energy use of a building, temperature variations in a space) may be achieved by different design configurations (various wall and window dimensions/properties, building orientation/massing, etc.). As a result, the actual implementation of a bi-directional inference tool is a rather difficult task. The development described in this paper utilizes a preference-based approach that involves the formalization of various external or internal constraints and preferences (such as code and standard requirements, results of post-occupancy studies, individual priorities of designers and their clients, etc.) in terms of normalized numeric scales.

After a brief review of the underlying technology for the implementation of the inference engine, the paper demonstrates an actual design session using a bi-directional thermal simulation tool. Specifically, a use-scenario is described in which the designer explores the tradeoffs between various design variables (glazing area, glazing type, and floor mass) in view of the resulting energy performance of a typical residential building. The paper concludes with a discussion of the potential and limitations of the bi-directional approach toward active convergence support for performance-oriented design development.

series ACADIA
email
last changed 2022/06/07 07:59

_id c7e9
authors Maver, T.W.
year 2002
title Predicting the Past, Remembering the Future
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 2-3
summary Charlas Magistrales 2There never has been such an exciting moment in time in the extraordinary 30 year history of our subject area, as NOW,when the philosophical theoretical and practical issues of virtuality are taking centre stage.The PastThere have, of course, been other defining moments during these exciting 30 years:• the first algorithms for generating building layouts (circa 1965).• the first use of Computer graphics for building appraisal (circa 1966).• the first integrated package for building performance appraisal (circa 1972).• the first computer generated perspective drawings (circa 1973).• the first robust drafting systems (circa 1975).• the first dynamic energy models (circa 1982).• the first photorealistic colour imaging (circa 1986).• the first animations (circa 1988)• the first multimedia systems (circa 1995), and• the first convincing demonstrations of virtual reality (circa 1996).Whereas the CAAD community has been hugely inventive in the development of ICT applications to building design, it hasbeen woefully remiss in its attempts to evaluate the contribution of those developments to the quality of the built environmentor to the efficiency of the design process. In the absence of any real evidence, one can only conjecture regarding the realbenefits which fall, it is suggested, under the following headings:• Verisimilitude: The extraordinary quality of still and animated images of the formal qualities of the interiors and exteriorsof individual buildings and of whole neighborhoods must surely give great comfort to practitioners and their clients thatwhat is intended, formally, is what will be delivered, i.e. WYSIWYG - what you see is what you get.• Sustainability: The power of «first-principle» models of the dynamic energetic behaviour of buildings in response tochanging diurnal and seasonal conditions has the potential to save millions of dollars and dramatically to reduce thedamaging environmental pollution created by badly designed and managed buildings.• Productivity: CAD is now a multi-billion dollar business which offers design decision support systems which operate,effectively, across continents, time-zones, professions and companies.• Communication: Multi-media technology - cheap to deliver but high in value - is changing the way in which we canexplain and understand the past and, envisage and anticipate the future; virtual past and virtual future!MacromyopiaThe late John Lansdown offered the view, in his wonderfully prophetic way, that ...”the future will be just like the past, onlymore so...”So what can we expect the extraordinary trajectory of our subject area to be?To have any chance of being accurate we have to have an understanding of the phenomenon of macromyopia: thephenomenon exhibitted by society of greatly exaggerating the immediate short-term impact of new technologies (particularlythe information technologies) but, more importantly, seriously underestimating their sustained long-term impacts - socially,economically and intellectually . Examples of flawed predictions regarding the the future application of information technologiesinclude:• The British Government in 1880 declined to support the idea of a national telephonic system, backed by the argumentthat there were sufficient small boys in the countryside to run with messages.• Alexander Bell was modest enough to say that: «I am not boasting or exaggerating but I believe, one day, there will bea telephone in every American city».• Tom Watson, in 1943 said: «I think there is a world market for about 5 computers».• In 1977, Ken Olssop of Digital said: «There is no reason for any individuals to have a computer in their home».The FutureJust as the ascent of woman/man-kind can be attributed to her/his capacity to discover amplifiers of the modest humancapability, so we shall discover how best to exploit our most important amplifier - that of the intellect. The more we know themore we can figure; the more we can figure the more we understand; the more we understand the more we can appraise;the more we can appraise the more we can decide; the more we can decide the more we can act; the more we can act themore we can shape; and the more we can shape, the better the chance that we can leave for future generations a trulysustainable built environment which is fit-for-purpose, cost-beneficial, environmentally friendly and culturally significactCentral to this aspiration will be our understanding of the relationship between real and virtual worlds and how to moveeffortlessly between them. We need to be able to design, from within the virtual world, environments which may be real ormay remain virtual or, perhaps, be part real and part virtual.What is certain is that the next 30 years will be every bit as exciting and challenging as the first 30 years.
series SIGRADI
email
last changed 2016/03/10 09:55

