CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 488

_id ddssup9604
id ddssup9604
authors Boelen, A.J.
year 1996
title Impact-Analysis of Urban Design Realtime impact-analysis models for urban designers
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary The past five years Prof Dr Jr T.M. de Jong, professor in environmental planning and sustainability at the Technical University of Delft, has developed a theoretical foundation for the analysis of urban design on the ecological, technical, economical, cultural and political impacts of morphologic interventions on different levels of scale. From september 1994 Jr AJ. Boelen (Urban Design Scientist and Knowledge Engineer) started a research project at the same university to further explore the possibilities of these theories and to develop impact evaluation models for urban design and development with the theoretical work of De Jong as a starting point. The paper discusses the development of a design and decision support system based on these theories. For the development of this system, techniques like object-orientation, genetic algorithms and knowledge engineering are used. The user interface, the relation between the real world, paper maps and virtual maps and the presentation of design-interventions and impacts caused by the interventions are important issues. The development-process is an interactive step by step process. It consists of the making of a prototype of the system, testing the theory and hypothe-sisses the system is based on, by applying tests end adjusting the theory and hypothesisses where needed. Eventually the system must be able to act as an integrator of many different models already developed or still to be developed. The structure of the system will allow easy future expansion and adjustment to changing insights. The logic used to develop the basic theory on which this system is founded makes it possible to even introduce and maintain rather subjective aspects like quality or appraisal as impacts that can be evaluated. In a previously developed system "Momentum" this was proved to work effectively for the national level. In this project we will - amongst other things - try to prove the effectiveness of impact-evaluation for other levels of scale.
series DDSS
email
last changed 2003/11/21 15:16

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 5fc4
authors Fruchter, R.
year 1996
title Conceptual Collaborative Building Design Through Shared Graphics
source IEEE Expert special issue on Al in Civil Engineering, June vol. 33-41
summary The Interdisciplinary Communication Medium computer environment integrates a shared graphic modeling environment with network-based services to accommodate many perspectives in an architecture/engineering/construction team. Communication is critical for achieving better cooperation and coordination among professionals in a multidisciplinary building team. The complexity of large construction projects, the specialization of the project participants, and the different forms of synchronous and asynchronous collaborative work increase the need for intensive information sharing and exchange. Architecture/engineering/construction (A/E/C) professionals use computers to perform a specific discipline's tasks, but they still exchange design decisions and data using paper drawings and documents. Each project participant investigates and communicates alternative solutions through representational idioms that are private to that member's profession. Other project participants must then interpret, extract, and reenter the relevant information using the conventional idioms of their disciplines and in the format required by their tools. The resulting communication difficulties often affect the quality of the final building and the time required to achieve design consensus. This article describes a computer environment, the Interdisciplinary Communication Medium (ICM), that supports conceptual, collaborative building design. The objective is to help improve communication among professionals in a multidisciplinary team. Collaborative teamwork is an iterative process of reaching a shared understanding of the design and construction domains, the requirements, the building to be built, and the necessary commitments. The understanding emerges over time, as team members begin to grasp their own part of the project, and as they provide information that lets others progress. The fundamental concepts incorporated in ICM include A communication cycle for collaborative teamwork that comprises propose-interpret-critique-explain-change notifications. An open system-integration architecture. A shared graphic modeling environment for design exploration and communication. A Semantic Modeling Extension (SME), which introduces a structured way to capture design intent. A change-notification mechanism that documents notes on design changes linked to the graphic models, and routes change notifications. Thus, the process involves communication, negotiation, and team learning.
series journal paper
last changed 2003/04/23 15:14

_id c6dd
authors Fruchter, Renate
year 1996
title COMPUTER INTEGRATED ARCHITECTURE/ENGINEERING/CONSTRUCTION PROJECT-CENTERED LEARNING ENVIRONMENT
doi https://doi.org/10.52842/conf.acadia.1996.227
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 227-234
summary This paper describes an on-going effort, initiated at Stanford's Civil Engineering Department, to develop, implement, and test a new and innovative "Computer Integrated Architecture./Engineering/Construction" (A/E/C) course. The course takes a multi-site, cross- disciplinary, project-centered, team-oriented approach to teaching. The paper presents the motivation, methodology, computational infrastructure, and initial observations in the experimental A/E/C course. The course is sponsored by NSF Synthesis Coalition and is the result of the collaborative effort of faculty and researchers from Civil Engineering Department at Stanford University, and Architecture Department and Civil Engineering Department, at UC Berkeley. In this computer integrated A/EIC environment a new generation of architecture, engineering, construction students learns how to team up with other disciplines and the advantage of the emerging information technologies for collaborative work in order to design and build higher quality buildings faster.

