CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 488

_id ascaad2004_paper11
id ascaad2004_paper11
authors Abdelfattah, Hesham Khairy and Ali A. Raouf
year 2004
title No More Fear or Doubt: Electronic Architecture in Architectural Education
source eDesign in Architecture: ASCAAD's First International Conference on Computer Aided Architectural Design, 7-9 December 2004, KFUPM, Saudi Arabia
summary Operating electronic and Internet worked tools for Architectural education is an important, and merely a prerequisite step toward creating powerful tele-collabortion and tele-research in our Architectural studios. The design studio, as physical place and pedagogical method, is the core of architectural education. The Carnegie Endowment report on architectural education, published in 1996, identified a comparably central role for studios in schools today. Advances in CAD and visualization, combined with technologies to communicate images, data, and “live” action, now enable virtual dimensions of studio experience. Students no longer need to gather at the same time and place to tackle the same design problem. Critics can comment over the network or by e-mail, and distinguished jurors can make virtual visits without being in the same room as the pin-up—if there is a pin-up (or a room). Virtual design studios (VDS) have the potential to support collaboration over competition, diversify student experiences, and redistribute the intellectual resources of architectural education across geographic and socioeconomic divisions. The challenge is to predict whether VDS will isolate students from a sense of place and materiality, or if it will provide future architects the tools to reconcile communication environments and physical space.
series ASCAAD
email
last changed 2007/04/08 19:47

_id a06c
authors Batie, David L.
year 1996
title The Incorporation of Construction History into Architectural History: The HISTCON Interactive Computer Program
doi https://doi.org/10.52842/conf.acadia.1996.235
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 235-243
summary Current teaching methods for architectural history seldom embrace building technology as an essential component of study. Accepting the premise that architectural history is a fundamental component to the overall architectural learning environment, it is argued that the study of construction history will further enhance student knowledge. This hypothesis created an opportunity to investigate how the study of construction history could be incorporated to strengthen present teaching methods. Strategies for teaching architectural history were analyzed with the determination that an incorporation of educational instructional design applications using object-oriented programming and hypermedia provided the optimal solution. This evaluation led to the development of the HISTCON interactive, multimedia educational computer program. Used initially to teach 19th Century iron and steel construction history, the composition of the program provides the mechanism to test the significance of construction history in the study of architectural history. Future development of the program will provide a method to illustrate construction history throughout the history of architecture. The study of architectural history, using a construction oriented methodology, is shown to be positively correlated to increased understanding of architectural components relevant to architectural history and building construction.
series ACADIA
last changed 2022/06/07 07:54

_id ddssup9604
id ddssup9604
authors Boelen, A.J.
year 1996
title Impact-Analysis of Urban Design Realtime impact-analysis models for urban designers
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary The past five years Prof Dr Jr T.M. de Jong, professor in environmental planning and sustainability at the Technical University of Delft, has developed a theoretical foundation for the analysis of urban design on the ecological, technical, economical, cultural and political impacts of morphologic interventions on different levels of scale. From september 1994 Jr AJ. Boelen (Urban Design Scientist and Knowledge Engineer) started a research project at the same university to further explore the possibilities of these theories and to develop impact evaluation models for urban design and development with the theoretical work of De Jong as a starting point. The paper discusses the development of a design and decision support system based on these theories. For the development of this system, techniques like object-orientation, genetic algorithms and knowledge engineering are used. The user interface, the relation between the real world, paper maps and virtual maps and the presentation of design-interventions and impacts caused by the interventions are important issues. The development-process is an interactive step by step process. It consists of the making of a prototype of the system, testing the theory and hypothe-sisses the system is based on, by applying tests end adjusting the theory and hypothesisses where needed. Eventually the system must be able to act as an integrator of many different models already developed or still to be developed. The structure of the system will allow easy future expansion and adjustment to changing insights. The logic used to develop the basic theory on which this system is founded makes it possible to even introduce and maintain rather subjective aspects like quality or appraisal as impacts that can be evaluated. In a previously developed system "Momentum" this was proved to work effectively for the national level. In this project we will - amongst other things - try to prove the effectiveness of impact-evaluation for other levels of scale.
series DDSS
email
last changed 2003/11/21 15:16

