CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 428

_id avocaad_2001_16
id avocaad_2001_16
authors Yu-Ying Chang, Yu-Tung Liu, Chien-Hui Wong
year 2001
title Some Phenomena of Spatial Characteristics of Cyberspace
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary "Space," which has long been an important concept in architecture (Bloomer & Moore, 1977; Mitchell, 1995, 1999), has attracted interest of researchers from various academic disciplines in recent years (Agnew, 1993; Benko & Strohmayer, 1996; Chang, 1999; Foucault, 1982; Gould, 1998). Researchers from disciplines such as anthropology, geography, sociology, philosophy, and linguistics regard it as the basis of the discussion of various theories in social sciences and humanities (Chen, 1999). On the other hand, since the invention of Internet, Internet users have been experiencing a new and magic "world." According to the definitions in traditional architecture theories, "space" is generated whenever people define a finite void by some physical elements (Zevi, 1985). However, although Internet is a virtual, immense, invisible and intangible world, navigating in it, we can still sense the very presence of ourselves and others in a wonderland. This sense could be testified by our naming of Internet as Cyberspace -- an exotic kind of space. Therefore, as people nowadays rely more and more on the Internet in their daily life, and as more and more architectural scholars and designers begin to invest their efforts in the design of virtual places online (e.g., Maher, 1999; Li & Maher, 2000), we cannot help but ask whether there are indeed sensible spaces in Internet. And if yes, these spaces exist in terms of what forms and created by what ways?To join the current interdisciplinary discussion on the issue of space, and to obtain new definition as well as insightful understanding of "space", this study explores the spatial phenomena in Internet. We hope that our findings would ultimately be also useful for contemporary architectural designers and scholars in their designs in the real world.As a preliminary exploration, the main objective of this study is to discover the elements involved in the creation/construction of Internet spaces and to examine the relationship between human participants and Internet spaces. In addition, this study also attempts to investigate whether participants from different academic disciplines define or experience Internet spaces in different ways, and to find what spatial elements of Internet they emphasize the most.In order to achieve a more comprehensive understanding of the spatial phenomena in Internet and to overcome the subjectivity of the members of the research team, the research design of this study was divided into two stages. At the first stage, we conducted literature review to study existing theories of space (which are based on observations and investigations of the physical world). At the second stage of this study, we recruited 8 Internet regular users to approach this topic from different point of views, and to see whether people with different academic training would define and experience Internet spaces differently.The results of this study reveal that the relationship between human participants and Internet spaces is different from that between human participants and physical spaces. In the physical world, physical elements of space must be established first; it then begins to be regarded as a place after interaction between/among human participants or interaction between human participants and the physical environment. In contrast, in Internet, a sense of place is first created through human interactions (or activities), Internet participants then begin to sense the existence of a space. Therefore, it seems that, among the many spatial elements of Internet we found, "interaction/reciprocity" Ñ either between/among human participants or between human participants and the computer interface Ð seems to be the most crucial element.In addition, another interesting result of this study is that verbal (linguistic) elements could provoke a sense of space in a degree higher than 2D visual representation and no less than 3D visual simulations. Nevertheless, verbal and 3D visual elements seem to work in different ways in terms of cognitive behaviors: Verbal elements provoke visual imagery and other sensory perceptions by "imagining" and then excite personal experiences of space; visual elements, on the other hand, provoke and excite visual experiences of space directly by "mapping".Finally, it was found that participants with different academic training did experience and define space differently. For example, when experiencing and analyzing Internet spaces, architecture designers, the creators of the physical world, emphasize the design of circulation and orientation, while participants with linguistics training focus more on subtle language usage. Visual designers tend to analyze the graphical elements of virtual spaces based on traditional painting theories; industrial designers, on the other hand, tend to treat these spaces as industrial products, emphasizing concept of user-center and the control of the computer interface.The findings of this study seem to add new information to our understanding of virtual space. It would be interesting for future studies to investigate how this information influences architectural designers in their real-world practices in this digital age. In addition, to obtain a fuller picture of Internet space, further research is needed to study the same issue by examining more Internet participants who have no formal linguistics and graphical training.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id c204
authors Aleksander Asanowicz
year 1996
title Teaching and Learning - Full Brainwash
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 51-54
doi https://doi.org/10.52842/conf.ecaade.1996.051
summary We often speak of changes in design process due to an application of computers. But in my opinion we more often rather speak of lack of changes. Lets hope that some day we will be able to witness full integrity and compatibility of design process and tools applied in it. Quite possible such an integrity may occur in the cyberspace. Nevertheless before that could happen some changes within the teaching methods at faculties of architecture, where despite great numbers of computer equipment used, the students are still being taught as in the XIX century. In terms of achieved results it proves ineffective because application of chalk and blackboard only will always loose to new media, which allow visual perception of dinosaurs in Jurassic Park. Our civilisation is the iconographic one. And that is why teaching methods are about to change. An application of computer as simply a slide projector seems to be way too expensive. New media demands new process and new process demands new media. Lets hope that could be achieved in cyberspace as being a combination of: classic ways of teaching, hypertext, multimedia, virtual reality and a new teaching methodology (as used in Berlitz English School - full brainwash). At our faculty several years ago we experimentally undertook and applied an Integrated Design Teaching Method. A student during design process of an object simultaneously learnt all aspects and functions of the object being designing i.e.: its structure, piping and wiring, material cost and even historic evolution of its form and function. Unfortunately that concept was too extravagant as for the seventies in our reality. At present due to wide implementation of new media and tools in design process we come to consider reimplementation of IDTM again.
series eCAADe
email
last changed 2022/06/07 07:54

