CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 481

_id 7135
authors Arumi-Noe, F.
year 1996
title Algorithm for the geometric construction of an optimum shading device
source Automation in Construction 5 (3) (1996) pp. 211-217
summary Given that there is a need to shade a window from the summer sun and also a need to expose it to the winter sun, this article describes an algorithm to design automatically a geometric construct that satisfies both requirements. The construct obtained represents the minimum solution to the simultaneous requirements. The window may be described by an arbitrary convex polygon and it may be oriented in any direction, and it may be placed at any chosen latitude. The algorithm consists of two sequential steps: first to find a winter solar funnel surface; and the second to clip the surface subject to the summer shading conditions. The article introduces the design problem, illustrates the results through two examples, outlines the logic of the algorithm and includes the derivation of the mathematical relations required to implement the algorithm. This work is part of the MUSES project, which is a long term research effort to integrate Energy Consciousness with Computer Graphics in Architectural Design.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id b81d
authors Davies, C. and Harrison, J.
year 1996
title Osmose: Towards Broadening the Aesthetics of Virtual Reality
source ACM Computer Graphics: Virtual Reality Volume 30, Number 4
summary Osmose is an immersive virtual environment, produced by Softimage in 1994/95. One of the primary goals of Osmose was to push the expressive capabilities of existing 3D tools, to demonstrate that an alternative aesthetic and interactive sensibility is possible for real-time, interactive, 3D computer graphics. Osmose was created under the direction of Char Davies, the Director of Visual Research at Softimage. A former painter, as well as a creator of 3D computer graphic stills, Davies has a particular artistic vision which has driven the project. Davies has been striving for years to represent space as a luminous enveloping medium. This has led her from painting to 3D computer graphics, and finally into creating immersive virtual spaces. One of Davies' intentions for Osmose was to create a space that is "psychically innovating," one in which, to quote Bachelard, participants do not change "place," but change their own nature. Osmose was therefore designed to explore the potential of immersive virtual space to allow participants to shed their habitual ways of looking at (and behaving in) the world. By doing this, we hoped they would then emerge from the virtual world to experience the real world in a fresh way, reawakening a fundamental sense of their own "being-in-the-world." We hoped that this could be accomplished through the visual, aural and interactive aesthetic of the work.
series journal paper
last changed 2003/04/23 15:50