_id d9bf
authors Goodchild, N.F., Steyaert, L.T., Parks, B.O., Johnson, C., Maidment, D., Crane, M. and Glendinning, S. (Eds.)
year 1996
title GIS and Environmental Modeling: Progress and Research Issues
source Fort Collins, CO: GIS World Books, pp.451-454
summary GIS and Environmental Modeling: Progress and Research Issues Michael F. Goodchild, Louis T. Steyaert, Bradley O. Parks, Carol Johnston, David Maidment, Michael Crane, and Sandi Glendinning, Editors With growing pressure on natural resources and landscapes there is an increasing need to predict the consequences of any changes to the environment. Modelling plays an important role in this by helping our understanding of the environment and by forecasting likely impacts. In recent years moves have been made to link models to Geographical Information Systems to provide a means of analysing changes over an area as well as over time. GIS and Environmental Modeling explores the progress made to date in integrating these two software systems. Approaches to the subject are made from theoretical, technical as well as data stand points. The existing capabilities of current systems are described along with important issues of data availability, accuracy and error. Various case studies illustrate this and highlight the common concepts and issues that exist between researchers in different environmental fields. The future needs and prospects for integrating GIS and environmental models are also explored with developments in both data handling and modelling discussed. The book brings together the knowledge and experience of over 100 researchers from academic, commercial and government backgrounds who work in a wide range of disciplines. The themes followed in the text provide a fund of knowledge and guidance for those involved in environmental modelling and GIS. The book is easily accessible for readers with a basic GIS knowledge and the ideas and results of the research are clearly illustrated with both colour and black and white graphics.
series other
last changed 2003/04/23 15:14

_id 3a28
authors Laiserin, Jerry
year 2002
title From atelier to e-telier: virtual design studios
source Architectural Record
summary The design studio, as physical place and pedagogical method, is the core of architectural education. Ateliers clustered around rue Napoleon in Paris defined the École des Beaux Arts. The Carnegie Endowment report on architectural education, published in 1996, identified a comparably central role for studios in schools today. From programs, schemes, and parti to desk crits, pin-ups, and charrettes-language and behavior learned in the studio establish the profession's cultural framework. Advances in CAD and visualization, combined with technologies to communicate images, data, and "live" action, now enable virtual dimensions of studio experience. Students no longer need gather at the same time and place to tackle the same design problem. Critics can comment over the network or by e-mail, and distinguished jurors can make virtual visits without being in the same room as the pin-up-if there is a pin-up (or a room). Virtual design studios (VDS) have the potential to favor collaboration over competition, diversify student experiences, and redistribute the intellectual resources of architectural education across geographic and socioeconomic divisions. The catch is predicting whether VDS will isolate students from a sense of place and materiality, or if it will provide future architects the tools to reconcile communication environments and physical space.
series journal paper
last changed 2003/04/23 15:50

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id af53
authors Boyer, E. and Mitgang, L.
year 1996
title Building community: a new future for architecture education and practice
source Carnegie Foundation for the Advancement of Teaching
summary Internships, before and after graduation, are the most essential link connecting students to the world of practice. Yet, by all accounts, internship is perhaps the most troubled phase of the continuing education of architects. During this century, as architectural knowledge grew more complex, the apprenticeship system withered away and schools assumed much of the responsibility for preparing architects for practice. However, schools cannot do the whole job. It is widely acknowledged that certain kinds of technical and practical knowledge are best learned in the workplace itself, under the guidance of experienced professionals. All state accrediting boards require a minimum period of internship-usually about three years-before a person is eligible to take the licensing exam. The National Council of Architectural Registration Boards (NCARB) allows students to earn up to two years of work credit prior to acquisition of an accredited degree. The Intern Development Program (IDP), launched by NCARB and the American Institute of Architects in 1979, provides the framework for internship in some forty states. The program was designed to assure that interns receive adequate mentoring, that experiences are well-documented, and that employers and interns allocate enough time to a range of educational and vocational experiences to prepare students for eventual licensure. As the IDP Guidelines state, "The shift from school to office is not a transition from theory to pragmatism. It is a period when theory merges with pragmatism.... It's a time when you: apply your formal education to the daily realities of architectural practice; acquire comprehensive experience in basic practice areas; explore specialized areas of practice; develop professional judgment; continue your formal education in architecture; and refine your career goals." Whatever its accomplishments, however, we found broad consensus that the Intern Development Program has not, by itself, solved the problems of internship. Though we found mutually satisfying internship programs at several of the firms we visited or heard about around the country, at many others interns told us they were not receiving the continuing education and experience they needed. The truth is that architecture has serious, unsolved problems compared with other fields when it comes to supplying on-the-job learning experiences to induct students into the profession on a massive scale. Medicine has teaching hospitals. Beginning teachers work in actual classrooms, supported by school taxes. Law offices are, for the most part, in a better financial position to support young lawyers and pay them living wages. The architecture profession, by contrast, must support a required system of internship prior to licensure in an industry that has neither the financial resources of law or medicine, the stability and public support of teaching, nor a network of locations like hospitals or schools where education and practice can be seamlessly connected. And many employers acknowledged those problems. "The profession has all but undermined the traditional relationship between the profession and the academy," said Neil Frankel, FAIA, executive vice president of Perkins & Will, a multinational firm with offices in New York, Chicago, Washington, and London. "Historically, until the advent of the computer, the profession said, 'Okay, go to school, then we in the profession will teach you what the real world is like.' With the coming of the computer, the profession needed a skill that students had, and has left behind the other responsibilities." One intern told us she had been stuck for months doing relatively menial tasks such as toilet elevations. Another intern at a medium-sized firm told us he had been working sixty to seventy hours per week for a year and a half. "Then my wife had a baby and I 'slacked off' to fifty hours. The partner called me in and I got called on the carpet for not working hard enough." "The whole process of internship is being outmoded by economics," one frustrated intern told us. "There's not the time or the money. There's no conception of people being groomed for careers. The younger staff are chosen for their value as productive workers." "We just don't have the best structure here to use an intern's abilities to their best," said a Mississippi architect. "The people who come out of school are really problems. I lost patience with one intern who was demanding that I switch him to another section so that he could learn what he needed for his IDP. I told him, 'It's not my job to teach you. You are here to produce.'" What steps might help students gain more satisfying work opportunities, both during and after graduation?
series other
last changed 2003/04/23 15:14

