CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 462

_id 029b
authors Bryson, Steve
year 1996
title Virtual Reality in Scientific Visualization
source Communications of the ACM. Vol.39, No.5. pp. 62-71
summary Immersing the user in the solution, virtual reality reveals the spatially complex structures in computational science in a way that makes them easy to understand and study. But beyond adding a 3D interface, virtual reality also means greater computational complexity.
series journal paper
last changed 2003/04/23 15:50

_id 8ee5
authors Koutamanis, A., Mitossi, V.
year 1996
title SIMULATION FOR ANALYSIS: REQUIREMENTS FROM ARCHITECTURAL DESIGN
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary Computerization has been a positive factor in the evolution of both kinds of analysis with respect to cost, availability and efficiency. Knowledge-based systems offer an appropriate implementation environment for normative analysis which can be more reliable and economical than evaluation by human experts. Perhaps more significant is the potential of interactive computer simulation where designs can be examined intuitively in full detail and at the same time by quantitative models. The advantages of this coupling are evident in the achievements of scientific visualization. Another advantage of computational systems is that the analysis can be linked to the design representation, thereby adding feedback to the conventional visualization of designs in drawing and modeling systems. Such connections are essential for the development of design guidance systems capable of reflecting consequences of partial inadequacies or changes to other aspects in a transparent and meaningful network of design constraints.

The possibilities of computer simulation also extend to issues inadequately covered by normative analysis and in particular to dynamic aspects of design such as human movement and circulation. The paper reports on a framework for addressing two related problems, (a) the simulation of fire escape from buildings and (b) the simulation of human movement on stairs. In both cases we propose that current evaluation techniques and the underlying design norms are too abstract to offer a measure of design success, as testified by the number of fatal accidents in fires and on stairs. In addition, fire escape and stair climbing are characterized by great variability with respect to both the form of the possible designs and the profiles of potential users. This suggests that testing prototypical forms by typical users and publishing the results as new, improved norms is not a realistic proposition for ensuring a global solution. Instead, we should test every design individually, within its own context. The development of an affordable, readily available system for the analysis and evaluation of aspects such as fire escape and stair safety can be based on the combination of the technologies of virtual reality and motion capture. Testing of a design by a number of test people in an immersion space provides not only intuitive evaluations by actual users but also quantitative data on the cognitive and proprioceptive behaviour of the test people. These data can be compiled into profiles of virtual humans for further testing of the same or related designs.

keywords Model Simulation, Real Environments
series other
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2004/05/04 14:40

_id 413e
authors Dalholm-Hornyansky, Elisabeth and Rydberg-Mitchell, Birgitta
year 1996
title SPATIAL NAVIGATION IN VIRTUAL REALITY
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary For the past decade, we have carried out a number of participation projects using full-scale modeling as an aid for communication and design. We are currently participating in an interdisciplinary research project which aims to combine and compare various visualization methods and techniques, among others, full-scale modeling and virtual reality, in design processes with users. In this paper, we will discuss virtual reality as a design tool in light of previous experience with full-scale modeling and literature on cognitive psychology. We describe a minor explorative study, which was carried out to elucidate the answers to several crucial questions: Is realism in movement a condition for the perception of space or can it be achieved while moving through walls, floors and so forth? Does velocity of movement and reduced visual field have an impact on the perception of space? Are landmarks vital clues for spatial navigation and how do we reproduce them in virtual environments? Can “daylight“, color, material and texture facilitate navigation and are details, furnishings and people important objects of reference? How could contextual information clues, like views and surroundings, be added to facilitate orientation? Do we need our other senses to supplement the visual experience in virtual reality and what is the role of mental maps in spatial navigation?
keywords Model Simulation, Real Environments
series other
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2004/05/04 14:49

_id 819d
authors Eiteljorg, H.
year 1988
title Computing Assisted Drafting and Design: new technologies for old problems
source Center for the study of architecture, Bryn Mawr, Pennsylvania
summary In past issues of the Newsletter, George Tressel and I have written about virtual reality and renderings. We have each discussed particular problems with the technology, and both of us mentioned how compelling computer visualizations can be. In my article ("Virtual Reality and Rendering," February, 1995, Vol. 7, no. 4), I indicated my concerns about the quality of the scholarship and the level of detail used in making renderings or virtual worlds. Mr. Tressel (in "Visualizing the Ancient World," November, 1996, Vol. IX, no. 3) wrote about the need to distinguish between real and hypothetical parts of a visualization, the need to differentiate materials, and the difficulties involved in creating the visualizations (some of which were included in the Newsletter in black-and-white and on the Web in color). I am returning to this topic now, in part because the quality of the images available to us is improving so fast and in part because it seems now that neither Mr. Tressel nor I treated all the issues raised by the use of high-quality visualizations. The quality may be illustrated by new images of the older propylon that were created by Mr. Tressel (Figs. 1 - 3); these images are significantly more realistic than the earlier ones, but they do not represent the ultimate in quality, since they were created on a personal computer.
series other
last changed 2003/04/23 15:50