_id db00
authors Espina, Jane J.B.
year 2002
title Base de datos de la arquitectura moderna de la ciudad de Maracaibo 1920-1990 [Database of the Modern Architecture of the City of Maracaibo 1920-1990]
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 133-139
summary Bases de datos, Sistemas y Redes 134The purpose of this report is to present the achievements obtained in the use of the technologies of information andcommunication in the architecture, by means of the construction of a database to register the information on the modernarchitecture of the city of Maracaibo from 1920 until 1990, in reference to the constructions located in 5 of Julio, Sectorand to the most outstanding planners for its work, by means of the representation of the same ones in digital format.The objective of this investigation it was to elaborate a database for the registration of the information on the modernarchitecture in the period 1920-1990 of Maracaibo, by means of the design of an automated tool to organize the it datesrelated with the buildings, parcels and planners of the city. The investigation was carried out considering three methodologicalmoments: a) Gathering and classification of the information of the buildings and planners of the modern architectureto elaborate the databases, b) Design of the databases for the organization of the information and c) Design ofthe consultations, information, reports and the beginning menu. For the prosecution of the data files were generated inprograms attended by such computer as: AutoCAD R14 and 2000, Microsoft Word, Microsoft PowerPoint and MicrosoftAccess 2000, CorelDRAW V9.0 and Corel PHOTOPAINT V9.0.The investigation is related with the work developed in the class of Graphic Calculation II, belonging to the Departmentof Communication of the School of Architecture of the Faculty of Architecture and Design of The University of the Zulia(FADLUZ), carried out from the year 1999, using part of the obtained information of the works of the students generatedby means of the CAD systems for the representation in three dimensions of constructions with historical relevance in themodern architecture of Maracaibo, which are classified in the work of The Other City, generating different types ofisometric views, perspectives, representations photorealistics, plants and facades, among others.In what concerns to the thematic of this investigation, previous antecedents are ignored in our environment, and beingthe first time that incorporates the digital graph applied to the work carried out by the architects of “The Other City, thegenesis of the oil city of Maracaibo” carried out in the year 1994; of there the value of this research the field of thearchitecture and computer science. To point out that databases exist in the architecture field fits and of the design, alsoweb sites with information has more than enough architects and architecture works (Montagu, 1999).In The University of the Zulia, specifically in the Faculty of Architecture and Design, they have been carried out twoworks related with the thematic one of database, specifically in the years 1995 and 1996, in the first one a system wasdesigned to visualize, to classify and to analyze from the architectural point of view some historical buildings of Maracaiboand in the second an automated system of documental information was generated on the goods properties built insidethe urban area of Maracaibo. In the world environment it stands out the first database developed in Argentina, it is the database of the Modern andContemporary Architecture “Datarq 2000” elaborated by the Prof. Arturo Montagú of the University of Buenos Aires. The general objective of this work it was the use of new technologies for the prosecution in Architecture and Design (MONTAGU, Ob.cit). In the database, he intends to incorporate a complementary methodology and alternative of use of the informationthat habitually is used in the teaching of the architecture. When concluding this investigation, it was achieved: 1) analysis of projects of modern architecture, of which some form part of the historical patrimony of Maracaibo; 2) organized registrations of type text: historical, formal, space and technical data, and graph: you plant, facades, perspectives, pictures, among other, of the Moments of the Architecture of the Modernity in the city, general data and more excellent characteristics of the constructions, and general data of the Planners with their more important works, besides information on the parcels where the constructions are located, 3)construction in digital format and development of representations photorealistics of architecture projects already built. It is excellent to highlight the importance in the use of the Technologies of Information and Communication in this investigation, since it will allow to incorporate to the means digital part of the information of the modern architecturalconstructions that characterized the city of Maracaibo at the end of the XX century, and that in the last decades they have suffered changes, some of them have disappeared, destroying leaves of the modern historical patrimony of the city; therefore, the necessity arises of to register and to systematize in digital format the graphic information of those constructions. Also, to demonstrate the importance of the use of the computer and of the computer science in the representation and compression of the buildings of the modern architecture, to inclination texts, images, mapping, models in 3D and information organized in databases, and the relevance of the work from the pedagogic point of view,since it will be able to be used in the dictation of computer science classes and history in the teaching of the University studies of third level, allowing the learning with the use in new ways of transmission of the knowledge starting from the visual information on the part of the students in the elaboration of models in three dimensions or electronic scalemodels, also of the modern architecture and in a future to serve as support material for virtual recoveries of some buildings that at the present time they don’t exist or they are almost destroyed. In synthesis, the investigation will allow to know and to register the architecture of Maracaibo in this last decade, which arises under the parameters of the modernity and that through its organization and visualization in digital format, it will allow to the students, professors and interested in knowing it in a quicker and more efficient way, constituting a contribution to theteaching in the history area and calculation. Also, it can be of a lot of utility for the development of future investigation projects related with the thematic one and restoration of buildings of the modernity in Maracaibo.
keywords database, digital format, modern architecture, model, mapping
series SIGRADI
email
last changed 2016/03/10 09:51