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id a573
authors Cicognani, Anna
year 1996
title Thinking Beyond
doi https://doi.org/10.52842/conf.ecaade.1996.087
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 87-98
summary If the new generation of architects is in need of tools, then we can consider ourselves lucky. On the market there are as many CAD systems as we would be able to learn and use in more than a Curriculum of a School of Architecture. On the other hand, being able to use the tools doesn't mean being able to produce good designs. It is often pointed out how much buildings designed by CAD systems look strangely similar. In the challenge of education, in Schools of Architecture, we need to help students to think beyond the tools themselves. This can be done with, for example, Virtual Design Studios and MUDs/MOOs, in which students can practise their architectural skills and adapt the tools to their design, instead of vice versa. This paper is a description of some attempts in educating how to think beyond tools in design tasks.

series eCAADe
email
more http://www.arch.su.edu.au/~anna
last changed 2022/06/07 07:56

_id 3905
authors Duffy, T.M. and Cunningham, D.J.
year 1996
title Constructivism: Implications for the design and delivery of instruction
source D.H. Jonassen, (Ed) Handbook of research for educational communications and technology, N.Y; Macmillan Library reference USA
summary This will be a seminar that examines Constructivist theory as it applies to our thinking about instruction. Many folks think of constructivism as a method of instruction -- it is not. It is a framework for thinking about learning or what it means to come to know. As such, it is a framework for understanding (interpreting) any learning environment as well as a framework for designing instruction. The seminar will be organized around weekly readings. We will examine the alternative constructivist theories, e.g., socio-cultural constructivism and cognitive constructivism, and the pragmatism of Richard Rorty. However, rather than focusing on the differences between these frameworks, our emphasis will be on the implications of the broader, common framework for the design of instruction. Hence we will spend most of the semester discussing strategies for designing and delivering instruction, e.g., the work of Bransford, Collins, Pea, Jonassen, Spiro, Fosnot, Senge, and Schank. We will consider both business and schooling environments for learning -- there is significant work in both domains. There will be particular emphasis of the use of technology in instruction. We will look at the communication, information, and context providing roles of technology as contrasted to the traditional approach of using technology to deliver instruction (to teach). We will also pay particular attention to problem based learning as one instructional model. In PBL there is particular emphasis on the role of the facilitator as a learning coach (process orientation) as opposed to a content provider. There is also a particular emphasis on supporting the development of abductive reasoning skills so that the learner develops the ability to be an effective problem solver in the content domain. The major paper/project for the course will be the design of instruction to train individuals to be learning coaches in a problem based learning or goal based scenario learning environment. That is, how do you support teachers in adapting the role of learning coach (which, of course, requires us to understand what it means to be a learning coach). Design teams will be formed with the teams all working on this same design problem. A comprehensive prototype of the learning environment is required as well as a paper provide the theoretical framework and rationale for the design strategy. While not required, I would expect that computer technology will play a significant role in the design of your learning environment. With that in mind, let me note that it is not required that the prototype be delivered on the computer, i.e., I am not requiring programming skills but rather design skills and so "storyboards" is all that is required.
series other
last changed 2003/04/23 15:14