_id 8ded
authors Anders, Peter
year 1996
title Envisioning Cyberspace: The Design of On-Line Communities
source Design Computation: Collaboration, Reasoning, Pedagogy [ACADIA Conference Proceedings / ISBN 1-880250-05-5] Tucson (Arizona / USA) October 31 - November 2, 1996, pp. 55-67
doi https://doi.org/10.52842/conf.acadia.1996.055
summary The development of the World Wide Web into an active, visual social environment poses unique opportunities for the design professions. Multi-user Domains, social meeting places in cyberspace, are mostly text-based virtual realities which use spatial references to set the stage for social interaction. Over the past year design students at the New Jersey Institute of Technology School of Architecture have investigated several text-based domains. In the course of their work, they envisioned and graphically portrayed these environments as immersive virtual realities through the use of computer animation. Their studies addressed issues ranging from the nature of symbolic motion to social/political structures of these domains.
series ACADIA
email
last changed 2022/06/07 07:54

_id af94
authors Anumba, C.J.
year 1996
title Data structures and DBMS for computer-aided design systems
source Advances in Engineering Software, 25(2/3), 123-129
summary The structures for the storage of data in CAD systems influence to a large extent the effectiveness of the system. This paper reviews the wide range of data structures and database management systems (DBMS) available for structuring CAD data. Examples of basic data types are drawn from the MODULA-2 language. The relationship between these basic data types, their composite structures and the classical data models (on which many DBMS are based) is discussed, and the limitations of existing DBMS in modelling CAD data highlighted. A set of requirements for CAD database management systems is drawn up and the emerging role of product models (which seek to encapsulate the totality of data elements required to define fully an engineering artefact) is explored.
series journal paper
last changed 2003/04/23 15:14

_id e29d
authors Arvesen, Liv
year 1996
title LIGHT AS LANGUAGE
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary With the unlimited supply of electric light our surroundings very easily may be illuminated too strongly. Too much light is unpleasant for our eyes, and a high level of light in many cases disturbs the conception of form. Just as in a forest, we need shadows, contrasts and variation when we compose with light. If we focus on the term compose, it is natural to conceive our environment as a wholeness. In fact, this is not only aesthetically important, it is true in a physical context. Inspired by old windows several similar examples have been built in the Trondheim Full-scale Laboratory where depth is obtained by constructing shelves on each side of the opening. When daylight is fading, indirect artificial light from above gradually lightens the window. The opening is perceived as a space of light both during the day and when it is dark outside.