series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id c8c8
authors Hendricx, A., Neuckermans, H., Vandevyvere, H. and Nuyts, K.
year 1996
title CAAD in Pedagogical Practice
doi https://doi.org/10.52842/conf.ecaade.1996.199
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 199-210
summary The course on CAAD at the KU Leuven is part of the course on design methodology and theory from which it is the most recent and natural extension. Attached to this course a series of assignments has been developed which bring the students in 45 hours to a non-trivial level of acquaintance with CAAD. Our assignments are primarily directed towards practice. They are built on top of AutoCAD to which we have added in-house developments in order to focus on specific pedagogical goals within a very limited time. After a general introduction on Windows (file management) and AutoCAD (basics) students make the following assignments (main pedagogical goals in between brackets). colophon (working with blocks), detail (2D-drawing, hatching, editing), facade design using a built-in system of proportion (slides, scriptfile), extraction (linking alphanumerical and graphical entities), container (level of detail, icon menus, viewports), surface modelling (modelling 3D-objects with surfaces), fractal tree (recursion in Autolisp), solid modelling (Leicester engineering building), lighting (integration of drawing and computation of illumination levels), pressure lines in an arc (interactive design of an arc), demos. The paper presents and comments these assignments and shows results from the last 2 years.

series eCAADe
email
last changed 2022/06/07 07:49

_id f748
authors Hitchcock, Robert John
year 1996
title Improving life-cycle information management through documentation of project objectives and design rationale
source University of California, Berkeley, Department of Civil Engineering
summary Fragmentation is a defining characteristic of the US building industry that has evolved with increased specialization in building disciplines, and is exacerbated by the present industry business model. While the industry has agreed that productivity and product quality can be dramatically improved by information integration and communication, it has not agreed what information is most important to share to achieve these improvements. Traditional documentation in drawings and specifications captures only the final product of building design decisions. Yet, reported building failures indicate that a lack of understanding between project participants regarding their diverse objectives may be a key factor in failure. This deficiency leads to an inadequate understanding of the rationale behind the myriad design decisions that must work in concert to achieve a global set of project objectives. This information is routinely lost under current information management practices as the building moves through its life cycle. The dissertation develops an innovative information framework intended to effectively structure and manage building life-cycle information. The framework contains a product model that represents the details of a building design that are traditionally documented for sharing between project phases. Two additional elements are integrated with this product model to document key information that is currently lost. Explicit Global Objectives define the overall purpose of a building project by explicitly identifying its intended performance and the criteria for evaluating their achievement. Design Rationale Records capture the associations between individual details of the product model and the objectives that these details are meant to achieve. This information is linked within the framework so that it can be archived, reviewed, and updated in an integrated fashion as a building project moves through time. Example applications of the framework are given. Documenting this key information has benefit across the building life cycle. Participants can more clearly specify project objectives. Multi-criteria evaluation of alternative design solutions and construction methods can be better supported, and the resulting decisions better documented for sharing amongst participants. Comprehensive commissioning can be more cost-effectively performed. During operations, evaluation of the actual performance of a building and detection of maintenance problems can be enhanced.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 8832
authors MacCallum, C. and Hanna, R.
year 1996
title DEFLECT: A Computer Aided Learning Package For Teaching Structural Design
doi https://doi.org/10.52842/conf.ecaade.1996.253
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 253-262
summary The teaching of structures and its integration with design teaching has been seen as one of the major problems in design education in schools of architecture world-wide. A number of suggestions have been put forward to improve the quality of teaching in structures in architecture. These include the production of computer based learning materials, and the use of the computer as a ‘substitute’ tutor.