_id 88f4
authors Fu, S., Bao, H. and Peng, Q.
year 1996
title An Accelerated Rendering Algorithm for Stereoscopic Display
doi https://doi.org/10.52842/conf.caadria.1996.053
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 53-61
summary With the development of the scientific visualization and the virtual environment techniques, stereo viewing systems have not been used extensively. In this paper, we present an accelerated rendering algorithm for stereoscopic display. As the difference between the left view and the right view is slight, we generate the right view by a transformation of the left view conforming to the stereo disparity. The problem of visibility change of a few polygons during the transformation is discussed and an efficient algorithm is developed for filling the holes that may arise in the right view after the transformation. This method makes fully use of the coherence between the left view and the right view. Experiments prove its efficiency.
series CAADRIA
last changed 2022/06/07 07:50

_id 24
authors PayssÈ, M., Piperno, P., Grompone, J. and Somma, P.
year 1998
title ReconstrucciÛn Virtual de la Colonia del Sacramento de 1762 (Virtual Reconstruction of "Colonia del Sacramento" of 1762)
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 192-197
summary Colonia del Sacramento (capital of Colonia department, in Uruguay) has been registered in the list of the Convention Heritage concerning the protection of worldwide cultural and natural heritage. The registration on this list (December 6th 1995) confirms the exceptional and universal value of a cultural or natural places which deserves protection for the whole humanity. The ancient Colonia del Sacramento founded in 1680 by Portugal, was a commercial and military site leading role of the historical controversy between Spain and Portugal. Main place of wars and treaties during a century, it keeps an urban design, unique in the area and valuable architectonical testimonies of different periods of this rich past, with a simple, popular profile. This work has been effected within the Clemente Estable Found 1996, which is promoted by National Council of Scientific and Technical Research (CONICYT). Through virtual reality techniques, a three-dimensional model of Colonia del Sacramento city was built as it was in its period of prosperity (around 1762). For the achievement of this digital maquette, a great deal of written and graphic information was compiled and processed. This information was organized in an inventory way (with numerous readings and searches). The inventory and the digital maquette were joined in a multimedia application (CD-ROM) which allows potential users to move through virtual city and friendly and interactively consult images, graphics and texts.
series SIGRADI
email
last changed 2016/03/10 09:57

_id e1a1
authors Rodriguez, G.
year 1996
title REAL SCALE MODEL VS. COMPUTER GENERATED MODEL
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary Advances in electronic design and communication are already reshaping the way architecture is done. The development of more sophisticated and user-friendly Computer Aided Design (CAD) software and of cheaper and more powerful hardware is making computers more and more accessible to architects, planners and designers. These professionals are not only using them as a drafting tool but also as a instrument for visualization. Designers are "building" digital models of their designs and producing photo-like renderings of spaces that do not exist in the dimensional world.

The problem resides in how realistic these Computer Generated Models (CGM) are. Moss & Banks (1958) considered realism “the capacity to reproduce as exactly as possible the object of study without actually using it”. He considers that realism depends on: 1)The number of elements that are reproduced; 2) The quality of those elements; 3) The similarity of replication and 4) Replication of the situation. CGM respond well to these considerations, they can be very realistic. But, are they capable of reproducing the same impressions on people as a real space?

Research has debated about the problems of the mode of representation and its influence on the judgement which is made. Wools (1970), Lau (1970) and Canter, Benyon & West (1973) have demonstrated that the perception of a space is influenced by the mode of presentation. CGM are two-dimensional representations of three-dimensional space. Canter (1973) considers the three-dimensionality of the stimuli as crucial for its perception. So, can a CGM afford as much as a three-dimensional model?

