CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures
Hits 1 to 20 of 481
Reformat results as: short short into frame detailed detailed into frame
The paper discusses furthermore various 3D modeling options, such as standard CAD representations, high quality rendered video walk-throughs, VRML models and physically produced, full-scale models, made of corrugated cardboard. The cost and equipment requirements necessary for full-scale modeling in cardboard are outlined.
These all are dealing with the material world, for which the tools of computer science are highly appropriate. But what will happen to the immaterial world? How can we put these immaterial values into a computers model? Or can the computer be creative as a human being? Early developments of computer science in the field of architecture involved two-dimensional applications, and subsequently the significance of the third dimension became manifest. Nowadays, however, people are already speaking of a fourth dimension, interpreting it as time or as dynamics. And what, for instance, would a fifth, sixth or X-dimension represent?
In the future we will perhaps speak of the fifth dimension, comprising the tangible qualities of the building materials around us. And one day a sixth dimension might be created, when it will be possible to establish direct communication with computers, because direct exchange between the computer and the human brain has been realised. The ideas of designers can then be processed by the computer directly, and we will no longer be hampered by obstacles such as screen and keyboard. There are scientist who are working to realize bio-chips. If it will work, perhaps we can realise all these speculations. It is nearly sure that the emergence of new technologies will also affect our subject area, architecture and this will create fresh challenges, fresh concepts, and new buildings in the 21st century. The responsibility of the architects must be, to bear in mind that we are dealing with the well-being and the prosperity of mankind.
Another of the built examples at Trondheim University which will be presented, is a doctor's waitingroom. It is a case study of special interest because it often appears to be a neglected area. Let us start asking: What do we have in common when we are waiting to come in to a doctor? We are nervous and we feel sometimes miserable. Analysing the situation we understand the need for an interior that cares for our state of mind. The level of light is important in this situation. Light has to speak softly. Instead of the ordinary strong light in the middle of the ceiling, several spots are selected to lighten the small tables separating the seats. The separation is supposed to give a feeling of privacy. By the low row of reflected planes we experience an intimate and warming atmosphere in the room. A special place for children contributes to the total impression of calm. In this corner the inside of some shelves are lit by indirect light, an effect which puts emphasis on the small scale suitable for a child. And it also demonstrates the good results of variation. The light setting in this room shows how light is “caught” two different ways.
For more results click below: