CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 484

_id a06c
authors Batie, David L.
year 1996
title The Incorporation of Construction History into Architectural History: The HISTCON Interactive Computer Program
doi https://doi.org/10.52842/conf.acadia.1996.235
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 235-243
summary Current teaching methods for architectural history seldom embrace building technology as an essential component of study. Accepting the premise that architectural history is a fundamental component to the overall architectural learning environment, it is argued that the study of construction history will further enhance student knowledge. This hypothesis created an opportunity to investigate how the study of construction history could be incorporated to strengthen present teaching methods. Strategies for teaching architectural history were analyzed with the determination that an incorporation of educational instructional design applications using object-oriented programming and hypermedia provided the optimal solution. This evaluation led to the development of the HISTCON interactive, multimedia educational computer program. Used initially to teach 19th Century iron and steel construction history, the composition of the program provides the mechanism to test the significance of construction history in the study of architectural history. Future development of the program will provide a method to illustrate construction history throughout the history of architecture. The study of architectural history, using a construction oriented methodology, is shown to be positively correlated to increased understanding of architectural components relevant to architectural history and building construction.
series ACADIA
last changed 2022/06/07 07:54

_id eb51
authors Coyne, Richard
year 1996
title CAAD, Curriculum and Controversy
doi https://doi.org/10.52842/conf.ecaade.1996.121
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 121-130
summary This paper brings some of the debate within educational theory to bear on CAAD teaching, outlining the contributions of conservatism, critical theory, radical hermeneutics and pragmatism. The paper concludes by recommending that CAAD teaching move away from conservative concepts of teaching, design and technology to integrate it into the studio. In a highly illuminating book on education theory, Shaun Gallagher (1991) outlines four current views on education that correspond to four major positions in contemporary social theory and philosophy. I will extend these categories to a consideration of attitudes to information technology, and the teaching of computing in architecture. These four positions are conservatism, critical theory, radical hermeneutics, and pragmatism. I will show how certain issues cluster around them, how each position provides the focus of various discursive practices, or intellectual conversations in contemporary thinking, and how information technology is caught up in those conversations. These four positions are not "cognitive styles," but vigorously argued domains of debate involving writers such as Gadamer, Habermas and Derrida about the theory of interpretation. The field of interpretation is known as hermeneutics, which is concerned less with epistemology and knowledge than with understanding. Interpretation theory applies to reading texts, interpreting the law, and appreciating art, but also to the application of any practical task, such as making art, drawing, defining and solving problems, and design (Coyne and Snodgrass, 1995). Hermeneutics provides a coherent focus for considering many contemporary issues and many domains of practice. I outline what these positions in education mean in terms of CAAD (computer-aided architectural design) in the curriculum.

series eCAADe
email
more http://www.caad.ac.uk/~richard
last changed 2022/06/07 07:56

_id 5fc4
authors Fruchter, R.
year 1996
title Conceptual Collaborative Building Design Through Shared Graphics
source IEEE Expert special issue on Al in Civil Engineering, June vol. 33-41
summary The Interdisciplinary Communication Medium computer environment integrates a shared graphic modeling environment with network-based services to accommodate many perspectives in an architecture/engineering/construction team. Communication is critical for achieving better cooperation and coordination among professionals in a multidisciplinary building team. The complexity of large construction projects, the specialization of the project participants, and the different forms of synchronous and asynchronous collaborative work increase the need for intensive information sharing and exchange. Architecture/engineering/construction (A/E/C) professionals use computers to perform a specific discipline's tasks, but they still exchange design decisions and data using paper drawings and documents. Each project participant investigates and communicates alternative solutions through representational idioms that are private to that member's profession. Other project participants must then interpret, extract, and reenter the relevant information using the conventional idioms of their disciplines and in the format required by their tools. The resulting communication difficulties often affect the quality of the final building and the time required to achieve design consensus. This article describes a computer environment, the Interdisciplinary Communication Medium (ICM), that supports conceptual, collaborative building design. The objective is to help improve communication among professionals in a multidisciplinary team. Collaborative teamwork is an iterative process of reaching a shared understanding of the design and construction domains, the requirements, the building to be built, and the necessary commitments. The understanding emerges over time, as team members begin to grasp their own part of the project, and as they provide information that lets others progress. The fundamental concepts incorporated in ICM include A communication cycle for collaborative teamwork that comprises propose-interpret-critique-explain-change notifications. An open system-integration architecture. A shared graphic modeling environment for design exploration and communication. A Semantic Modeling Extension (SME), which introduces a structured way to capture design intent. A change-notification mechanism that documents notes on design changes linked to the graphic models, and routes change notifications. Thus, the process involves communication, negotiation, and team learning.
series journal paper
last changed 2003/04/23 15:14