The “Laboratorio de Experimentacion Espacial” (LEE) has been concerned with the problem of reality of the models used by architects. We have studied the degree in which models can be used as reliable and representative of real situations analyzing the Ecological Validity of several of them, specially the Real-Scale Model (Abadi & Cavallin, 1994). This kind of model has been found to be ecologically valid to represent real space. This research has two objectives: 1) to study the Ecological Validity of a Computer Generated Model; and 2) compare it with the Ecological Validity of a Real Scale Model in representing a real space.

keywords Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa/
last changed 2004/05/04 14:42

_id 3151
authors Sanders, K.
year 1996
title The Digital Architect
source New York, NY, John Wiley &Sons
summary Written by an architect for design professionals, The Digital Architect is a gold mine of commonsense advice and guidance on the realities of using computer technology in design practice. Ken Sanders, AIA, takes you beyond the hyperbole to discover the practical reality of using computers today. He explains their strengths and weaknesses; what these tools do and what they don't do; and how they can be used strategically and tactically to improve quality, productivity, and profits in design firms of all sizes. Drawing on his own experiences and those of colleagues from across the nation whose comments appear throughout, he provides a wealth of valuable insights and advice on: * Choosing technology that leverages your professional value * Integrating technology seamlessly into your firm * Implementing cost-effective technology training and education * Managing the digital office, including liability, privacy, and security issues * Organizing the knowledge base of your firm * Using the Internet's World Wide Web as a global information resource * Hardware platforms, operating systems, and networks * Software tools and applications, including CAD, word processing, spreadsheets, multimedia, visualization, animation, virtual reality, on-line services, and more * The latest releases of major software products, including Windows 95TM and AutoCAD(r) Release 13(r) The only guide of its kind, The Digital Architect is a valuable tool for architects, engineers, designers, and all those who participate in creating the built environment.
series other
last changed 2003/04/23 15:14

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 7b7e
id 7b7e
authors Stahl, Benedikt
year 1996
title EXPERIMENTAL SPATIAL STRUCTURES
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary To speak about Experimental Spatial Structures at first means to find the right definition. Therefore we have to find definitions for three different subjects experiment, space and structure. Experiment - that means to perform scientific experiments. The attempt, the test, the simulation, the model. To do experimental work, that means to take measurements, to count, to compare, to try analyzing, to find out differences between substances. In our case, the experimental character of our work is impressed on working by using different methods to show the basic idea of our theme. To act and to use the full-scale-models with your body. Space - that means architectural space which is defined through architectural spatial elements: wall, ceiling, floor, corner, staircase, way, opening, border, edge and so on. So to speak the substances we need to do our experiments. Structure - means order. The contemplation and the comparison of different spatial structures allows the division of different basic subjects like: euclidian structures or physical structures or the depth of space and so on. To analyze or to design architectural space by using spatial structures as one possibility to do architectural work. As a summary: the experiment or the attempt to show architectural, spatial structures. Space and spatial structures are not only impressed by forms but also and as a main thing by action and moving in space. The role of full-scale modeling, of experimental work related to “reality” in architecture is to simulate basic situations which are not dependent on ideas how they are developed in particular. We try to give some instructions or impressions of elementary architectural structures which can be used as instruments to design space of life.
keywords Model Simulation, Real Environments
series other
type normal paper
last changed 2007/07/26 07:34

_id a9ca
authors Abadi Abbo, Isaac
year 1996
title EFFECTIVENESS OF MODELS
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary Architects use many types of models to simulate space either in their design process or as final specifications for building them. These models have been proved useful or effective for specific purposes. This paper evaluates architectural models in terms of five effectiveness components: time of development, cost, complexity, variables simulated and ecological validity. This series of models, used regularly in architecture, are analysed to finally produce a matrix that shows the effectiveness of the different models for specific purposes in architectural design, research and education. Special emphasis is given to three specific models: 1/10 scale, full-scale and computer generated.
keywords Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa/
last changed 2016/02/17 13:47

_id ascaad2004_paper11
id ascaad2004_paper11
authors Abdelfattah, Hesham Khairy and Ali A. Raouf
year 2004
title No More Fear or Doubt: Electronic Architecture in Architectural Education
source eDesign in Architecture: ASCAAD's First International Conference on Computer Aided Architectural Design, 7-9 December 2004, KFUPM, Saudi Arabia
summary Operating electronic and Internet worked tools for Architectural education is an important, and merely a prerequisite step toward creating powerful tele-collabortion and tele-research in our Architectural studios. The design studio, as physical place and pedagogical method, is the core of architectural education. The Carnegie Endowment report on architectural education, published in 1996, identified a comparably central role for studios in schools today. Advances in CAD and visualization, combined with technologies to communicate images, data, and “live” action, now enable virtual dimensions of studio experience. Students no longer need to gather at the same time and place to tackle the same design problem. Critics can comment over the network or by e-mail, and distinguished jurors can make virtual visits without being in the same room as the pin-up—if there is a pin-up (or a room). Virtual design studios (VDS) have the potential to support collaboration over competition, diversify student experiences, and redistribute the intellectual resources of architectural education across geographic and socioeconomic divisions. The challenge is to predict whether VDS will isolate students from a sense of place and materiality, or if it will provide future architects the tools to reconcile communication environments and physical space.
series ASCAAD
email
last changed 2007/04/08 19:47