_id 5fc4
authors Fruchter, R.
year 1996
title Conceptual Collaborative Building Design Through Shared Graphics
source IEEE Expert special issue on Al in Civil Engineering, June vol. 33-41
summary The Interdisciplinary Communication Medium computer environment integrates a shared graphic modeling environment with network-based services to accommodate many perspectives in an architecture/engineering/construction team. Communication is critical for achieving better cooperation and coordination among professionals in a multidisciplinary building team. The complexity of large construction projects, the specialization of the project participants, and the different forms of synchronous and asynchronous collaborative work increase the need for intensive information sharing and exchange. Architecture/engineering/construction (A/E/C) professionals use computers to perform a specific discipline's tasks, but they still exchange design decisions and data using paper drawings and documents. Each project participant investigates and communicates alternative solutions through representational idioms that are private to that member's profession. Other project participants must then interpret, extract, and reenter the relevant information using the conventional idioms of their disciplines and in the format required by their tools. The resulting communication difficulties often affect the quality of the final building and the time required to achieve design consensus. This article describes a computer environment, the Interdisciplinary Communication Medium (ICM), that supports conceptual, collaborative building design. The objective is to help improve communication among professionals in a multidisciplinary team. Collaborative teamwork is an iterative process of reaching a shared understanding of the design and construction domains, the requirements, the building to be built, and the necessary commitments. The understanding emerges over time, as team members begin to grasp their own part of the project, and as they provide information that lets others progress. The fundamental concepts incorporated in ICM include A communication cycle for collaborative teamwork that comprises propose-interpret-critique-explain-change notifications. An open system-integration architecture. A shared graphic modeling environment for design exploration and communication. A Semantic Modeling Extension (SME), which introduces a structured way to capture design intent. A change-notification mechanism that documents notes on design changes linked to the graphic models, and routes change notifications. Thus, the process involves communication, negotiation, and team learning.
series journal paper
last changed 2003/04/23 15:14

_id 6598
authors Goldman, Glenn
year 1996
title Reconstructions, Remakes and Sequels: Architecture and Motion Pictures
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 11-21
doi https://doi.org/10.52842/conf.acadia.1996.011
summary Motion pictures can illustrate worlds that have never been. They may show fantastic depictions of the future or an interpretation of the past. In either case, they have the power to reach millions of people across cultures, generations, and educational backgrounds with visions of our environment that do not exist in our everyday world.

The study of imaginary worlds in this design studio case study is limited to motion pictures that postulate unique, or new environments rather than those films that faithfully attempt to document or reconstruct reality. In this sense, the movies used for study have a lineage traceable to Georges Melies "who came to film from illusionism and the "heater," rather than to the reality of the Lumiere brothers who came from photography which ultimately would lead to "cinema-verite."

Discussions, assignments and presentations in the studio are organized to provide students with an opportunity to gain a different awareness of architecture and use varying stimuli as source material for design. The study of architectural history, art, formal principles of design, visual perception, and media are required in order to complete the reconstructions and creations of proposed environments.

All student work throughout the entire semester is created with electronic media and the computer is used as an integral component of the studio enabling analysis and study, design, model creation, and animation. The available capabilities of computer graphics in the studio enables students to explore analytic and synthetic issues of design in motion pictures in a manner not readily available when restricted to traditional media. Through the use of digital media we have an opportunity to better understand the imaginary worlds for what they communicate and the ideas they contain, and therefore create an opportunity to modify our own concept of architecture.

series ACADIA
email
last changed 2022/06/07 07:51

_id fb63
id fb63
authors Jabi, Wassim
year 1996
title An Outline of the Requirements for a Computer-Supported Collaborative Design System
source Open House International, vol 21, no 1, March 1996
summary Computer-Aided Architectural Design (CAAD) systems have adequately satisfied several needs so far. They have dramatically improved the accuracy and consistency of working drawings, enabled designers to visualize their design ideas in three-dimensions, allowed the analysis of designs through data exchange and integrated databases, and even allowed the designers to evaluate (and in some cases generate) designs based on comparisons to previous cases and/or the formalization of grammars. Yet, there is a consensus that CAAD systems have not yet achieved their full potential. First, most systems employ a single-user approach to solving architectural problems which fails to grapple with the fact that most design work is done through teamwork. Second, current systems still can not support early design stages which involve client briefing, data collection, building program formulation, and schematic design generation. This paper seeks to study remedies to both of the afore-mentioned limitations through focusing on the fundamental dialectic and collaborative nature of what is called designing: a concerned social activity that proceeds by creating architectural elements to address a set of requirements and their re-thinking as a result of architectural conjecture. To investigate this relationship, it is proposed to build a computer-supported collaborative design environment using the tools of conceptual modeling, object-oriented algorithms, and distributed agents. Based on findings regarding the role of artifacts in collaborative design and a literature survey, this paper concludes with an outline of the requirements for the above system.
series journal paper
type normal paper
email
last changed 2008/06/12 16:34