_id 6237
authors Kiechle, Horst
year 1996
title CONSTRUCTING THE AMORPHOUS
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary Constructing the Amorphous entails the ongoing research into a concept which aims to develop a new understanding for Art, Design and Architecture within society. Rigid, reductivist and confrontational methods based on static geometry, prejudice and competition are to be replaced by dynamic, interdisciplinary and integrative models. In his current art practice the author simulates existing architectural spaces whose interior are re-designed into sculpted environments, based on creative irregularity rather than idealised geometry. All the computer simulated “soft” environments can be realised on an architectural scale as temporary installations with the curved surfaces approximated through planar polygons cut from sheet materials. Within this framework the Darren Knight Gallery Project represents the most recently example.

The paper discusses furthermore various 3D modeling options, such as standard CAD representations, high quality rendered video walk-throughs, VRML models and physically produced, full-scale models, made of corrugated cardboard. The cost and equipment requirements necessary for full-scale modeling in cardboard are outlined.

keywords VRML, CAD, 3D Modeling, Model Simulation, Real Environments
series other
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2004/05/04 14:40

_id 8832
authors MacCallum, C. and Hanna, R.
year 1996
title DEFLECT: A Computer Aided Learning Package For Teaching Structural Design
doi https://doi.org/10.52842/conf.ecaade.1996.253
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 253-262
summary The teaching of structures and its integration with design teaching has been seen as one of the major problems in design education in schools of architecture world-wide. A number of suggestions have been put forward to improve the quality of teaching in structures in architecture. These include the production of computer based learning materials, and the use of the computer as a ‘substitute’ tutor.

This paper reports on a SHEFC funded project jointly carried out by the Department of Civil Engineering, University of Paisley, the Mackintosh School of Architecture, and Lamp Software. The project aims to build a computer-assisted learning package on the response of structures to load. The software will be used as an interactive teaching tool for both architectural and engineering students.

The package has three levels: Beginners (Level 1), Intermediate (Level 2) and Advanced (Level 3). The first two levels have been completed after continuous feedback from both institutions. Level 1 is geared towards architectural and engineering students to help them understand structural behaviour of building components, such as deflection. Level 2 is a graphical editor that enables students to draw precisely the structure of their designs, investigate the deflection of structural members and identify areas of tension and compression. Level 3 is a design tool aimed at architectural and civil engineering students where they can design and analyse realistic structures by choosing structural members from a library, and specify materials and multiple loads.

Prior to its final release, the software package was appraised by students from both institutions. Analysis of results from questionnaires revealed that students expressed a great deal of 'satisfaction' with many of its teaching and learning attributes. The outcome of this project will promote and enhance students’ understanding of the response of structures to load; it will also help students grasp the impact of varying building materials and cross sectional properties on the structural form.

series eCAADe
email
last changed 2022/06/07 07:59

_id ddssar9623
id ddssar9623
authors Mitossi, V. and Koutamanis, A.
year 1996
title Parametric design of stairs
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary Stairs represent one of the oldest and most intricate design problems in architecture. Aesthetics, pedestrian circulation, construction and safety combine to create a complex network of factors. Despite the essentially parametric nature of stairs, designers have been eager to adopt and apply simplistic standardization schemes, often unrelated to safety issues. Moreover, while there are several computerized systems for the automated design of stairs, there has been little if any interest in the computer-based analysis of stair designs. The objective of our research has been to develop a transparent and flexible computer system for the design and analysis of stairs. The system employs constraint propagation networks for the calculation of stair dimensions in generation and for the correlation of floor levels to stairs and their dimensions in analysis. Computerization also allows us to re-examine and refine the norms underlying stair design. We propose that our understanding of stair design can be improved by the analysis of proprioceptive sizes in ascent and descent. Simulation of these sizes with virtual robots combines accurate measurement with visual evaluation. This combination facilitates the effortless and direct integration of advanced technologies and new methods in architectural design.
series DDSS
last changed 2003/08/07 16:36