_id db00
authors Espina, Jane J.B.
year 2002
title Base de datos de la arquitectura moderna de la ciudad de Maracaibo 1920-1990 [Database of the Modern Architecture of the City of Maracaibo 1920-1990]
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 133-139
summary Bases de datos, Sistemas y Redes 134The purpose of this report is to present the achievements obtained in the use of the technologies of information andcommunication in the architecture, by means of the construction of a database to register the information on the modernarchitecture of the city of Maracaibo from 1920 until 1990, in reference to the constructions located in 5 of Julio, Sectorand to the most outstanding planners for its work, by means of the representation of the same ones in digital format.The objective of this investigation it was to elaborate a database for the registration of the information on the modernarchitecture in the period 1920-1990 of Maracaibo, by means of the design of an automated tool to organize the it datesrelated with the buildings, parcels and planners of the city. The investigation was carried out considering three methodologicalmoments: a) Gathering and classification of the information of the buildings and planners of the modern architectureto elaborate the databases, b) Design of the databases for the organization of the information and c) Design ofthe consultations, information, reports and the beginning menu. For the prosecution of the data files were generated inprograms attended by such computer as: AutoCAD R14 and 2000, Microsoft Word, Microsoft PowerPoint and MicrosoftAccess 2000, CorelDRAW V9.0 and Corel PHOTOPAINT V9.0.The investigation is related with the work developed in the class of Graphic Calculation II, belonging to the Departmentof Communication of the School of Architecture of the Faculty of Architecture and Design of The University of the Zulia(FADLUZ), carried out from the year 1999, using part of the obtained information of the works of the students generatedby means of the CAD systems for the representation in three dimensions of constructions with historical relevance in themodern architecture of Maracaibo, which are classified in the work of The Other City, generating different types ofisometric views, perspectives, representations photorealistics, plants and facades, among others.In what concerns to the thematic of this investigation, previous antecedents are ignored in our environment, and beingthe first time that incorporates the digital graph applied to the work carried out by the architects of “The Other City, thegenesis of the oil city of Maracaibo” carried out in the year 1994; of there the value of this research the field of thearchitecture and computer science. To point out that databases exist in the architecture field fits and of the design, alsoweb sites with information has more than enough architects and architecture works (Montagu, 1999).In The University of the Zulia, specifically in the Faculty of Architecture and Design, they have been carried out twoworks related with the thematic one of database, specifically in the years 1995 and 1996, in the first one a system wasdesigned to visualize, to classify and to analyze from the architectural point of view some historical buildings of Maracaiboand in the second an automated system of documental information was generated on the goods properties built insidethe urban area of Maracaibo. In the world environment it stands out the first database developed in Argentina, it is the database of the Modern andContemporary Architecture “Datarq 2000” elaborated by the Prof. Arturo Montagú of the University of Buenos Aires. The general objective of this work it was the use of new technologies for the prosecution in Architecture and Design (MONTAGU, Ob.cit). In the database, he intends to incorporate a complementary methodology and alternative of use of the informationthat habitually is used in the teaching of the architecture. When concluding this investigation, it was achieved: 1) analysis of projects of modern architecture, of which some form part of the historical patrimony of Maracaibo; 2) organized registrations of type text: historical, formal, space and technical data, and graph: you plant, facades, perspectives, pictures, among other, of the Moments of the Architecture of the Modernity in the city, general data and more excellent characteristics of the constructions, and general data of the Planners with their more important works, besides information on the parcels where the constructions are located, 3)construction in digital format and development of representations photorealistics of architecture projects already built. It is excellent to highlight the importance in the use of the Technologies of Information and Communication in this investigation, since it will allow to incorporate to the means digital part of the information of the modern architecturalconstructions that characterized the city of Maracaibo at the end of the XX century, and that in the last decades they have suffered changes, some of them have disappeared, destroying leaves of the modern historical patrimony of the city; therefore, the necessity arises of to register and to systematize in digital format the graphic information of those constructions. Also, to demonstrate the importance of the use of the computer and of the computer science in the representation and compression of the buildings of the modern architecture, to inclination texts, images, mapping, models in 3D and information organized in databases, and the relevance of the work from the pedagogic point of view,since it will be able to be used in the dictation of computer science classes and history in the teaching of the University studies of third level, allowing the learning with the use in new ways of transmission of the knowledge starting from the visual information on the part of the students in the elaboration of models in three dimensions or electronic scalemodels, also of the modern architecture and in a future to serve as support material for virtual recoveries of some buildings that at the present time they don’t exist or they are almost destroyed. In synthesis, the investigation will allow to know and to register the architecture of Maracaibo in this last decade, which arises under the parameters of the modernity and that through its organization and visualization in digital format, it will allow to the students, professors and interested in knowing it in a quicker and more efficient way, constituting a contribution to theteaching in the history area and calculation. Also, it can be of a lot of utility for the development of future investigation projects related with the thematic one and restoration of buildings of the modernity in Maracaibo.
keywords database, digital format, modern architecture, model, mapping
series SIGRADI
email
last changed 2016/03/10 09:51