This paper reports on a SHEFC funded project jointly carried out by the Department of Civil Engineering, University of Paisley, the Mackintosh School of Architecture, and Lamp Software. The project aims to build a computer-assisted learning package on the response of structures to load. The software will be used as an interactive teaching tool for both architectural and engineering students.

The package has three levels: Beginners (Level 1), Intermediate (Level 2) and Advanced (Level 3). The first two levels have been completed after continuous feedback from both institutions. Level 1 is geared towards architectural and engineering students to help them understand structural behaviour of building components, such as deflection. Level 2 is a graphical editor that enables students to draw precisely the structure of their designs, investigate the deflection of structural members and identify areas of tension and compression. Level 3 is a design tool aimed at architectural and civil engineering students where they can design and analyse realistic structures by choosing structural members from a library, and specify materials and multiple loads.

Prior to its final release, the software package was appraised by students from both institutions. Analysis of results from questionnaires revealed that students expressed a great deal of 'satisfaction' with many of its teaching and learning attributes. The outcome of this project will promote and enhance students’ understanding of the response of structures to load; it will also help students grasp the impact of varying building materials and cross sectional properties on the structural form.

series eCAADe
email
last changed 2022/06/07 07:59

_id cfbb
authors Fiedziukiewicz, Danuta
year 1996
title Some Aspects of Creation in the Network Space
source CAD Creativeness [Conference Proceedings / ISBN 83-905377-0-2] Bialystock (Poland), 25-27 April 1996 pp. 73-78
summary This paper describes a few questions existing on abstract level, on issues of communication and collaboration in computer aided design. The work is centered around chosen emerging design situations which can be attributed directly to the incorporation of new technologies in traditional creation and practise. One of this is the ,design triangle" composed of a traditional designer, a CAD workstation and a computer literate collaborator acting as the design medium. Another is the ,virtual workshop" consisting of design collaboration involving large-scale distributed communications networks.
series plCAD
last changed 1999/04/09 15:30

_id 0ec9
authors Agranovich-Ponomareva. E., Litvinova, A. And Mickich, A.
year 1996
title Architectural Computing in School and Real Designing
doi https://doi.org/10.52842/conf.ecaade.1996.025
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 25-28
summary The existing system of architectural education ( including computer ) as has shown practice has appeared not absolutly perfect. It not capable to dynamic changes, active introduction of a new engineering and computer technologies, to realization about of the inquiries of a modern time. It suggest of a way of search of new models of computer training. The computer education is represented by us as certain a universal system, which permits to solve the problem of arcitectural education at a higher level. The opportunities of computers and computer technologies at such approach are used as means of increase of efficiency teaching and training. The orientation goes on final result: a opportunity to generate of the creative decisions by learnees, based on attraction of received knowledge and use for their realization of arsenal of practical skills and skills. The system represents not only certain set of experiences elements, necessary and final result sufficient for achievement, but also quite certain interrelation between them. It means, that the knowledge from a initial rate " The Introduction in computer training" must be secured and transformed for utilization in special rates and through them- in practice. The functional nucleus of the software package of such universal system is under construction as opened, apparatus an independent system. A central part of a system is a database, the structure of which is uniform for all other modules and side of enclosures. The conceptual model of a system is under construction on principles structure idea, visualization, multimedia. The listed principles are realized in model so that to encourage the user to independent creative work.

series eCAADe
last changed 2022/06/07 07:54

_id cf57
authors Anumba, C.J.
year 1996
title Functional Integration in CAD Systems
source Advances in Engineering Software, 25, 103-109
summary This paper examines the issue of integration in CAD systems and argues that for integration to be effective, it must address the functional aspects of a CAD system. It discusses the need for integrated systems and, within a structural engineering context, identifies several facets of integration that should be targeted. These include 2-D drafting and 3-D modelling, graphical and non-graphical design information, the CAD data structure and its user interface, as well as integration of the drafting function with other engineering applications. Means of achieving these levels of integration are briefly discussed and a prognosis for the future development of integrated systems explored. Particular attention is paid to the emergence (and potential role) of `product models' which seek to encapsulate the full range of data elements required to define completely an engineering artefact.
series journal paper
last changed 2003/04/23 15:14