_id maver_080
id maver_080
authors Maver, T.W. and Chen, Y.
year 1996
title The Design and Implementation of a Virtual Studio Environment
source Proceedings of 2nd East-West Conference on Information Technology in Design, 126-137
summary In this paper the authors describe the design and implementation of a virtual studio environment a distribute system for design collaboration across time and space. A virtual studio is defined as an electronic locale i the computer networks, containing distributed resources (both domain-specific design artifacts and generic Computer-Mediated Communication facilities) and inhabited by dispersed designers, whilst the virtual studj0 environment (VSE) refers to such a multi-user environment which supports the creation, operation and management of virtual studios. We'll particularly focus on reporting on the requirement analysis for a VS: the distributed system architecture, the design of the virtual studio model, and the implementation of the VSE server and VSE client programs. Conceptual buildingS design has been chosen as the application domain Advanced distributed computing technologies (CORBA, WWW) have been utilised for the prototyping.
series other
email
last changed 2003/09/03 15:01

_id 2423
authors Morozumi, M., Takahasi, M., Naka, R., Kawasumi, N., Homma, R., Mitchell. W.J., Yamaguchi, S. and Iki, K.
year 1997
title The Levels of Communications Achieved Through Network in an International Collaborative Design Project: An Analysis of VDS ’96 Project Carried Out By Kumamoto University, MIT and Kyoto Institute of Technology
doi https://doi.org/10.52842/conf.caadria.1997.143
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 143-152
summary This paper reviewed the process and the achievements of a five-week-long virtual design studio project the authors carried out with three universities in Japan and the United States in the summer of 1996, in which there was no communication among team members other than network media. After analyzing the use of communication tools in different situations of design communication, and the level of communications achieved in this project, the authors concluded that the present network technology could provide sufficient levels of communication, if only participants could put forth some amount of extra effort for communication among team members.
series CAADRIA
email
last changed 2022/06/07 07:59

_id ddssup9617
id ddssup9617
authors Sidjanin, Predrag
year 1996
title A computer simulation model of the TU district of Delft with use of the GIS and VR
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary One of the big problems for GIS users is a luck of such an visual presentation of data which will easily transform them into a spatial image. Existing systems based on Human-Computer-Interfaces (Ha) have limitations and for this reason it is necessary to discover new explicit way of spatial data presentation and manipulation. Virtual Reality technology with its specificity and characteristics based on spatial displaying and multisensory interactivity, give to VR users a new promising possibility to solve GIS limitations. This research is an exploration of integration of GIS and yR. VR is a kind of production of a simulation of a real world, and GIS-databases contain data that describe this world, therefore a success of combination of both technologies is very probable. This research shows possibilities for creating a virtual GIS world in which is possible to handle, explore, analyse and present spatial data by free navigation through a virtual model. The virtual model of Delft University of Technology's Campus presents Virtual Reality as a new type of 3D interface for GIS and demonstrates some basic GIS functions in virtual environment. It has been created by importing of GIS databases into VR system. Virtual model is based on geometric and attributive data. GIS functionality is enabled by 3D interface objects, that symbolically and semantically represents GIS functions. Their use should initiate intuitive users action. This application combines spatial data, user interface, text, sound, thematic data and virtual hypertext. Virtual model enables the use of quantitative and qualitative information. The results of the research can be implemented to support design strategies ax! decision making in the field of physical and urban planning.
series DDSS
last changed 2003/08/07 16:36