_id diss_fox
id diss_fox
authors Fox, M.A.
year 1996
title Novel Affordances of Computation to the Design Process of Kinetic Structures
source Massachusetts Institute of Technology, Cambridge, MA
summary This paper is a discourse into the relationship between the process, computational tools and the role which symbolic structure can play in both. I argue the relationship of the process and tools is dialectic, whereby the tools we utilize in design develop new heuristics, the methodologies in turn, if reflectively understood, can be more aptly facilitated through the development of novel tools. The tools and the process then evolve together. A theory is laid out exploring the human visual information processing systems pertinence to the limitations in mental three-dimensional imaging and transformation operations as relevant to the operations of drawing and mental visualization within the architectural design processes, substantiating the designers necessity to draw (by traditional means, but more importantly here, through the inclusive integration of CAD within the process). The necessity to draw is explored as a representational process to the visual system as predicated upon the existence of a structured internal library of diagram-like representations in our heads. I argue that the ways we utilize such idiosyncratic libraries is predicated upon the ways in which we go about structuring the perceived experienced world around us into symbol systems. And finally, the ways we utilize our reflective understanding of the heuristic transformations of these symbols within the design process in the context of a CAD environment are explored as a means to an enhanced understanding of that which is being designed and consequently as a vehicle for the development of future CAD systems to better facilitate such methodologies of designing. A personal design process of several kinetic structures is carried out in order to arrive at a localized process analysis within computer-aided design environment. Through an interactive, reflective process analysis, conclusions are drawn as to the affordances and limitations of such tools as suggestive of the operations a CAD environment might perform so as to better foster future methodologies of designing. The design experiments are utilized as a vehicle to understand the process. Specifically three kinetic projects are exploited for the prototypical operations they display. When difficulties or mental limitations are encountered with the operations, specific tools are developed to facilitate the limitation or to overcome the problem.
series thesis:MSc
more http://www.mafox.net/sm_thesis/Thesis11.pdf
last changed 2003/11/28 07:35

_id b04c
authors Goerger, S., Darken, R., Boyd, M., Gagnon, T., Liles, S., Sullivan, J. and Lawson, J.
year 1996
title Spatial Knowledge Acquisition from Maps and Virtual Environments in Complex Architectural Space
source Proc. 16 th Applied Behavioral Sciences Symposium, 22-23 April, U.S. Airforce Academy, Colorado Springs, CO., 1996, 6-10
summary It has often been suggested that due to its inherent spatial nature, a virtual environment (VE) might be a powerful tool for spatial knowledge acquisition of a real environment, as opposed to the use of maps or some other two-dimensional, symbolic medium. While interesting from a psychological point of view, a study of the use of a VE in lieu of a map seems nonsensical from a practical point of view. Why would the use of a VE preclude the use of a map? The more interesting investigation would be of the value added of the VE when used with a map. If the VE could be shown to substantially improve navigation performance, then there might be a case for its use as a training tool. If not, then we have to assume that maps continue to be the best spatial knowledge acquisition tool available. An experiment was conducted at the Naval Postgraduate School to determine if the use of an interactive, three-dimensional virtual environment would enhance spatial knowledge acquisition of a complex architectural space when used in conjunction with floor plan diagrams. There has been significant interest in this research area of late. Witmer, Bailey, and Knerr (1995) showed that a VE was useful in acquiring route knowledge of a complex building. Route knowledge is defined as the procedural knowledge required to successfully traverse paths between distant locations (Golledge, 1991). Configurational (or survey) knowledge is the highest level of spatial knowledge and represents a map-like internal encoding of the environment (Thorndyke, 1980). The Witmer study could not confirm if configurational knowledge was being acquired. Also, no comparison was made to a map-only condition, which we felt is the most obvious alternative. Comparisons were made only to a real world condition and a symbolic condition where the route is presented verbally.
series other
last changed 2003/04/23 15:50