_id c204
authors Aleksander Asanowicz
year 1996
title Teaching and Learning - Full Brainwash
doi https://doi.org/10.52842/conf.ecaade.1996.051
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 51-54
summary We often speak of changes in design process due to an application of computers. But in my opinion we more often rather speak of lack of changes. Lets hope that some day we will be able to witness full integrity and compatibility of design process and tools applied in it. Quite possible such an integrity may occur in the cyberspace. Nevertheless before that could happen some changes within the teaching methods at faculties of architecture, where despite great numbers of computer equipment used, the students are still being taught as in the XIX century. In terms of achieved results it proves ineffective because application of chalk and blackboard only will always loose to new media, which allow visual perception of dinosaurs in Jurassic Park. Our civilisation is the iconographic one. And that is why teaching methods are about to change. An application of computer as simply a slide projector seems to be way too expensive. New media demands new process and new process demands new media. Lets hope that could be achieved in cyberspace as being a combination of: classic ways of teaching, hypertext, multimedia, virtual reality and a new teaching methodology (as used in Berlitz English School - full brainwash). At our faculty several years ago we experimentally undertook and applied an Integrated Design Teaching Method. A student during design process of an object simultaneously learnt all aspects and functions of the object being designing i.e.: its structure, piping and wiring, material cost and even historic evolution of its form and function. Unfortunately that concept was too extravagant as for the seventies in our reality. At present due to wide implementation of new media and tools in design process we come to consider reimplementation of IDTM again.
series eCAADe
email
last changed 2022/06/07 07:54

_id e29d
authors Arvesen, Liv
year 1996
title LIGHT AS LANGUAGE
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary With the unlimited supply of electric light our surroundings very easily may be illuminated too strongly. Too much light is unpleasant for our eyes, and a high level of light in many cases disturbs the conception of form. Just as in a forest, we need shadows, contrasts and variation when we compose with light. If we focus on the term compose, it is natural to conceive our environment as a wholeness. In fact, this is not only aesthetically important, it is true in a physical context. Inspired by old windows several similar examples have been built in the Trondheim Full-scale Laboratory where depth is obtained by constructing shelves on each side of the opening. When daylight is fading, indirect artificial light from above gradually lightens the window. The opening is perceived as a space of light both during the day and when it is dark outside.

Another of the built examples at Trondheim University which will be presented, is a doctor's waitingroom. It is a case study of special interest because it often appears to be a neglected area. Let us start asking: What do we have in common when we are waiting to come in to a doctor? We are nervous and we feel sometimes miserable. Analysing the situation we understand the need for an interior that cares for our state of mind. The level of light is important in this situation. Light has to speak softly. Instead of the ordinary strong light in the middle of the ceiling, several spots are selected to lighten the small tables separating the seats. The separation is supposed to give a feeling of privacy. By the low row of reflected planes we experience an intimate and warming atmosphere in the room. A special place for children contributes to the total impression of calm. In this corner the inside of some shelves are lit by indirect light, an effect which puts emphasis on the small scale suitable for a child. And it also demonstrates the good results of variation. The light setting in this room shows how light is “caught” two different ways.

keywords Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa/
last changed 2004/05/04 14:34

_id 215e
authors Bai, Rui-Yuan and Liu, Yu-Tung
year 1998
title Towards a Computerized Procedure for Visual Impact Analysis and Assessment - The Hsinchu Example
doi https://doi.org/10.52842/conf.caadria.1998.067
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 67-76
summary This paper examines the procedure of visual impact analysis and assessment proposed by Rahman and reviews the use of CAD applications in urban projects in the real world. A preliminary computerized procedure for visual impact analysis and assessment is proposed. An experiments was conducted in our laboratory to verify the preliminary procedure. In order to further study the revised procedure in real urban projects, it was also applied into the renew project of The Eastern Gate Plaza located in the center of city Hsinchu, Taiwan from 1996 to 1998. According to several face-to-face discussions with Hsinchu habitants, government officials, and professional designers, a final computerized procedure for visual impact analysis and assessment is concluded.
keywords Environmental Simulation, Visual Impact Analysis and Assessment, Virtual Reality
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:54