_id 2f3c
authors Jabi, Wassim
year 1996
title An Outline of the Requirements for a Computer-Supported Collaborative Design System
source Open House International, vol. 21 no 1, March 1996, pp. 22-30
summary Computer-Aided Architectural Design (CAAD) systems have adequately satisfied several needs so far. They have dramatically improved the accuracy and consistency of working drawings, enabled designers to visualize their design ideas in three-dimensions, allowed the analysis of designs through data exchange and integrated databases, and even allowed the designers to evaluate (and in some cases generate) designs based on comparisons to previous cases and/or the formalization of grammars. Yet, there is a consensus that CAAD systems have not yet achieved their full potential. First, most systems employ a single-user approach to solving architectural problems which fails to grapple with the fact that most design work is done through teamwork. Second, current systems still can not support early design stages which involve client briefing, data collection, building program formulation, and schematic design generation. This paper seeks to study remedies to both of the afore-mentioned limitations through focusing on the fundamental dialectic and collaborative nature of what is called designing: a concerned social activity that proceeds by creating architectural elements to address a set of requirements and their re-thinking as a result of architectural conjecture. To investigate this relationship, it is proposed to build a computer-supported collaborative design environment using the tools of conceptual modeling, object-oriented algorithms, and distributed agents. Based on findings regarding the role of artifacts in collaborative design and a literature survey, this paper concludes with an outline of the requirements for the above system.
keywords Computer Supported Collaborative Design
series other
email
last changed 2002/03/05 19:54

_id 39fb
authors Langton, C.G.
year 1996
title Artificial Life
source Boden, M. A. (1996). The Philosophy of Artificial Life, 39-94.New York and Oxford: Oxford University Press
summary Artificial Life contains a selection of articles from the first three issues of the journal of the same name, chosen so as to give an overview of the field, its connections with other disciplines, and its philosophical foundations. It is aimed at those with a general background in the sciences: some of the articles assume a mathematical background, or basic biology and computer science. I found it an informative and thought-provoking survey of a field around whose edges I have skirted for years. Many of the articles take biology as their starting point. Charles Taylor and David Jefferson provide a brief overview of the uses of artificial life as a tool in biology. Others look at more specific topics: Kristian Lindgren and Mats G. Nordahl use the iterated Prisoner's Dilemma to model cooperation and community structure in artificial ecosystems; Peter Schuster writes about molecular evolution in simplified test tube systems and its spin-off, evolutionary biotechnology; Przemyslaw Prusinkiewicz presents some examples of visual modelling of morphogenesis, illustrated with colour photographs; and Michael G. Dyer surveys different kinds of cooperative animal behaviour and some of the problems synthesising neural networks which exhibit similar behaviours. Other articles highlight the connections of artificial life with artificial intelligence. A review article by Luc Steels covers the relationship between the two fields, while another by Pattie Maes covers work on adaptive autonomous agents. Thomas S. Ray takes a synthetic approach to artificial life, with the goal of instantiating life rather than simulating it; he manages an awkward compromise between respecting the "physics and chemistry" of the digital medium and transplanting features of biological life. Kunihiko Kaneko looks to the mathematics of chaos theory to help understand the origins of complexity in evolution. In "Beyond Digital Naturalism", Walter Fontana, Guenter Wagner and Leo Buss argue that the test of artificial life is to solve conceptual problems of biology and that "there exists a logical deep structure of which carbon chemistry-based life is a manifestation"; they use lambda calculus to try and build a theory of organisation.
series other
last changed 2003/04/23 15:14

_id b490
authors Mine, Mark
year 1996
title Working in a Virtual World: Interaction Techniques Used in the Chapel Hill Immersive Modeling Program
source Research report TR96-029, Department of Computer Science, University of North Carolina, Chapel Hill
summary This paper presents a description of the interaction techniques used in the Chapel Hill Immersive Modeling Program (CHIMP). CHIMP is intended for the preliminary stages of architectural design. It is an immersive system; users work directly within a virtual world. The main goal has been to develop interaction techniques that exploit the benefits of working immersed while compensating for its limitations. Interaction techniques described and discussed in this paper include: . Action at a distance . Look-at menus . Remote controls (hand-held widgets) . Constrained object manipulation using twohands . Two-handed control panel interaction . Worlds in miniature . Interactive numbers Keywords: Virtual reality, Virtual environments, Computeraided modeling, Geometric modeling, User interface design, Two-handed interaction, Two-handed interfaces, Interactive computer graphics. 1. Introduction 1.1. CHIMP Overview The UNC-Chapel Hill Immersive Modeling Program (or CHIMP for short) is a virtu...
series report
last changed 2003/04/23 15:14