_id ascaad2004_paper11
id ascaad2004_paper11
authors Abdelfattah, Hesham Khairy and Ali A. Raouf
year 2004
title No More Fear or Doubt: Electronic Architecture in Architectural Education
source eDesign in Architecture: ASCAAD's First International Conference on Computer Aided Architectural Design, 7-9 December 2004, KFUPM, Saudi Arabia
summary Operating electronic and Internet worked tools for Architectural education is an important, and merely a prerequisite step toward creating powerful tele-collabortion and tele-research in our Architectural studios. The design studio, as physical place and pedagogical method, is the core of architectural education. The Carnegie Endowment report on architectural education, published in 1996, identified a comparably central role for studios in schools today. Advances in CAD and visualization, combined with technologies to communicate images, data, and “live” action, now enable virtual dimensions of studio experience. Students no longer need to gather at the same time and place to tackle the same design problem. Critics can comment over the network or by e-mail, and distinguished jurors can make virtual visits without being in the same room as the pin-up—if there is a pin-up (or a room). Virtual design studios (VDS) have the potential to support collaboration over competition, diversify student experiences, and redistribute the intellectual resources of architectural education across geographic and socioeconomic divisions. The challenge is to predict whether VDS will isolate students from a sense of place and materiality, or if it will provide future architects the tools to reconcile communication environments and physical space.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 8bd9
authors Coomans, M.K.D. and Oxman, R.M.
year 1996
title Prototyping of Designs in Virtual Reality
source H.J.P. Timmermans (ed.), 3rd Design and Decision Support Systems in Architecture and Urban Planning Conference, Vol I: Architecture Proceedings, pp. 13-25
summary Conventional CAD systems have not yet proven their ability to provide support for activities which characterise the early conceptual phase of design. We propose to refer to this set of capabilities of the human designer in conventional design as, design prototyping. We define the theoretical limitations of current CAD systems for supporting design prototyping, and postulate the potential of functionally dedicated, task related, CAD modules in Virtual Reality as a means to provide a unique form of a knowledgebased, visual design support environment for design prototyping support. We are currently engaged in a research program in which we explore CAD as a medium to support early conceptual design through rapid prototyping of architectural form. Furthermore we are exploring Virtual Reality as a potential design prototyping environment in which prototypes of designs can be constructed, communicated and visually evaluated at a high level of verisimilitude. In the first phase we have built the prototype system VIDE. This system has been used for extensive internal evaluation. In the ongoing second phase we are constructing an empirical research to observe designers at work on design prototyping in the Virtual Reality environment.
series other
last changed 2003/04/23 15:50

_id ddssar9602
id ddssar9602
authors Coomans, M.K.D. and Oxman, R.M.
year 1996
title Prototyping of Designs in Virtual Reality
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary Conventional CAD systems have not yet proven their ability to provide support for activities which characterise the early conceptual phase of design. We propose to refer to this set of capabilities of the human designer in conventional design as, design prototyping. We define the theoretical limitations of current CAD systems for supporting design prototyping, and postulate the potential of functionally dedicated, task related, CAD modules in Virtual Reality as a means to provide a unique form of a knowledge-based, visual design support environment for design prototyping support. We are currently engaged in a research program in which we explore CAD as a medium to support early conceptual design through rapid prototyping of architectural form. Furthermore we are exploring Virtual Reality as a potential design prototyping environment in which prototypes of designs can be constructed, communicated and visually evaluated at a high level of verisimilitude. In the first phase we have built the prototype system VIDE. This system has been used for extensive internal evaluation. In the ongoing second phase we are constructing an empirical research to observe designers at work on design prototyping in the Virtual Reality environment.
series DDSS
last changed 2003/08/07 16:36