_id d610
authors Burdea, G.C.
year 1996
title Force and Touch Feedback for Virtual Reality
source New York: John Wiley & Sons
summary Could weight, temperature, and texture combine to bring simulated objects to life? Describing cutting-edge technology that will influence the way we interact with computers for years to come, this pioneering book answers yes: not only is it possible, but devices capable of providing force and tactile sensory feedback already exist. Force and Touch Feedback for Virtual Reality is the first comprehensive source of information on the design, modeling, and applications of force and tactile interfaces for VR. It is a must have for scientists, engineers, psychologists, and developers involved in VR, and for anyone who would like to gain a deeper understanding of this exciting and fast-growing field. Complete with hundreds of tables, figures, and color illustrations, Force and Touch Feedback for Virtual Reality offers * Basic information on human tactile sensing and control and feedback actuator technology * A worldwide survey of force and tactile interface devices, from the simple joystick to full-body instrumented suits based on human factor tests * Step-by-step instructions for realistic physical modeling of virtual object characteristics such as weight, surface smoothness, compliance, and temperature * A unified treatment of the benefits of the new haptic interface technology for simulation and training based on human factor tests * A detailed analysis of optimum control requirements for force and tactile feedback devices * A review of emerging applications in areas ranging from surgical training and entertainment to telerobotics and the military
series other
last changed 2003/04/23 15:14

_id 4a71
authors Byrne, Christine M.
year 1996
title Water on tap : the use of virtual reality as an educational tool
source College of Engineering, University of Washington
summary A study was conducted that explored Virtual Reality (VR) as an educational tool. High school students created water molecules in an immersive virtual environment. They were tested on their knowledge of atomic and molecular structure before and after their VR experience. These results were compared to the test results of students who experienced other educational media in learning the same topic. The other media differed from VR in terms of immersion and interactivity. Interactivity was found to be significant, while immersion was found to be insignificant. Issues of training, world design, assessment, hardware resolution, and student population were suggested as possible reasons for immersion's lack of significance in this study.
keywords Virtual Reality; Education; Computer Programs; Evaluation; Chemistry; Study and Teaching
series thesis:PhD
last changed 2003/02/12 22:37

_id b27f
authors Campbell, Dace A.
year 1996
title Design in virtual environments using architectural metaphor : a HIT lab gallery
source University of Washington
summary This thesis explores the application and limitations of architectural metaphor in the design of virtual environments. Architecture, whether physical or virtual, is the expression of a society realized as meaningful space. Physical and virtual architecture have their own constraints and context, yet both use architectural organization as a way to order forms and spaces in the environment. Both strive to create meaningful place by defining space, and both must allow the participant to develop a cognitive map to orient and navigate in the space. The lack of physics of time and space in the virtual realm requires special attention and expression of its architecture in order for the participant to cope with transitions. These issues are exemplified by the development of an on-line gallery of virtual environments. Conclusions reached by the development of this design are discussed in the context of orientation, navigation, transition, enclosure, and scale.
keywords Virtual Reality; Human-Computer Interaction
series thesis:MSc
email
more http://www.hitl.washington.edu/publications/campbell/
last changed 2003/02/12 22:37

_id 88f9
authors Carrara, G., Novembri, G., Zorgno, A.M., Brusasco, P.L.
year 1997
title Virtual Studio of Design and Technology on Internet (I) - Educator's approach
doi https://doi.org/10.52842/conf.ecaade.1997.x.n2w
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
summary This paper presents a teaching experience involving students and professors from various universities, in Italy and abroad, which began in 1996 and is still on going. The Virtual Studios on the Internet (VSI) have some features in common with the Teaching Studios planned for the new programme of the faculties of Architecture in Italian universities. These are the definition of a common design theme, and the participation of disciplinary teachers. The greatest difference is in the modes of collaboration, which is achieved through information and communication technologies. The chief result of this is that the various work groups in different places can work and collaborate at the same time: the computer networks provide the means to express, communicate and share the design project.
keywords CAAD, Teaching of architectural design, Shared virtual reality, Virtualdesign studio, Collective intelligence.
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/lvi_i&ii/zorgno.html
last changed 2022/06/07 07:50

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 23HOMELOGIN (you are user _anon_975406 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002