Another of the built examples at Trondheim University which will be presented, is a doctor's waitingroom. It is a case study of special interest because it often appears to be a neglected area. Let us start asking: What do we have in common when we are waiting to come in to a doctor? We are nervous and we feel sometimes miserable. Analysing the situation we understand the need for an interior that cares for our state of mind. The level of light is important in this situation. Light has to speak softly. Instead of the ordinary strong light in the middle of the ceiling, several spots are selected to lighten the small tables separating the seats. The separation is supposed to give a feeling of privacy. By the low row of reflected planes we experience an intimate and warming atmosphere in the room. A special place for children contributes to the total impression of calm. In this corner the inside of some shelves are lit by indirect light, an effect which puts emphasis on the small scale suitable for a child. And it also demonstrates the good results of variation. The light setting in this room shows how light is “caught” two different ways.

keywords Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa/
last changed 2004/05/04 14:34

_id ddssar9611
id ddssar9611
authors de Gelder, Johan and Lucardie, Larry
year 1996
title Criteria for the Selection of Conceptual Modelling Languages for Knowledge Based Systems
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary In recent years knowledge is increasingly recognised as a critical production factor for organisations. Performance of activities such as designing, diagnosing, advising and decision making, depend on the availability and accessibility of knowledge. However, the increasing volume and complexity of knowledge endangers its availability and accessibility. By their knowledge processing competence, knowledge based systems containing a structured and explicit representation of knowledge, are expected to solve this problem. In the realisation of a knowledge based system, the phase in which a knowledge model is reconstructed through a conceptual language, is essential. Because the knowledge model has to be an adequate reflection of real-world knowledge, the conceptual language should not only offer sufficient expressiveness for unambiguous knowledge representation, but also provide facilities to validate knowledge on correctness, completeness and consistency. Furthermore, the language should supply facilities to be processed by a computer. This paper discusses fundamental criteria to select a conceptual language for modelling the knowledge of a knowledge based system. It substantiates the claim that the selection depends on the nature of the knowledge in the application domain. By analysing the nature of knowledge using the theory of functional object-types, a framework to compare, evaluate and select a conceptual language is presented. To illustrate the selection process, the paper describes the choice of a conceptual language of a knowledge based system for checking office buildings on fire-safety demands. In this application domain, the language formed by decision tables has been selected to develop the conceptual model. The paper provides an in-depth motivation why decision tables form the best language to model the knowledge in this case.
series DDSS
last changed 2003/08/07 16:36

_id 0adc
authors Glanville, R.
year 1996
title Communication without Coding: Cybernetics, Meaning and Language (How Language, becoming a System, Betrays itself)
source Modern Language Notes, Vol 111, no 3 (ad Wellbery, D)
summary In this essay communication is considered as a cybernetic system in which two participants (the representer and the representee) share a representation (made up of a representing and a represented), each constructing his own meaning from the identity of the representing and the represented in the representation in the form of a conversation. Meaning, in this context, is not seen as lying in any part of the representation. This system is modified so as to incorporate a meta- and a subconversation which allow the participants in the conversation to negociate agreement more effectively, and to better handle error. Types of agreement are examined, as is the conversation as a source of novelty. Further pragmatic considerations are introduced such that a series of agreements may allow it to appear that there is, after all, meaning in the act of representation, although this is always a matter of "as if". Certain consequences of this cybernetic system are developed and some of the prerequisites for such a system to exist are explored. Possible tests (and the value of such testing) are considered.
series other
email
last changed 2003/04/23 15:50