_id 3a28
authors Laiserin, Jerry
year 2002
title From atelier to e-telier: virtual design studios
source Architectural Record
summary The design studio, as physical place and pedagogical method, is the core of architectural education. Ateliers clustered around rue Napoleon in Paris defined the École des Beaux Arts. The Carnegie Endowment report on architectural education, published in 1996, identified a comparably central role for studios in schools today. From programs, schemes, and parti to desk crits, pin-ups, and charrettes-language and behavior learned in the studio establish the profession's cultural framework. Advances in CAD and visualization, combined with technologies to communicate images, data, and "live" action, now enable virtual dimensions of studio experience. Students no longer need gather at the same time and place to tackle the same design problem. Critics can comment over the network or by e-mail, and distinguished jurors can make virtual visits without being in the same room as the pin-up-if there is a pin-up (or a room). Virtual design studios (VDS) have the potential to favor collaboration over competition, diversify student experiences, and redistribute the intellectual resources of architectural education across geographic and socioeconomic divisions. The catch is predicting whether VDS will isolate students from a sense of place and materiality, or if it will provide future architects the tools to reconcile communication environments and physical space.
series journal paper
last changed 2003/04/23 15:50

_id 8a25
authors Alshawi, M. and Underwood, J.
year 1996
title Applying object-oriented analysis to the integration of design and construction
source Automation in Construction 5 (2) (1996) pp. 105-121
summary This paper implements an Object Oriented Analysis technique to model information related to design and construction. In a previous study, an approach to integrate design and construction processes based upon information analysis and modelling has been proposed. By breaking down the project's vast information into groups of related information, construction related problems have been identified and then traced back too their relevant design processes. This paper models this process using a relatively young and new method of analysis rather than a traditional structured approach. An Object-Oriented Analysis (OOA) method has been applied to model the information in terms of the fundamental ideas that underlie object-oriented technology i.e. object types and classes, methods, requests, encapsulation and inheritance. Proceeding through the five major activities of Coad and Yourdon's OOA method, a complete OOA model has been developed with potential to improve the construction related problems.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id ddssup9603
id ddssup9603
authors Bach, Boudewijn and MacGillivray, Trina
year 1996
title Semi-manual design support for increasing railwaystation catchment & sustainable traffic routing
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary The shape ('configuration'), location and direction of the pattern of potential trips by foot or bicycle can help decision makers and designers:- the shape of such a pattern informs about the potential size of a traffic calming area(such as 30Km-zoning),- the location of such a pattern refers to the user-groups and specific destinations that a urban network should bring in safe reach for dictated groups,- the direction of such a pattern, together with shape and location, points to the best routing to raise the Sustainable Traffic Modal Split or to improve the reach of destinations like a railway-station.The patters can be generated from zip-code's of user-groups with obvious and daily destinations (school-children, rail-passengers). The next step confronts the theoretical pattern with the layout of streets and the traffic flow, mapping or listing (potential) confrontations between cars and the non-motorised modes, a basis for economical investment in traffic-safety.A design can 'model' the analysed pattern(s) to a economic, direct and safe base (cycle or pedestrian) network. In co-operation, the Dutch the traffic consultant "Verkeersadviesbureau Diepens & Okkema" in Delft, The Netherlands and the Faculty of Architecture, Delft University of Technology, in Delft, The Netherlands, develloped the semi-manual design & decision support system "STAR-Analysis"
series DDSS
last changed 2003/11/21 15:16