_id ddssup9608
id ddssup9608
authors Gupta, M.K., Groves M. and Moran, J.D.
year 1996
title An EMIC approach to design: Methodology for creating supportive environments for young children
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary The responsibility of the designer is to understand the unique perspective of the users, in order to create functional and efficient environments. The task of creating supportive environments often becomes more difficult when there is discrepancy between the perspective of the designer and that of the user, which is the case when designing spaces for children. The interaction of children with their environment has been identified as the basis of their development Most of the previous research has focused on the perspectives that adults have of spaces for children (etic), rather than an understanding of the child's view as the primary user of the playspace (emic). Children's perceptions are influenced by their physical and cognitive perspectives thus posing a unique challenge for designers. The objective of this study was to learn about the perception and perspective of four-and five-year-olds of their favorite playspaces. The children needed to identify their favorite spaces and also be able to verbalize the activities and meanings associated with these spaces. To avoid adult bias at the onset, the idea of utilizing a Polaroid Captiva camera was formulated, facilitating an extremely short latency period between the child taking the pictures and the opportunity to talk about their favorite playspace. The process was extremely successful, and provides first hand insight into children's perception of their built environment Photographs taken by the young children include many spaces not designed for play. The emerging themes are a source of invaluable information for designers and planners for making informed design decisions and for creating supportive environments.
series DDSS
email
last changed 2003/08/07 16:36

_id 06e1
authors Keul, Alexander
year 1996
title LOST IN SPACE? ARCHITECTURAL PSYCHOLOGY - PAST, PRESENT, FUTURE
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary A methodological review by Kaminski (1995) summed up five perspectives in environmental psychology - patterns of spatial distribution, everyday “jigsaw puzzles”, functional everyday action systems, sociocultural change and evolution of competence. Architectural psychology (named so at the Strathclyde conference 1969; Canter, 1973) as psychology of built environments is one leg of environmental psychology, the second one being psychology of environmental protection. Architectural psychology has come of age and passed its 25th birthday. Thus, a triangulation of its position, especially in Central Europe, seems interesting and necessary. A recent survey mainly on university projects in German-speaking countries (Kruse & Trimpin, 1995) found a marked decrease of studies in psychology of built environments. 1994, 25% of all projects were reported in this category, which in 1975 had made up 40% (Kruse, 1975). Guenther, in an unpublished survey of BDP (association of professional German psychologists) members, encountered only a handful active in architectural psychology - mostly part-time, not full-time. 1996, Austria has two full-time university specialists. The discrepancy between the general interest displayed by planners and a still low institutionalization is noticeable.

How is the research situation? Using several standard research data banks, the author collected articles and book(chapter)s on architectural psychology in German- and English-language countries from 1990 to 1996. Studies on main architecture-psychology interface problems such as user needs, housing quality evaluations, participatory planning and spatial simulation / virtual reality did not outline an “old, settled” discipline, but rather the sketchy, random surface of a field “always starting anew”. E.g., discussions at the 1995 EAEA-Conference showed that several architectural simulation studies since 1973 caused no major impact on planner's opinions (Keul&Martens, 1996). “Re-inventions of the wheel” are caused by a lack of meetings (except this one!) and of interdisciplinary infrastructure in German-language countries (contrary to Sweden or the United States). Social pressures building up on architecture nowadays by inter-European competition, budget cuts and citizen activities for informed consent in most urban projects are a new challenge for planners to cooperate efficiently with social scientists. At Salzburg, the author currently manages the Corporate Design-process for the Chamber of Architecture, Division for Upper Austria and Salzburg. A “working group for architectural psychology” (Keul-Martens-Maderthaner) has been active since 1994.

keywords Model Simulation, Real Environments
series EAEA
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2005/09/09 10:43