_id b6a7
authors Jensen, K.
year 1996
title Coloured Petri Nets: Basic Concepts
source 2nd ed., Springer Verlag, Berlin
summary This book presents a coherent description of the theoretical and practical aspects of Coloured Petri Nets (CP-nets or CPN). It shows how CP-nets have been developed - from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and/or computers communicate by means of some more or less formal rules). The book contains the formal definition of CP-nets and the mathematical theory behind their analysis methods. However, it has been the intention to write the book in such a way that it also becomes attractive to readers who are more interested in applications than the underlying mathematics. This means that a large part of the book is written in a style which is closer to an engineering textbook (or a users' manual) than it is to a typical textbook in theoretical computer science. The book consists of three separate volumes. The first volume defines the net model (i.e., hierarchical CP-nets) and the basic concepts (e.g., the different behavioural properties such as deadlocks, fairness and home markings). It gives a detailed presentation of many small examples and a brief overview of some industrial applications. It introduces the formal analysis methods. Finally, it contains a description of a set of CPN tools which support the practical use of CP-nets. Most of the material in this volume is application oriented. The purpose of the volume is to teach the reader how to construct CPN models and how to analyse these by means of simulation. The second volume contains a detailed presentation of the theory behind the formal analysis methods - in particular occurrence graphs with equivalence classes and place/transition invariants. It also describes how these analysis methods are supported by computer tools. Parts of this volume are rather theoretical while other parts are application oriented. The purpose of the volume is to teach the reader how to use the formal analysis methods. This will not necessarily require a deep understanding of the underlying mathematical theory (although such knowledge will of course be a help). The third volume contains a detailed description of a selection of industrial applications. The purpose is to document the most important ideas and experiences from the projects - in a way which is useful for readers who do not yet have personal experience with the construction and analysis of large CPN diagrams. Another purpose is to demonstrate the feasibility of using CP-nets and the CPN tools for such projects. Together the three volumes present the theory behind CP-nets, the supporting CPN tools and some of the practical experiences with CP-nets and the tools. In our opinion it is extremely important that these three research areas have been developed simultaneously. The three areas influence each other and none of them could be adequately developed without the other two. As an example, we think it would have been totally impossible to develop the hierarchy concepts of CP-nets without simultaneously having a solid background in the theory of CP-nets, a good idea for a tool to support the hierarchy concepts, and a thorough knowledge of the typical application areas.
series other
last changed 2003/04/23 15:14

_id 06e1
authors Keul, Alexander
year 1996
title LOST IN SPACE? ARCHITECTURAL PSYCHOLOGY - PAST, PRESENT, FUTURE
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary A methodological review by Kaminski (1995) summed up five perspectives in environmental psychology - patterns of spatial distribution, everyday “jigsaw puzzles”, functional everyday action systems, sociocultural change and evolution of competence. Architectural psychology (named so at the Strathclyde conference 1969; Canter, 1973) as psychology of built environments is one leg of environmental psychology, the second one being psychology of environmental protection. Architectural psychology has come of age and passed its 25th birthday. Thus, a triangulation of its position, especially in Central Europe, seems interesting and necessary. A recent survey mainly on university projects in German-speaking countries (Kruse & Trimpin, 1995) found a marked decrease of studies in psychology of built environments. 1994, 25% of all projects were reported in this category, which in 1975 had made up 40% (Kruse, 1975). Guenther, in an unpublished survey of BDP (association of professional German psychologists) members, encountered only a handful active in architectural psychology - mostly part-time, not full-time. 1996, Austria has two full-time university specialists. The discrepancy between the general interest displayed by planners and a still low institutionalization is noticeable.

How is the research situation? Using several standard research data banks, the author collected articles and book(chapter)s on architectural psychology in German- and English-language countries from 1990 to 1996. Studies on main architecture-psychology interface problems such as user needs, housing quality evaluations, participatory planning and spatial simulation / virtual reality did not outline an “old, settled” discipline, but rather the sketchy, random surface of a field “always starting anew”. E.g., discussions at the 1995 EAEA-Conference showed that several architectural simulation studies since 1973 caused no major impact on planner's opinions (Keul&Martens, 1996). “Re-inventions of the wheel” are caused by a lack of meetings (except this one!) and of interdisciplinary infrastructure in German-language countries (contrary to Sweden or the United States). Social pressures building up on architecture nowadays by inter-European competition, budget cuts and citizen activities for informed consent in most urban projects are a new challenge for planners to cooperate efficiently with social scientists. At Salzburg, the author currently manages the Corporate Design-process for the Chamber of Architecture, Division for Upper Austria and Salzburg. A “working group for architectural psychology” (Keul-Martens-Maderthaner) has been active since 1994.

keywords Model Simulation, Real Environments
series EAEA
type normal paper
email
more http://info.tuwien.ac.at/efa/
last changed 2005/09/09 10:43