_id d610
authors Burdea, G.C.
year 1996
title Force and Touch Feedback for Virtual Reality
source New York: John Wiley & Sons
summary Could weight, temperature, and texture combine to bring simulated objects to life? Describing cutting-edge technology that will influence the way we interact with computers for years to come, this pioneering book answers yes: not only is it possible, but devices capable of providing force and tactile sensory feedback already exist. Force and Touch Feedback for Virtual Reality is the first comprehensive source of information on the design, modeling, and applications of force and tactile interfaces for VR. It is a must have for scientists, engineers, psychologists, and developers involved in VR, and for anyone who would like to gain a deeper understanding of this exciting and fast-growing field. Complete with hundreds of tables, figures, and color illustrations, Force and Touch Feedback for Virtual Reality offers * Basic information on human tactile sensing and control and feedback actuator technology * A worldwide survey of force and tactile interface devices, from the simple joystick to full-body instrumented suits based on human factor tests * Step-by-step instructions for realistic physical modeling of virtual object characteristics such as weight, surface smoothness, compliance, and temperature * A unified treatment of the benefits of the new haptic interface technology for simulation and training based on human factor tests * A detailed analysis of optimum control requirements for force and tactile feedback devices * A review of emerging applications in areas ranging from surgical training and entertainment to telerobotics and the military
series other
last changed 2003/04/23 15:14

_id eb51
authors Coyne, Richard
year 1996
title CAAD, Curriculum and Controversy
doi https://doi.org/10.52842/conf.ecaade.1996.121
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 121-130
summary This paper brings some of the debate within educational theory to bear on CAAD teaching, outlining the contributions of conservatism, critical theory, radical hermeneutics and pragmatism. The paper concludes by recommending that CAAD teaching move away from conservative concepts of teaching, design and technology to integrate it into the studio. In a highly illuminating book on education theory, Shaun Gallagher (1991) outlines four current views on education that correspond to four major positions in contemporary social theory and philosophy. I will extend these categories to a consideration of attitudes to information technology, and the teaching of computing in architecture. These four positions are conservatism, critical theory, radical hermeneutics, and pragmatism. I will show how certain issues cluster around them, how each position provides the focus of various discursive practices, or intellectual conversations in contemporary thinking, and how information technology is caught up in those conversations. These four positions are not "cognitive styles," but vigorously argued domains of debate involving writers such as Gadamer, Habermas and Derrida about the theory of interpretation. The field of interpretation is known as hermeneutics, which is concerned less with epistemology and knowledge than with understanding. Interpretation theory applies to reading texts, interpreting the law, and appreciating art, but also to the application of any practical task, such as making art, drawing, defining and solving problems, and design (Coyne and Snodgrass, 1995). Hermeneutics provides a coherent focus for considering many contemporary issues and many domains of practice. I outline what these positions in education mean in terms of CAAD (computer-aided architectural design) in the curriculum.

series eCAADe
email
more http://www.caad.ac.uk/~richard
last changed 2022/06/07 07:56

_id 5e49
authors Deering, Michael F.
year 1996
title HoloSketch: A Virtual Reality Sketching/Animation Tool Special Issue on Virtual Reality Software and Technology
source Transactions on Computer-Human Interaction 1995 v.2 n.3 pp. 220-238
summary This article describes HoloSketch, a virtual reality-based 3D geometry creation and manipulation tool. HoloSketch is aimed at providing nonprogrammers with an easy-to-use 3D "What-You-See-Is-What-You-Get" environment. Using head-tracked stereo shutter glasses and a desktop CRT display configuration, virtual objects can be created with a 3D wand manipulator directly in front of the user, at very high accuracy and much more rapidly than with traditional 3D drawing systems. HoloSketch also supports simple animation and audio control for virtual objects. This article describes the functions of the HoloSketch system, as well as our experience so far with more-general issues of head-tracked stereo 3D user interface design.
keywords Computer Graphics; Picture/Image Generation; Display Algorithms; Computer Graphics; Three-Dimensional Graphics and Realism; Human Factors; 3D Animation; 3D Graphics; Graphics Drawing Systems; Graphics Painting Systems; Man-Machine Interface; Virtual Reality
series other
last changed 2002/07/07 16:01