_id 6d9c
authors Saad, Milad and Maher, Mary Lou
year 1996
title Shared understanding in computer-supported collaborative design
source Computer-Aided Design, Vol. 28 (3) (1996) pp. 183-192
summary We propose that computer-support for collaborative design requires a shared understanding of the design artifact among a design team. The development and support for this shared understanding builds on currentdevelopments and research in AI, CAD, CSCW and computational models of design. The shared understanding should be an explicit representation in order to be effectively shared. The explicit representation shouldcomprise both a visual representation and a semantic model. In this paper we present an architecture for computer-supported collaborative design that distinguishes between a shared visual representation and a sharedunderlying representation. The development of the underlying representation combines graphical and semantic objects than can be abstracted and aggregated as a tangled hierarchy.
keywords Computer-Supported Collaborative Design, Design Semantics, Multimedia
series journal paper
last changed 2003/05/15 21:33

_id avocaad_2001_16
id avocaad_2001_16
authors Yu-Ying Chang, Yu-Tung Liu, Chien-Hui Wong
year 2001
title Some Phenomena of Spatial Characteristics of Cyberspace
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary "Space," which has long been an important concept in architecture (Bloomer & Moore, 1977; Mitchell, 1995, 1999), has attracted interest of researchers from various academic disciplines in recent years (Agnew, 1993; Benko & Strohmayer, 1996; Chang, 1999; Foucault, 1982; Gould, 1998). Researchers from disciplines such as anthropology, geography, sociology, philosophy, and linguistics regard it as the basis of the discussion of various theories in social sciences and humanities (Chen, 1999). On the other hand, since the invention of Internet, Internet users have been experiencing a new and magic "world." According to the definitions in traditional architecture theories, "space" is generated whenever people define a finite void by some physical elements (Zevi, 1985). However, although Internet is a virtual, immense, invisible and intangible world, navigating in it, we can still sense the very presence of ourselves and others in a wonderland. This sense could be testified by our naming of Internet as Cyberspace -- an exotic kind of space. Therefore, as people nowadays rely more and more on the Internet in their daily life, and as more and more architectural scholars and designers begin to invest their efforts in the design of virtual places online (e.g., Maher, 1999; Li & Maher, 2000), we cannot help but ask whether there are indeed sensible spaces in Internet. And if yes, these spaces exist in terms of what forms and created by what ways?To join the current interdisciplinary discussion on the issue of space, and to obtain new definition as well as insightful understanding of "space", this study explores the spatial phenomena in Internet. We hope that our findings would ultimately be also useful for contemporary architectural designers and scholars in their designs in the real world.As a preliminary exploration, the main objective of this study is to discover the elements involved in the creation/construction of Internet spaces and to examine the relationship between human participants and Internet spaces. In addition, this study also attempts to investigate whether participants from different academic disciplines define or experience Internet spaces in different ways, and to find what spatial elements of Internet they emphasize the most.In order to achieve a more comprehensive understanding of the spatial phenomena in Internet and to overcome the subjectivity of the members of the research team, the research design of this study was divided into two stages. At the first stage, we conducted literature review to study existing theories of space (which are based on observations and investigations of the physical world). At the second stage of this study, we recruited 8 Internet regular users to approach this topic from different point of views, and to see whether people with different academic training would define and experience Internet spaces differently.The results of this study reveal that the relationship between human participants and Internet spaces is different from that between human participants and physical spaces. In the physical world, physical elements of space must be established first; it then begins to be regarded as a place after interaction between/among human participants or interaction between human participants and the physical environment. In contrast, in Internet, a sense of place is first created through human interactions (or activities), Internet participants then begin to sense the existence of a space. Therefore, it seems that, among the many spatial elements of Internet we found, "interaction/reciprocity" Ñ either between/among human participants or between human participants and the computer interface Ð seems to be the most crucial element.In addition, another interesting result of this study is that verbal (linguistic) elements could provoke a sense of space in a degree higher than 2D visual representation and no less than 3D visual simulations. Nevertheless, verbal and 3D visual elements seem to work in different ways in terms of cognitive behaviors: Verbal elements provoke visual imagery and other sensory perceptions by "imagining" and then excite personal experiences of space; visual elements, on the other hand, provoke and excite visual experiences of space directly by "mapping".Finally, it was found that participants with different academic training did experience and define space differently. For example, when experiencing and analyzing Internet spaces, architecture designers, the creators of the physical world, emphasize the design of circulation and orientation, while participants with linguistics training focus more on subtle language usage. Visual designers tend to analyze the graphical elements of virtual spaces based on traditional painting theories; industrial designers, on the other hand, tend to treat these spaces as industrial products, emphasizing concept of user-center and the control of the computer interface.The findings of this study seem to add new information to our understanding of virtual space. It would be interesting for future studies to investigate how this information influences architectural designers in their real-world practices in this digital age. In addition, to obtain a fuller picture of Internet space, further research is needed to study the same issue by examining more Internet participants who have no formal linguistics and graphical training.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 04ad
authors Koutamanis, Alexander
year 1996
title CAAD Teaching in the Electronic Era
doi https://doi.org/10.52842/conf.ecaade.1996.239
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 239-242
summary The popularization and wide acceptance of computer technologies is changing the position and role of CAAD in architectural education and practice. The changing profile of architectural students with respect to computing leads to a reconsideration of priorities and structure in CAAD education. These are evident in the growing acceptance of the computer as part of the standard design instrumentation and in the shift from theoretical issues to hands-on experience in CAAD courses and exercises. As such changes can only continue to occur, probably at a faster pace, CAAD has to re-evaluate its position so as to anticipate the emerging patterns of computing in architecture and design. We can distinguish between three possible outcomes. The first is decentralization of CAAD and distribution of CAAD specialists to the other specializations in architecture and building. The second is concentration on theory and methodology and use of the computer as an instrument for verifying insights and hypotheses. The third option -the worst case scenario- is degradation to a supporting role, subordinate to the designer and the theorist.