_id ecaade2012_087
id ecaade2012_087
authors Lorenz, Wolfgang E.
year 2012
title Estimating the Fractal Dimension of Architecture: Using two Measurement Methods implemented in AutoCAD by VBA
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 505-513
doi https://doi.org/10.52842/conf.ecaade.2012.1.505
wos WOS:000330322400052
summary The concept of describing and analyzing architecture from a fractal point of view, on which this paper is based, can be traced back to Benoît Mandelbrot (1981) and Carl Bovill (1996) to a considerable extent. In particular, this includes the distinction between scalebound (offering a limited number of characteristic elements) and scaling objects (offering many characteristic elements of scale) made by B. Mandelbrot (1981). In the fi rst place such a differentiation is based upon a visual description. This paper explores the possibility of assistance by two measurement methods, fi rst time introduced to architecture by C. Bovill (1996). While the box-counting method measures or more precisely estimates the box-counting dimension D b of objects (e.g. facades), range analysis examines the rhythm of a design. As CAD programs are familiar to architects during design processes, the author implemented both methods in AutoCAD using the scripting language VBA. First measurements indicate promising results for indicating the distinction between what B. Mandelbrot called scalebound and scaling buildings.
keywords Box-Counting Method; Range Analysis; Hurst-Exponent; Analyzing Architecture; Scalebound and Scaling objects
series eCAADe
email
last changed 2022/06/07 07:59

_id ga9927
id ga9927
authors Neagu, Mariana
year 1999
title On Linguistic Aspects from a Cross-cultural Perspective
source International Conference on Generative Art
summary The goal of this paper is to discuss the issue of culture and its relationship to language and cognition by dealing with a number of lexical concepts, grammatical concepts and cultural scripts. Taking a moderate view, I reconcile universalism and ethnocentrism and argue that the study of culture-specific aspects of language has both a theoretical and practical importance. The role of universal semantic primes is obvious in culture-specific words such as the Japanese amae (a peculiarly Japanese emotion) which, though unique and untranslatable, can be accurately and intelligibly defined in terms of semantic primes (Wierzbicka, 1996). The view that meanings cannot be fully transferred from one language to another is supported by the difference in meaning manifested in the different range of use of the word happy (a common, everyday word in modern English) and joyful (a more literally and stylistically marked term.). A cross-linguistic analysis of the concept ‘happy’in English, Romanian, German, French, Italian, points to the so-called ‘traditional Anglo-Saxon distate for extreme emotions’. As far as aspects of grammar connected with culture are concerned, I compare expressive grammatical devices like intensifiers in English, Romanian and Italian. The question the paper addresses is whether constructions like syntactic reduplication(e.g. bella bella) and the absolute superlative (e.g. bellissimo) are indeed linked with what has been called ‘the theatrical quality’ of Italian life (Barzini, 1964) or not. Relative to Romanian, I assume that the idea of intensity of a state or action is conveyed, in certain registers, by terms and expressions pertaining to basic element source domains such as fire (e.g. frumoasa foc ‘fire-beautiful’) and earth (e.g. frumusetea pamantului ‘beauty of the earth’) and also by syntactic reduplication (e.g. frumoasa-frumoaselor ’beauty of the beauties’). Finally, I approach aspects of pragmatics which are culturally determined in the sense that they express cultural norms, values, ideals, attitudes. For instance, preferences are expressed directly in English while in Japanese this manner is contrary to the ideal of enryo ’restraint, reserve’.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 29bf
authors Shields, R. (ed.)
year 1996
title Cultures of Internet: Virtual Spaces, Real Histories, Living Bodies
source Sage, London
summary The Internet is here but have we caught up with all its implications for culture and everyday life? This collection of original articles on the development of computer-mediated communications brings together many of the most accomplished writers on the Net and cyberspace. Cultures of Internet examines the arrival of e-mail and online discussion groups, and considers the prospect of an `online world' - a playground for virtual bodies in which identities are flexible, swappable and disconnected from real-world bodies. The book traces the rise of virtual conviviality and how it supplements the physical encounters between actors in public spaces that are abandoned to the homeless. The book is distinguished by a critical and social tone. For the first time, it presents systematic descriptions of the development of the Internet, its history in the military-industrial complex, the role of state policies leading, for example, to the creation of Minitel, and the building of information `superhighways'. It also explores the development of this technology as a commercialized leisure form and a forum for underground political organization and critique. Accessible and lively, the book draws in contributions from Europe, North America and developing countries. It will appeal to students of sociology, cultural studies and computer studies.
series other
last changed 2003/04/23 15:14