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
doi https://doi.org/10.52842/conf.acadia.2016.140
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id a281
authors Rochegova, N.A. and Barchugova, E.V.
year 1996
title Use of Computer Technique at the Initial Stages of Architectural Education
source CAD Creativeness [Conference Proceedings / ISBN 83-905377-0-2] Bialystock (Poland), 25-27 April 1996 pp. 201-203
summary Today the computer technique is widely adopted in both real designing and architectural educational process. The computer is used as a tool that makes the designer work easier. But if a computer user has no compositional thinking even the best technique and special programmes can't help him to get an aesthetic valuable production. However, excessive and clumsy use of architectural programmes at the early stages of architectural education, attempt to replace a free-hand drawing with a machine-made one and not complying with the composition rules led to opposite results and a full disappointment.
series plCAD
last changed 1999/04/09 15:30

_id 27f0
authors Sawicki, Bogumil
year 1996
title Computer Creative Graphics and Its Aesthetic Quality
source CAD Creativeness [Conference Proceedings / ISBN 83-905377-0-2] Bialystock (Poland), 25-27 April 1996 pp. 231-242
summary Nowadays many artists use computers to help in their work. As it is commonly observed the results of their work can be a source of aesthetic pleasure. In this paper the aesthetic evaluation of computer generated works of art is considered. The article shows some methods of aesthetic measure and presents some advantages and disadvantages when these methods are used for evaluating computer graphic art. Presented in this paper point of view is not without limitations, but it provides an appropriate starting point for discussion about computer art and its aesthetics
series plCAD
last changed 1999/04/09 15:30

_id 46a7
authors Schumann, J., Strothotte, T., Raab, A. and Laser, S.
year 1996
title Assessing the Effect of Non-Photorealistic Rendered Images in CAD PAPERS: Empirical Studies of Graphics and Visual Design
source Proceedings of ACM CHI 96 Conference on Human Factors in Computing Systems 1996 v.1 pp. 35-41
summary Recent work in computer graphics has resulted in new techniques for rendering so-called non-photorealistic images. While such features are now already appearing in commercially available software, little is known about the effect of non-photorealistic images on users and their usefulness in specific contexts. In this paper we report on an empirical study with 54 architects who compared the output of a sketch-renderer for producing pencil-like drawings with standard output of CAD systems for architectural designs. The results show that the different kinds of renditions actually have a very different effect on viewers and that non-photorealistic images actually do deserve their place in the repertoire of CAD systems.
keywords Non-Photorealistic Rendering; Architectural Presentation; Preliminary Drafts; Sketches
series other
last changed 2002/07/07 16:01

_id 4710
authors Senyapili, Burcu
year 1996
title THE TRUE MODEL CONCEPT IN COMPUTER GENERATED SIMULATIONS
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary Each design product depends on a design model originated in the designer's mind. From initial design decisions even to the final product, each design step is a representation of this design model. Designers create and communicate using the design models in their minds. They solve design problems by recreating and transforming the design model and utilize various means to display the final form of the model. One of these means, the traditional paper-based media of design representation (drawings, mockup models) alienate the representation from the design model, largely due to the lack of the display of the 4th dimension. Architecture is essentially a four-dimensional issue, incorporating the life of the edifice and the dynamic perception of the space by people. However, computer generated simulations (walkthrough, flythrough, virtual reality applications) of architectural design give us the chance to represent the design model in 4D, which is not possible in the traditional media. Thus, they introduce a potential field of use and study in architectural design.