_id af94
authors Anumba, C.J.
year 1996
title Data structures and DBMS for computer-aided design systems
source Advances in Engineering Software, 25(2/3), 123-129
summary The structures for the storage of data in CAD systems influence to a large extent the effectiveness of the system. This paper reviews the wide range of data structures and database management systems (DBMS) available for structuring CAD data. Examples of basic data types are drawn from the MODULA-2 language. The relationship between these basic data types, their composite structures and the classical data models (on which many DBMS are based) is discussed, and the limitations of existing DBMS in modelling CAD data highlighted. A set of requirements for CAD database management systems is drawn up and the emerging role of product models (which seek to encapsulate the totality of data elements required to define fully an engineering artefact) is explored.
series journal paper
last changed 2003/04/23 15:14

_id ddssar9638
id ddssar9638
authors Bax, M.F.Th. and Trum, H.M.G.J.
year 1996
title A Conceptual Model for Concurrent Engineering in Building Design according to Domain Theory
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary Concurrent engineering is a design strategy in which various designers participate in a co-ordinated parallel process. In this process series of functions are simultaneously integrated into a common form. Processes of this type ask for the identification, definition and specification of relatively independent design fields. They also ask for specific design knowledge designers should master in order to participate in these processes. The paper presents a conceptual model of co-ordinated parallel design processes in which architectural space is simultaneously defined in the intersection of three systems: a morphological or level-bound system, a functional or domain-bound system and a procedural or phase-bound system. Design strategies for concurrent engineering are concerned with process design, a design task which is comparable to the design of objects. For successfully accomplishing this task, knowledge is needed of the structural properties of objects and systems; more specifically of the morphological, functional and procedural levels which condition the design fields from which these objects emerge, of the series of generic forms which condition their appearance and of the typological knowledge which conditions their coherence in the overall process.
series DDSS
last changed 2003/11/21 15:16

_id d7eb
authors Bharwani, Seraj
year 1996
title The MIT Design Studio of the Future: Virtual Design Review Video Program
source Proceedings of ACM CSCW'96 Conference on Computer-Supported Cooperative Work 1996 p.10
summary The MIT Design Studio of the Future is an interdisciplinary effort to focus on geographically distributed electronic design and work group collaboration issues. The physical elements of this virtual studio comprise networked computer and videoconferencing connections among electronic design studios at MIT in Civil and Environmental Engineering, Architecture and Planning, Mechanical Engineering, the Lab for Computer Science, and the Rapid Prototyping Lab, with WAN and other electronic connections to industry partners and sponsors to take advantage of non-local expertise and to introduce real design and construction and manufacturing problems into the equation. This prototype collaborative design network is known as StudioNet. The project is looking at aspects of the design process to determine how advanced technologies impact the process. The first experiment within the electronic studio setting was the "virtual design review", wherein jurors for the final design review were located in geographically distributed sites. The video captures the results of that project, as does a paper recently published in the journal Architectural Research Quarterly (Cambridge, UK; Vol. 1, No. 2; Dec. 1995).
series other
last changed 2002/07/07 16:01

_id diss_ddssar0211
id diss_ddssar0211
authors Brandt, Eva
year 2001
title Event driven product development – collaboration and learning
source Dept. of Technology and Social Sciences, Technical University of Denmark
summary This dissertation is the result of the research project “Event-Driven Product Development: Collaboration and Learning”. It is an industrial Ph.D. project carried out in collaboration between the company Danfoss A/S, and the Institute of Technology and Social Sciences at the Technical University of Denmark; now the Department of Manufacturing Engineering and Management. The research was funded partly by Danfoss A/S and partly by the Danish Academy of Technical Sciences (ATV), who have named the project EF 609. The research project began in February 1996. I have had three supervisors: Thomas Binder and Jacob Buur both of whom represent Danfoss, and Lauge Baungaard Rasmussen from the Institute of Technology and Social Sciences at the Technical University of Denmark.
series thesis:PhD
email
more http://space.interactiveinstitute.se/staff/Eva.Brandt/phd.html
last changed 2003/12/15 14:31