_id ddssup9605
id ddssup9605
authors Demir, Yuksel
year 1996
title A Design & Decision Support System Proposal for Housing
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary The subject of this study is to develop an information management system integrating all the related specialists and sources of information virtually from all related fields in building sector (housing) of Turkey; including design, production, construction, marketing, research. The application field has been chosen as housing for having a contribution to the existing housing problem. Although the subject of architecture is one : "the building", the specialists taking place during the lifetime of a building (from design, to destruction) are numerous. Moreover the links between practitioners, academicians, industry are missing Conventional methods, technology are expensive, time consuming. and insufficient to establish and maintain a healthy coordination between these contributors (mainly the design team and all the other related persons, institutions etc.). This has a strong negative effect on the concepts of "wholeness " and "integrity". The result is a built environment which is lacking significant qualities, while the money has been spent is even much more than required for a proper result. This means the loss of a considerable amount of resources. Especially in a country, which has to build thousands of houses each year, for low income groups, the efficient use of the limited sources becomes more essential. Though the potential user range of the system may include constructors, contractors, building element / material producers and retailers, surveyors, institutions, universities, the main user is aimed to be the architect. The system is aimed to support designers to deal with "complexity" without neglecting the concept of "wholeness". Within the study, the problems which became a stimulus for the development of this system will be investigated. The philosophical base, structure and the possible advantages of the proposal will be discussed.
keywords Design & Decision Support Systems, Information Technology, Information Management, Holistic View of Approach, Specialization
series DDSS
last changed 2003/08/07 16:36

_id 819d
authors Eiteljorg, H.
year 1988
title Computing Assisted Drafting and Design: new technologies for old problems
source Center for the study of architecture, Bryn Mawr, Pennsylvania
summary In past issues of the Newsletter, George Tressel and I have written about virtual reality and renderings. We have each discussed particular problems with the technology, and both of us mentioned how compelling computer visualizations can be. In my article ("Virtual Reality and Rendering," February, 1995, Vol. 7, no. 4), I indicated my concerns about the quality of the scholarship and the level of detail used in making renderings or virtual worlds. Mr. Tressel (in "Visualizing the Ancient World," November, 1996, Vol. IX, no. 3) wrote about the need to distinguish between real and hypothetical parts of a visualization, the need to differentiate materials, and the difficulties involved in creating the visualizations (some of which were included in the Newsletter in black-and-white and on the Web in color). I am returning to this topic now, in part because the quality of the images available to us is improving so fast and in part because it seems now that neither Mr. Tressel nor I treated all the issues raised by the use of high-quality visualizations. The quality may be illustrated by new images of the older propylon that were created by Mr. Tressel (Figs. 1 - 3); these images are significantly more realistic than the earlier ones, but they do not represent the ultimate in quality, since they were created on a personal computer.
series other
last changed 2003/04/23 15:50

_id ec0e
authors Engeli, M. and Kurmann, D.
year 1996
title A Virtual Reality Design Environment with Intelligent Objects and Autonomous Agents
source H.J.P. Timmermans (ed.), Design and Decision Support Systems in Architecture and Urban Planning Conference, Vol. 1: Architecture Proceedings, pp. 132-142
summary New technological achievements and research results allow for the creation of innovative design tools for architects, that do not originate from paper-based paradigms but instead make optimised use of the present technology and programming concepts. The core of our system is comprised of an intuitive interactive modelling tool. It runs in a virtual reality set-up, where the user can use 3D glasses to experience rooms and 3D input devices to model in three dimensions. The interface is free from widget-like buttons or menus, so that the user is undisturbed when moving into the virtual world of the design. The system can also run in a distributed fashion, so that a number of users can look at and modify the same design. The 3D model can be generated in a sketch-like fashion using solids and voids, void modelling turns out to be very valuable for architectural design. The objects in this system can contain forms of intelligence to produce such behaviour as: falling because of gravity, collision avoidance, and autonomous motion. Interactive behaviour can also be assigned to the objects. Autonomous Agents are added to the system to enhance the designer support. These are agents that enhance the virtual environment, agents that take over tasks, and agents that help to test the design. The system shows new interface and interaction approaches that support the architectural design process intelligently.
series other
last changed 2003/04/23 15:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_579598 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002