Most of the studies done for the effective use of this potential of computer aid in architectural design assert that the way architects design without the computer is not "familiar" to the way architects are led to design with the computer. In other words, they complain that the architectural design software does not work in the same way as the architects think and design the models in their brains. Within the above framework, this study initially discusses architectural design as a modeling process and defines computer generated simulations (walkthrough, flythrough, virtual reality) as models. Based on this discussion, the "familiarity" of architectural design and computer aided design is displayed. And then, it is asserted that the issue of familiarity should be discussed not from the point of the modeling procedure, but from the "trueness" of the model displayed.

Therefore, it is relevant to ask to what extent should the simulation simulate the design model. The simulation, actually, simulates not what is real, but what is unreal. In other words, the simulation tells lies in order to display the truth. Consequently, the study proposes measures as to how true a simulation model should be in order to represent the design model best.

keywords Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa/
last changed 2004/05/04 14:45

_id a73a
authors Streich, Bernd
year 1996
title 3D-Scanning and 3D-Printing for Media Experimental Design Work in Architecture
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 183-190
doi https://doi.org/10.52842/conf.acadia.1996.183
summary Architects and designers use multiple media to explore and express design solutions. The physical model remains one of the most important media to represent the architect’s work that cannot completely be substituted by computer graphics.

The experimental use of various media is of major Importance for architects. Nevertheless, the author of this article is convinced that architects and designers will continue to make physical models. During the design process. however, the designer might wish to transfer the design idea into the computer. If he has already made a physical model, it will take him much time to recreate the same model on the screen by means of his CAD programs. This would be different if it were possible to digitize the existing physical model and then to continue designing on the computer. In this paper, the author describes some 3D-scanning methods based, on computer tomograms. Also the inverse combination of modeling and digitizing would be useful. So-called 3D-printing methods could help architects to transform their model on the screen into physical models during or at the end of the computer supported design process.

In this paper, the author will give a survey on how designers can use input and output devices to generate digital data from a physical model and - vice versa - to transform a digital design solution into a physical model. The reader will get an impression of both procedures from the examples given.

series ACADIA
email
last changed 2022/06/07 07:56

_id 0ef8
authors Völker, H., Sariyildiz, S., Schwenck, M. and Durmisevic, S.
year 1996
title THE NEXT GENERATION OF ARCHITECTURE WITHIN COMPUTER SCIENCES
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary Considering architecture as a mixture of exact sciences and the art, we can state that as in all other sciences, every technical invention and development has resulted in advantages and disadvantages for the well-being and prosperity of mankind. Think about the developments in the fields of nuclear energy or space travel. Besides bringing a lot of improvements in many fields, it also has danger for the well-being of a mankind. The development of the advanced computer techniques has also influence on architecture, which is inevitable. How did the computer science influence architecture till now, and what is going to be the future of the architecture with this ongoing of computer science developments? The future developments will be both in the field of conceptual design (form aspect) and also in the area of materialization of the design process.

These all are dealing with the material world, for which the tools of computer science are highly appropriate. But what will happen to the immaterial world? How can we put these immaterial values into a computers model? Or can the computer be creative as a human being? Early developments of computer science in the field of architecture involved two-dimensional applications, and subsequently the significance of the third dimension became manifest. Nowadays, however, people are already speaking of a fourth dimension, interpreting it as time or as dynamics. And what, for instance, would a fifth, sixth or X-dimension represent?

In the future we will perhaps speak of the fifth dimension, comprising the tangible qualities of the building materials around us. And one day a sixth dimension might be created, when it will be possible to establish direct communication with computers, because direct exchange between the computer and the human brain has been realised. The ideas of designers can then be processed by the computer directly, and we will no longer be hampered by obstacles such as screen and keyboard. There are scientist who are working to realize bio-chips. If it will work, perhaps we can realise all these speculations. It is nearly sure that the emergence of new technologies will also affect our subject area, architecture and this will create fresh challenges, fresh concepts, and new buildings in the 21st century. The responsibility of the architects must be, to bear in mind that we are dealing with the well-being and the prosperity of mankind.

keywords Model Simulation, Real Environments
series other
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2004/05/04 14:43