_id ddss2006-hb-187
id DDSS2006-HB-187
authors Lidia Diappi and Paola Bolchi
year 2006
title Gentrification Waves in the Inner-City of Milan - A multi agent / cellular automata model based on Smith's Rent Gap theory
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 187-201
summary The aim of this paper is to investigate the gentrification process by applying an urban spatial model of gentrification, based on Smith's (1979; 1987; 1996) Rent Gap theory. The rich sociological literature on the topic mainly assumes gentrification to be a cultural phenomenon, namely the result of a demand pressure of the suburban middle and upper class, willing to return to the city (Ley, 1980; Lipton, 1977, May, 1996). Little attempt has been made to investigate and build a sound economic explanation on the causes of the process. The Rent Gap theory (RGT) of Neil Smith still represents an important contribution in this direction. At the heart of Smith's argument there is the assumption that gentrification takes place because capitals return to the inner city, creating opportunities for residential relocation and profit. This paper illustrates a dynamic model of Smith's theory through a multi-agent/ cellular automata system approach (Batty, 2005) developed on a Netlogo platform. A set of behavioural rules for each agent involved (homeowner, landlord, tenant and developer, and the passive 'dwelling' agent with their rent and level of decay) are formalised. The simulations show the surge of neighbouring degradation or renovation and population turn over, starting with different initial states of decay and estate rent values. Consistent with a Self Organized Criticality approach, the model shows that non linear interactions at local level may produce different configurations of the system at macro level. This paper represents a further development of a previous version of the model (Diappi, Bolchi, 2005). The model proposed here includes some more realistic factors inspired by the features of housing market dynamics in the city of Milan. It includes the shape of the potential rent according to city form and functions, the subdivision in areal submarkets according to the current rents, and their maintenance levels. The model has a more realistic visualisation of the city and its form, and is able to show the different dynamics of the emergent neighbourhoods in the last ten years in Milan.
keywords Multi agent systems, Housing market, Gentrification, Emergent systems
series DDSS
last changed 2006/08/29 12:55

_id 6ab6
authors Maher, M.L., Rutherford, J. and Gero, J.
year 1996
title Graduate Design Computing Teaching at the University of Sydney
doi https://doi.org/10.52842/conf.caadria.1996.233
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 233-244
summary Design Computing involves the effective application of computing technologies, digital media, formal methods and design theory to the study and practice of design. Computers are assuming a prominent role in design practice. This change has been partly brought about by economic pressures to improve the efficiency of design practice, but there has also been a desire to aid the design process in order to produce better designs. The introduction of new computer-based techniques and methods generally involves a re-structuring of practice and ways of designing. We are also seeing significant current developments that have far reaching implications for the future. These innovations are occuring at a rapid rate and are imposing increasing pressures on design professionals. A re-orientation of skills is required in order to acquire and manage computer resources. If designers are to lead rather than follow developments then they need to acquire specialist knowledge – a general Computing also demands technical competence, an awareness of advances in the field and an innovative spirit to harness the technology understanding of computers and their impact, expertise in the selection and management of computer-aided design systems, and skill in the design an implementation of computer programs and systems.
series CAADRIA
email
last changed 2022/06/07 07:59

_id 8b8d
authors Martens, B., Voigt, A. and Linzer, H.
year 1996
title Information Technologies within Academic Context: Remote Teamwork – A Challenge for the Future
doi https://doi.org/10.52842/conf.caadria.1996.227
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 227-232
summary "Remote Teamwork”, i.e. the substance-related cooperation of people over spatial distances in decision-situations relies on "CIVIC” (Computer-Integrated Video-Conferencing-audio-visual communication at spatial distances integrating interactively digital, spatial computer models) and "CISP” (Computer-Integrated Spatial Planning) aiming at the elaboration of suited remote-working structures of research, project transactions and teaching preferably on the basis of "ATM” (a technology of broad band telecommunications). The generation and manipulation of digital spatial models and their virtual transportation within large spatial distances represent the main research objectives. The efficient use of teaching resources calls for the integration of new teaching possibilities within the framework of "Remote Teamwork”, e.g. Distributed and Shared Modelling, Distant Learning and Remote Teaching. The Faculty of Architecture, Urban and Regional Planning therefore is stressing information technologies within academic context. The following contribution is dedicated to the focal field of research and teaching "Remote Teamwork” of the Vienna University of Technology. This project is carried out in cooperation with the Institute of Spatial Interaction and Simulation (IRIS-ISIS), Vienna and the Research Institute for Symbolic Computation (RISC Linz-Hagenberg). Teaching experience relevant for "Remote Teamwork” is derived from various experiments of cooperative teamwork.
series CAADRIA
email
last changed 2022/06/07 07:59

_id 57c7
authors Mathew, Paul
year 1996
title Integrated Energy Modeling for Computational Building Design Assistance
source Carnegie Mellon University, Department of Architecture
summary Insights into the importance of energy modeling in building design have not yet resulted in the sufficient and systematic use of modeling tools in practice. In recent years, there has been considerable discussion on the limitations of simulation tools, and there is a noteworthy consensus as to the nature of the contributing factors (material and time implications, problematic user-interfaces, inefficient data communication structures, poor integration with CAD systems, absence of 'active' design support). This thesis deals with three research questions that are especially pertinent to the quest for active, multi-aspect design and simulation environments: (1) The appropriateness and feasibility of a methodologically consistent performance modeling approach through the entire design process. (2) Strategies for a structurally 'seamless' containment of performance simulation within a computational design environment. (3) Technologies to facilitate dynamic and interactive performance-to-design mapping. At a paradigmatic level, this thesis critically examines the existing responses to each of these questions, and proposes alternative computational frameworks and technologies to overcome some of the system-immanent ('endogenous') limitations of the existing approaches. At an operational level, this thesis demonstrates the proposed solutions by implementing an active thermal simulation module (NOD
series thesis:PhD
email
last changed 2003/04/15 02:37