series eCAADe
email
more http://caad.bk.tudelft.nl/koutamanis/
last changed 2022/06/07 07:51

_id 4931
authors Breen, Jack
year 1996
title Learning from the (In)Visible City
doi https://doi.org/10.52842/conf.ecaade.1996.065
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 65-78
summary This paper focuses on results and findings of an educational project, in which the participating students had to develop a design strategy for an urban plan by using and combining endoscopic and computational design visualisation techniques. This educational experiment attempted to create a link between the Media research programme titled 'Dynamic Perspective' and an educational exercise in design composition. It was conceived as a pilot study, aimed at the investigation of emerging applications and possible combinations of different imaging techniques which might be of benefit in architectural and urban design education and potentially for the (future) design practice. The aim of this study was also to explore the relationship between spatial perception and design simulation. The point of departure for the student exercise was an urban masterplan which the Dynamic Perspective research team prepared for the workshop 'the (in)visible city' as part of the 1995 European Architectural Endoscopy Association Conference in Vienna, Austria. The students taking part in the exercise were asked to develop, discuss and evaluate proposals for a given part of this masterplan by creating images through different model configurations using optical and computer aided visualisation techniques besides more traditional design media.The results of this project indicate that an active and combined use of visualisation media at a design level, may facilitate communication and lead to a greater understanding of design choices, thus creating insights and contributing to design decision-making both for the designers and for the other participants in the design process.
series eCAADe
email
more http://www.bk.tudelft.nl/Media/
last changed 2022/06/07 07:54