_id 0ec9
authors Agranovich-Ponomareva. E., Litvinova, A. And Mickich, A.
year 1996
title Architectural Computing in School and Real Designing
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 25-28
doi https://doi.org/10.52842/conf.ecaade.1996.025
summary The existing system of architectural education ( including computer ) as has shown practice has appeared not absolutly perfect. It not capable to dynamic changes, active introduction of a new engineering and computer technologies, to realization about of the inquiries of a modern time. It suggest of a way of search of new models of computer training. The computer education is represented by us as certain a universal system, which permits to solve the problem of arcitectural education at a higher level. The opportunities of computers and computer technologies at such approach are used as means of increase of efficiency teaching and training. The orientation goes on final result: a opportunity to generate of the creative decisions by learnees, based on attraction of received knowledge and use for their realization of arsenal of practical skills and skills. The system represents not only certain set of experiences elements, necessary and final result sufficient for achievement, but also quite certain interrelation between them. It means, that the knowledge from a initial rate " The Introduction in computer training" must be secured and transformed for utilization in special rates and through them- in practice. The functional nucleus of the software package of such universal system is under construction as opened, apparatus an independent system. A central part of a system is a database, the structure of which is uniform for all other modules and side of enclosures. The conceptual model of a system is under construction on principles structure idea, visualization, multimedia. The listed principles are realized in model so that to encourage the user to independent creative work.

series eCAADe
last changed 2022/06/07 07:54

_id cf57
authors Anumba, C.J.
year 1996
title Functional Integration in CAD Systems
source Advances in Engineering Software, 25, 103-109
summary This paper examines the issue of integration in CAD systems and argues that for integration to be effective, it must address the functional aspects of a CAD system. It discusses the need for integrated systems and, within a structural engineering context, identifies several facets of integration that should be targeted. These include 2-D drafting and 3-D modelling, graphical and non-graphical design information, the CAD data structure and its user interface, as well as integration of the drafting function with other engineering applications. Means of achieving these levels of integration are briefly discussed and a prognosis for the future development of integrated systems explored. Particular attention is paid to the emergence (and potential role) of `product models' which seek to encapsulate the full range of data elements required to define completely an engineering artefact.
series journal paper
last changed 2003/04/23 15:14

_id 452d
authors Arlati, E., Bottelli, V. and Fogh, C.
year 1996
title Applying CBR to the Teaching of Architectural Design
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 41-50
doi https://doi.org/10.52842/conf.ecaade.1996.041
summary This paper presents an approach to the analysis and description of the nature of process knowledge in architectural design, the development of a conceptual model for Galathea, a case-based navigation tool for its support, and the application of this theoretical foundation to the teaching of design to a group of about 100 second-year architecture students. Design is assumed as a globally coherent information, memory and experience-intensive process in which professional skill is the capability to govern a large number of continually evolving variables in the direction of desired change. This viewpoint on design has guided the development of Galathea, the model of a tool aimed at describing architectural design through the description, mapping and management of the complete decision-making path of projects by means of the dynamic representation of the relationship between goals, constraints and the decisions/actions adopted at specific nodes and through the creation of a case-base aimed at the storage, retrieval and adaptation of relevant design moves in similar project contexts. This conceptual model is applied to educational activity at the faculty of Architecture of Milan, with the aim of teaching how to govern a project from the outset considering it as an evolving but coherent map of design moves, which allow the adoption of the correct decisions involving the most disparate types of information, experience and memory, and which altogether conduct to the desired goal. The resolution paths of the students, all applied to the same architecture problem, result in a design move case-base, the further utilisation and interest of which is open to collegial discussion.
keywords knowledge-based design; case-based reasoning; design process control, design moves
series eCAADe
email
last changed 2022/06/07 07:54