_id 4a71
authors Byrne, Christine M.
year 1996
title Water on tap : the use of virtual reality as an educational tool
source College of Engineering, University of Washington
summary A study was conducted that explored Virtual Reality (VR) as an educational tool. High school students created water molecules in an immersive virtual environment. They were tested on their knowledge of atomic and molecular structure before and after their VR experience. These results were compared to the test results of students who experienced other educational media in learning the same topic. The other media differed from VR in terms of immersion and interactivity. Interactivity was found to be significant, while immersion was found to be insignificant. Issues of training, world design, assessment, hardware resolution, and student population were suggested as possible reasons for immersion's lack of significance in this study.
keywords Virtual Reality; Education; Computer Programs; Evaluation; Chemistry; Study and Teaching
series thesis:PhD
last changed 2003/02/12 22:37

_id b4c4
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2000
title A framework for an Architectural Collaborative Design
doi https://doi.org/10.52842/conf.ecaade.2000.057
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 57-60
summary The building industry involves a larger number of disciplines, operators and professionals than other industrial processes. Its peculiarity is that the products (building objects) have a number of parts (building elements) that does not differ much from the number of classes into which building objects can be conceptually subdivided. Another important characteristic is that the building industry produces unique products (de Vries and van Zutphen, 1992). This is not an isolated situation but indeed one that is spreading also in other industrial fields. For example, production niches have proved successful in the automotive and computer industries (Carrara, Fioravanti, & Novembri, 1989). Building design is a complex multi-disciplinary process, which demands a high degree of co-ordination and co-operation among separate teams, each having its own specific knowledge and its own set of specific design tools. Establishing an environment for design tool integration is a prerequisite for network-based distributed work. It was attempted to solve the problem of efficient, user-friendly, and fast information exchange among operators by treating it simply as an exchange of data. But the failure of IGES, CGM, PHIGS confirms that data have different meanings and importance in different contexts. The STandard for Exchange of Product data, ISO 10303 Part 106 BCCM, relating to AEC field (Wix, 1997), seems to be too complex to be applied to professional studios. Moreover its structure is too deep and the conceptual classifications based on it do not allow multi-inheritance (Ekholm, 1996). From now on we shall adopt the BCCM semantic that defines the actor as "a functional participant in building construction"; and we shall define designer as "every member of the class formed by designers" (architects, engineers, town-planners, construction managers, etc.).
keywords Architectural Design Process, Collaborative Design, Knowledge Engineering, Dynamic Object Oriented Programming
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2012/12/04 07:53

_id 73a3
authors Case, Michael P.
year 1996
title Discourse Model for collaborative design
source Computer-Aided Design, Vol. 28 (5) (1996) pp. 333-345
summary A Discourse Model, including a structure and a process, is developed that provides software support for collaborative engineering design. The model shares characteristics of other design systems in the literature,including frames, constraints, semantic networks, and libraries of sharable design objects. It contributes a new model for conflict-aware agents, dynamic identification and dissemination of agent interest sets, avirtual workspace language, automatic detection of conflict, and a unique protocol for negotiation that ensures that interested agents have an opportunity to participate. The model is implementation independent andapplicable to many research and commercial design environments currently available. An example scenario is provided in the architecture/engineering/construction domain that illustrates collaboration during theconceptual design of a fire station.
keywords Agent, Conflict, Discourse Design Collaboration, Concurrent Engineering, Blackboard Architecture, KQML
series journal paper
last changed 2003/05/15 21:33

_id 9e3d
authors Cheng, F.F., Patel, P. and Bancroft, S.
year 1996
title Development of an Integrated Facilities Information System Based on STEP - A Generic Product Data Model
source The Int. Journal of Construction IT 4(2), pp.1-13
summary A facility management system must be able to accommodate dynamic change and based on a set of generic tools. The next generation of facility management systems should be STEP conforming if they are to lay the foundation for fully integrated information management and data knowledge engineering that will be demanded in the near future in the new era of advanced site management. This paper describes an attempt to meet such a specification for an in-house system. The proposed system incorporates the latest technological advances in information management and processing. It pioneered an exchange architecture which presents a new class of system, in which the end-user has for the first time total flexibility and control of the data never before automated in this way.
series journal paper
last changed 2003/05/15 21:45

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_427832 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002