_id 18bc
authors Clay, Sharon and Wilhelms, Jane
year 1996
title Put: Language-Based Interactive Manipulation of Objects
source IEEE Computer Graphics and Applications
summary Describing a scene to a computer is an inherent task of computer graphics applications. Modeled scenes are typically built with direct placement techniques or specialized scripting languages. The scene description task could be greatly eased if natural language were an interactive control option. However, natural language understanding is notoriously difficult for computers. This difficulty is exacerbated in the case of computer graphics by the need for geometric output, not just "conceptual understanding" or high-level inferencing. General text-understanding techniques have not been successfully applied to scene generation. Typically, a few task-specific commands, such as "walk," are implemented as an ad-hoc collection of procedures. Our approach aims to separate the expressive power of fundamental natural concepts from the difficult task of text understanding. We are developing a 3D object placement system based on a combination of natural commands and interactive techniques. Guided by research in cognitive linguistics, we use basic spatial relationships--such as in, on, and at--and fundamental scene parameters--such as viewer location and object dimensionality--to identify regions of placement for objects in a scene. These natural commands can be used to quickly prototype a complex scene and constrain object placement.
series journal paper
last changed 2003/04/23 15:14

_id 38d1
id 38d1
authors Cornick, Tim
year 1996
title COMPUTER-INTEGRATED BUILDING DESIGN
source Routledge [ISBN: 0419195904]
summary An accessible guide to the principles and practical applications of computer integrated systems in the field of construction management, this book provides an understanding of the potential of computer systems as information integration increases in the construction industry. Case studies offer examples of successful practice in this field.
series book
type normal paper
last changed 2005/03/06 07:32

_id 6941
authors Dawidowski, Robert
year 1996
title CAD - The Step Towards the Aim as a Lot of Others or Something Else
source CAD Creativeness [Conference Proceedings / ISBN 83-905377-0-2] Bialystock (Poland), 25-27 April 1996 pp. 53-58
summary Right and left for years we have been swamped by information on equipment and software which is supposed change the quality and a designers' work style completely. In this computer and commercial deluge of words it is more and more difficult to get an understanding and clear attitude towards the dynamicly changing reality. Apart from the details of the CAD software and its influence on the effects of the architectural creative process, I would like to consider some problems connected with the influence of the CAD system on the architect's creative capabilities. Does it develope or limit these capabilities? Is a computer equipped with a CAD system a special tool (meaning the new values which it might give) or is it not?
series plCAD
last changed 1999/04/09 15:30

_id 20ff
id 20ff
authors Derix, Christian
year 2004
title Building a Synthetic Cognizer
source Design Computation Cognition conference 2004, MIT
summary Understanding ‘space’ as a structured and dynamic system can provide us with insight into the central concept in the architectural discourse that so far has proven to withstand theoretical framing (McLuhan 1964). The basis for this theoretical assumption is that space is not a void left by solid matter but instead an emergent quality of action and interaction between individuals and groups with a physical environment (Hillier 1996). In this way it can be described as a parallel distributed system, a self-organising entity. Extrapolating from Luhmann’s theory of social systems (Luhmann 1984), a spatial system is autonomous from its progenitors, people, but remains intangible to a human observer due to its abstract nature and therefore has to be analysed by computed entities, synthetic cognisers, with the capacity to perceive. This poster shows an attempt to use another complex system, a distributed connected algorithm based on Kohonen’s self-organising feature maps – SOM (Kohonen 1997), as a “perceptual aid” for creating geometric mappings of these spatial systems that will shed light on our understanding of space by not representing space through our usual mechanics but by constructing artificial spatial cognisers with abilities to make spatial representations of their own. This allows us to be shown novel representations that can help us to see new differences and similarities in spatial configurations.
keywords architectural design, neural networks, cognition, representation
series other
type poster
email
more http://www.springer.com/computer/ai/book/978-1-4020-2392-7
last changed 2012/09/17 21:13