_id 06e1
authors Keul, Alexander
year 1996
title LOST IN SPACE? ARCHITECTURAL PSYCHOLOGY - PAST, PRESENT, FUTURE
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary A methodological review by Kaminski (1995) summed up five perspectives in environmental psychology - patterns of spatial distribution, everyday “jigsaw puzzles”, functional everyday action systems, sociocultural change and evolution of competence. Architectural psychology (named so at the Strathclyde conference 1969; Canter, 1973) as psychology of built environments is one leg of environmental psychology, the second one being psychology of environmental protection. Architectural psychology has come of age and passed its 25th birthday. Thus, a triangulation of its position, especially in Central Europe, seems interesting and necessary. A recent survey mainly on university projects in German-speaking countries (Kruse & Trimpin, 1995) found a marked decrease of studies in psychology of built environments. 1994, 25% of all projects were reported in this category, which in 1975 had made up 40% (Kruse, 1975). Guenther, in an unpublished survey of BDP (association of professional German psychologists) members, encountered only a handful active in architectural psychology - mostly part-time, not full-time. 1996, Austria has two full-time university specialists. The discrepancy between the general interest displayed by planners and a still low institutionalization is noticeable.

How is the research situation? Using several standard research data banks, the author collected articles and book(chapter)s on architectural psychology in German- and English-language countries from 1990 to 1996. Studies on main architecture-psychology interface problems such as user needs, housing quality evaluations, participatory planning and spatial simulation / virtual reality did not outline an “old, settled” discipline, but rather the sketchy, random surface of a field “always starting anew”. E.g., discussions at the 1995 EAEA-Conference showed that several architectural simulation studies since 1973 caused no major impact on planner's opinions (Keul&Martens, 1996). “Re-inventions of the wheel” are caused by a lack of meetings (except this one!) and of interdisciplinary infrastructure in German-language countries (contrary to Sweden or the United States). Social pressures building up on architecture nowadays by inter-European competition, budget cuts and citizen activities for informed consent in most urban projects are a new challenge for planners to cooperate efficiently with social scientists. At Salzburg, the author currently manages the Corporate Design-process for the Chamber of Architecture, Division for Upper Austria and Salzburg. A “working group for architectural psychology” (Keul-Martens-Maderthaner) has been active since 1994.

keywords Model Simulation, Real Environments
series EAEA
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2005/09/09 10:43

_id 2423
authors Morozumi, M., Takahasi, M., Naka, R., Kawasumi, N., Homma, R., Mitchell. W.J., Yamaguchi, S. and Iki, K.
year 1997
title The Levels of Communications Achieved Through Network in an International Collaborative Design Project: An Analysis of VDS ’96 Project Carried Out By Kumamoto University, MIT and Kyoto Institute of Technology
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 143-152
doi https://doi.org/10.52842/conf.caadria.1997.143
summary This paper reviewed the process and the achievements of a five-week-long virtual design studio project the authors carried out with three universities in Japan and the United States in the summer of 1996, in which there was no communication among team members other than network media. After analyzing the use of communication tools in different situations of design communication, and the level of communications achieved in this project, the authors concluded that the present network technology could provide sufficient levels of communication, if only participants could put forth some amount of extra effort for communication among team members.
series CAADRIA
email
last changed 2022/06/07 07:59

_id 30cf
authors Webster, Anthony C.
year 1996
title Networked Multimedia Tools for Architectural Engineering
source Journal of Architectural Engineering -- March 1996 -- Volume 2, Issue 1, pp. 11-19
summary This paper provides a brief history of networked multimedia technology in the United States. The evolution of the Internet and the World Wide Web is outlined. The use of traditional computer technologies byengineering and architectural practitioners and academics is discussed. Use of some new computer technologies by researchers in both professions, including high-speed networks, animated graphicalsimulations, augmented and virtual reality, is also presented, along with a discussion of how they are beginning to be used together on the World Wide Web. Opportunities for refining architectural engineeringresearch, scholarship and practice by expanded use of new networked multimedia technologies are presented. The features of a demonstration testbed networked multimedia package, entitled the FarnsworthHouse Volume are introduced, along with their potential application to some architectural engineering problems. The use of the volume in classes at Columbia University is presented. Advantages anddisadvantages of networked multimedia capabilities embedded in the Farnsworth volume are discussed.
series journal paper
last changed 2003/05/15 21:45

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_587989 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002