_id 7135
authors Arumi-Noe, F.
year 1996
title Algorithm for the geometric construction of an optimum shading device
source Automation in Construction 5 (3) (1996) pp. 211-217
summary Given that there is a need to shade a window from the summer sun and also a need to expose it to the winter sun, this article describes an algorithm to design automatically a geometric construct that satisfies both requirements. The construct obtained represents the minimum solution to the simultaneous requirements. The window may be described by an arbitrary convex polygon and it may be oriented in any direction, and it may be placed at any chosen latitude. The algorithm consists of two sequential steps: first to find a winter solar funnel surface; and the second to clip the surface subject to the summer shading conditions. The article introduces the design problem, illustrates the results through two examples, outlines the logic of the algorithm and includes the derivation of the mathematical relations required to implement the algorithm. This work is part of the MUSES project, which is a long term research effort to integrate Energy Consciousness with Computer Graphics in Architectural Design.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 438d
authors Bartnicka, Malgorzata
year 1996
title Who Uses Whom
source CAD Creativeness [Conference Proceedings / ISBN 83-905377-0-2] Bialystock (Poland), 25-27 April 1996 pp. 21-26
summary For many years architects have been improving their tools in order to make their visions most comprehensible to the future customers - investor and building contractor. Not everyone is able to read the technical drawings of the designed building as it requires the spatial imagination to be developed. For such non-professional persons and also because of the innate need of convenience architect has decided to use a machine called computer. With the help of computer technical drawings, axonometries, perspectives and colourful pictures are being created. They show reality in a more or less precise way. Architects eagerly use such methods of presentation as perspective views, that is photographic images of objects which do not yet exist. All of these measures taken are just a kind of advertising. The architect wants to sell his vision in the most accessible way to beat the competition.
series plCAD
last changed 1999/04/09 15:30

_id ddssar9638
id ddssar9638
authors Bax, M.F.Th. and Trum, H.M.G.J.
year 1996
title A Conceptual Model for Concurrent Engineering in Building Design according to Domain Theory
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Spa, Belgium), August 18-21, 1996
summary Concurrent engineering is a design strategy in which various designers participate in a co-ordinated parallel process. In this process series of functions are simultaneously integrated into a common form. Processes of this type ask for the identification, definition and specification of relatively independent design fields. They also ask for specific design knowledge designers should master in order to participate in these processes. The paper presents a conceptual model of co-ordinated parallel design processes in which architectural space is simultaneously defined in the intersection of three systems: a morphological or level-bound system, a functional or domain-bound system and a procedural or phase-bound system. Design strategies for concurrent engineering are concerned with process design, a design task which is comparable to the design of objects. For successfully accomplishing this task, knowledge is needed of the structural properties of objects and systems; more specifically of the morphological, functional and procedural levels which condition the design fields from which these objects emerge, of the series of generic forms which condition their appearance and of the typological knowledge which conditions their coherence in the overall process.
series DDSS
last changed 2003/11/21 15:16

_id c19c
authors Beliveau, Y.J.
year 1996
title What can real-time positioning do for construction?
source Automation in Construction 5 (2) (1996) pp. 79-89
summary New technologies are now available that can rapidly measure three-dimensional coordinates of objects. The integration of these fast 3-D Real-time Position Measurement (D-RtPM) devices and CAD (3D-RtPM/CAD) technologies can be viewed as a better tool for surveyors or as a means to change the most fundamental concepts of the construction industry. 3D-RtPM/CAD is a better surveying tool; however, 3D-RtPM/CAD as the basis for fundamental change within the construction industry is the issue. There are several potential technologies that can provide real-time position measurement. This paper will limit presentation to two of these. The first is based on recent developments in Global Positioning Systems. The second is a new laser-based product, OdysseyTM (Odyssey is a trademark of Spatial Positioning Systems, Inc.). Odyssey received the NOVA award in March, 1995 because of its recognized performance enhancement to the construction industry. These positioning systems provide the capability for equipment and crafts people to view the project from a graphical representation in which they see their position interactively updated. Potential benefits to the construction industry are presented. The research needed achieving maximum benefits of these systems is also presented.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 21HOMELOGIN (you are user _anon_252690 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002