_id ebd6
authors Dobson, Adrian
year 1996
title Teaching Architectural Composition Through the Medium of Virtual Reality Modelling
source Approaches to Computer Aided Architectural Composition [ISBN 83-905377-1-0] 1996, pp. 91-102
summary This paper describes an experimental teaching programme to enable architectural students in the early years of their undergraduate study to explore their understanding of the principles of architectural composition, by the creation and experience of architectural form and space in simple virtual reality environments. Principles of architectural composition, based upon the ordering and organisation of typological architectural elements according to established rules of composition, are introduced to the students, through the study of recognised works of architectural design theory. Virtual reality modelling is then used as a tool by the students for the testing and exploration of these theoretical concepts. Compositional exercises involving the creation and manipulation of a family of architectural elements to create form and space within a three dimensional virtual reality environment are carried out using Superscape VRT, a PC based virtual reality modelling system. The project seeks to bring intuitive and immersive computer based design techniques directly into the context of design theory teaching and studio practice, at an early stage in the architectural education process.
series other
last changed 1999/04/08 17:16

_id 3905
authors Duffy, T.M. and Cunningham, D.J.
year 1996
title Constructivism: Implications for the design and delivery of instruction
source D.H. Jonassen, (Ed) Handbook of research for educational communications and technology, N.Y; Macmillan Library reference USA
summary This will be a seminar that examines Constructivist theory as it applies to our thinking about instruction. Many folks think of constructivism as a method of instruction -- it is not. It is a framework for thinking about learning or what it means to come to know. As such, it is a framework for understanding (interpreting) any learning environment as well as a framework for designing instruction. The seminar will be organized around weekly readings. We will examine the alternative constructivist theories, e.g., socio-cultural constructivism and cognitive constructivism, and the pragmatism of Richard Rorty. However, rather than focusing on the differences between these frameworks, our emphasis will be on the implications of the broader, common framework for the design of instruction. Hence we will spend most of the semester discussing strategies for designing and delivering instruction, e.g., the work of Bransford, Collins, Pea, Jonassen, Spiro, Fosnot, Senge, and Schank. We will consider both business and schooling environments for learning -- there is significant work in both domains. There will be particular emphasis of the use of technology in instruction. We will look at the communication, information, and context providing roles of technology as contrasted to the traditional approach of using technology to deliver instruction (to teach). We will also pay particular attention to problem based learning as one instructional model. In PBL there is particular emphasis on the role of the facilitator as a learning coach (process orientation) as opposed to a content provider. There is also a particular emphasis on supporting the development of abductive reasoning skills so that the learner develops the ability to be an effective problem solver in the content domain. The major paper/project for the course will be the design of instruction to train individuals to be learning coaches in a problem based learning or goal based scenario learning environment. That is, how do you support teachers in adapting the role of learning coach (which, of course, requires us to understand what it means to be a learning coach). Design teams will be formed with the teams all working on this same design problem. A comprehensive prototype of the learning environment is required as well as a paper provide the theoretical framework and rationale for the design strategy. While not required, I would expect that computer technology will play a significant role in the design of your learning environment. With that in mind, let me note that it is not required that the prototype be delivered on the computer, i.e., I am not requiring programming skills but rather design skills and so "storyboards" is all that is required.
series other
last changed 2003/04/23 15:14

_id e212
authors Faltings, Boi and Sun, Kun
year 1996
title FAMING: supporting innovative mechanism shape design
source Computer-Aided Design, Vol. 28 (3) (1996) pp. 207-216
summary A popular saying claims that `innovation is 1% inspiration and 99% perspiration'. In this paper, we present a method for automating most of the perspiration involved in innovative design. We restrict our attention toinnovative design processes which can be structured into three steps: discovery of a new technique, understanding it, and generalising it to fit the problem at hand. The method we developed automates theunderstanding and generalisation phases which involve most of the perspiration.We present the FAMING system which demonstrates the method for the design of part shapes in 2D elementary mechanisms, also called kinematic pairs. We believe that the results are generalisable to otherdomains with similar characteristics, in particular any problem where geometry plays an important role.
keywords Intelligent CAD, Qualitative Reasoning, Case-Based Reasoning
series journal paper
last changed 2003/05/15 21:33