_id c7e9
authors Maver, T.W.
year 2002
title Predicting the Past, Remembering the Future
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 2-3
summary Charlas Magistrales 2There never has been such an exciting moment in time in the extraordinary 30 year history of our subject area, as NOW,when the philosophical theoretical and practical issues of virtuality are taking centre stage.The PastThere have, of course, been other defining moments during these exciting 30 years:• the first algorithms for generating building layouts (circa 1965).• the first use of Computer graphics for building appraisal (circa 1966).• the first integrated package for building performance appraisal (circa 1972).• the first computer generated perspective drawings (circa 1973).• the first robust drafting systems (circa 1975).• the first dynamic energy models (circa 1982).• the first photorealistic colour imaging (circa 1986).• the first animations (circa 1988)• the first multimedia systems (circa 1995), and• the first convincing demonstrations of virtual reality (circa 1996).Whereas the CAAD community has been hugely inventive in the development of ICT applications to building design, it hasbeen woefully remiss in its attempts to evaluate the contribution of those developments to the quality of the built environmentor to the efficiency of the design process. In the absence of any real evidence, one can only conjecture regarding the realbenefits which fall, it is suggested, under the following headings:• Verisimilitude: The extraordinary quality of still and animated images of the formal qualities of the interiors and exteriorsof individual buildings and of whole neighborhoods must surely give great comfort to practitioners and their clients thatwhat is intended, formally, is what will be delivered, i.e. WYSIWYG - what you see is what you get.• Sustainability: The power of «first-principle» models of the dynamic energetic behaviour of buildings in response tochanging diurnal and seasonal conditions has the potential to save millions of dollars and dramatically to reduce thedamaging environmental pollution created by badly designed and managed buildings.• Productivity: CAD is now a multi-billion dollar business which offers design decision support systems which operate,effectively, across continents, time-zones, professions and companies.• Communication: Multi-media technology - cheap to deliver but high in value - is changing the way in which we canexplain and understand the past and, envisage and anticipate the future; virtual past and virtual future!MacromyopiaThe late John Lansdown offered the view, in his wonderfully prophetic way, that ...”the future will be just like the past, onlymore so...”So what can we expect the extraordinary trajectory of our subject area to be?To have any chance of being accurate we have to have an understanding of the phenomenon of macromyopia: thephenomenon exhibitted by society of greatly exaggerating the immediate short-term impact of new technologies (particularlythe information technologies) but, more importantly, seriously underestimating their sustained long-term impacts - socially,economically and intellectually . Examples of flawed predictions regarding the the future application of information technologiesinclude:• The British Government in 1880 declined to support the idea of a national telephonic system, backed by the argumentthat there were sufficient small boys in the countryside to run with messages.• Alexander Bell was modest enough to say that: «I am not boasting or exaggerating but I believe, one day, there will bea telephone in every American city».• Tom Watson, in 1943 said: «I think there is a world market for about 5 computers».• In 1977, Ken Olssop of Digital said: «There is no reason for any individuals to have a computer in their home».The FutureJust as the ascent of woman/man-kind can be attributed to her/his capacity to discover amplifiers of the modest humancapability, so we shall discover how best to exploit our most important amplifier - that of the intellect. The more we know themore we can figure; the more we can figure the more we understand; the more we understand the more we can appraise;the more we can appraise the more we can decide; the more we can decide the more we can act; the more we can act themore we can shape; and the more we can shape, the better the chance that we can leave for future generations a trulysustainable built environment which is fit-for-purpose, cost-beneficial, environmentally friendly and culturally significactCentral to this aspiration will be our understanding of the relationship between real and virtual worlds and how to moveeffortlessly between them. We need to be able to design, from within the virtual world, environments which may be real ormay remain virtual or, perhaps, be part real and part virtual.What is certain is that the next 30 years will be every bit as exciting and challenging as the first 30 years.
series SIGRADI
email
last changed 2016/03/10 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_991714 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002