_id diss_fox
id diss_fox
authors Fox, M.A.
year 1996
title Novel Affordances of Computation to the Design Process of Kinetic Structures
source Massachusetts Institute of Technology, Cambridge, MA
summary This paper is a discourse into the relationship between the process, computational tools and the role which symbolic structure can play in both. I argue the relationship of the process and tools is dialectic, whereby the tools we utilize in design develop new heuristics, the methodologies in turn, if reflectively understood, can be more aptly facilitated through the development of novel tools. The tools and the process then evolve together. A theory is laid out exploring the human visual information processing systems pertinence to the limitations in mental three-dimensional imaging and transformation operations as relevant to the operations of drawing and mental visualization within the architectural design processes, substantiating the designers necessity to draw (by traditional means, but more importantly here, through the inclusive integration of CAD within the process). The necessity to draw is explored as a representational process to the visual system as predicated upon the existence of a structured internal library of diagram-like representations in our heads. I argue that the ways we utilize such idiosyncratic libraries is predicated upon the ways in which we go about structuring the perceived experienced world around us into symbol systems. And finally, the ways we utilize our reflective understanding of the heuristic transformations of these symbols within the design process in the context of a CAD environment are explored as a means to an enhanced understanding of that which is being designed and consequently as a vehicle for the development of future CAD systems to better facilitate such methodologies of designing. A personal design process of several kinetic structures is carried out in order to arrive at a localized process analysis within computer-aided design environment. Through an interactive, reflective process analysis, conclusions are drawn as to the affordances and limitations of such tools as suggestive of the operations a CAD environment might perform so as to better foster future methodologies of designing. The design experiments are utilized as a vehicle to understand the process. Specifically three kinetic projects are exploited for the prototypical operations they display. When difficulties or mental limitations are encountered with the operations, specific tools are developed to facilitate the limitation or to overcome the problem.
series thesis:MSc
more http://www.mafox.net/sm_thesis/Thesis11.pdf
last changed 2003/11/28 07:35

_id 4171
authors Gero, John S. and Maher, Mary Lou
year 1996
title Current CAAD Research at the Key Centre of Design Computing University of Sydney
doi https://doi.org/10.52842/conf.caadria.1996.035
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 35-52
summary Designing is one of the most significant of human acts. It is one of the bases for change in our society. However, designers are amongst the least recongised for society’s change agents. Surprisingly, given that designing has been occurring for many millennia, our understanding of the processes of designing is remarkably limited. Part of our understanding of designing comes not only from studying human designers as they design but from postulating design methods which describe some aspect of the design process without claiming to model the processes used by human designers. The early approaches to design methods were prescriptive when applied to human designers. More recently, design methods have been formalised not as humano-centred processes but as processes capable of computer implementation. Amongst the goals of these endeavours are to develop a better understanding of the processes of designing, to develop methods which can be computerised and to aid human designers through the introduction of novel methods which have no human counterpart. Much of this research is driven by the fact that human designs are very often incomplete, inadequate or just plainly poorly conceived for the task they are meant to address.
series CAADRIA
email
last changed 2022/06/07 07:51

_id ddssup9608
id ddssup9608
authors Gupta, M.K., Groves M. and Moran, J.D.
year 1996
title An EMIC approach to design: Methodology for creating supportive environments for young children
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary The responsibility of the designer is to understand the unique perspective of the users, in order to create functional and efficient environments. The task of creating supportive environments often becomes more difficult when there is discrepancy between the perspective of the designer and that of the user, which is the case when designing spaces for children. The interaction of children with their environment has been identified as the basis of their development Most of the previous research has focused on the perspectives that adults have of spaces for children (etic), rather than an understanding of the child's view as the primary user of the playspace (emic). Children's perceptions are influenced by their physical and cognitive perspectives thus posing a unique challenge for designers. The objective of this study was to learn about the perception and perspective of four-and five-year-olds of their favorite playspaces. The children needed to identify their favorite spaces and also be able to verbalize the activities and meanings associated with these spaces. To avoid adult bias at the onset, the idea of utilizing a Polaroid Captiva camera was formulated, facilitating an extremely short latency period between the child taking the pictures and the opportunity to talk about their favorite playspace. The process was extremely successful, and provides first hand insight into children's perception of their built environment Photographs taken by the young children include many spaces not designed for play. The emerging themes are a source of invaluable information for designers and planners for making informed design decisions and for creating supportive environments.
series DDSS
email
last changed 2003/08/07 16:36

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_915084 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002