CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures
Hits 1 to 20 of 490
Reformat results as: short short into frame detailed detailed into frame
Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.
Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.
These all are dealing with the material world, for which the tools of computer science are highly appropriate. But what will happen to the immaterial world? How can we put these immaterial values into a computers model? Or can the computer be creative as a human being? Early developments of computer science in the field of architecture involved two-dimensional applications, and subsequently the significance of the third dimension became manifest. Nowadays, however, people are already speaking of a fourth dimension, interpreting it as time or as dynamics. And what, for instance, would a fifth, sixth or X-dimension represent?
In the future we will perhaps speak of the fifth dimension, comprising the tangible qualities of the building materials around us. And one day a sixth dimension might be created, when it will be possible to establish direct communication with computers, because direct exchange between the computer and the human brain has been realised. The ideas of designers can then be processed by the computer directly, and we will no longer be hampered by obstacles such as screen and keyboard. There are scientist who are working to realize bio-chips. If it will work, perhaps we can realise all these speculations. It is nearly sure that the emergence of new technologies will also affect our subject area, architecture and this will create fresh challenges, fresh concepts, and new buildings in the 21st century. The responsibility of the architects must be, to bear in mind that we are dealing with the well-being and the prosperity of mankind.
Environmental psychologists specializing in architectural psychology offer "user needs' assessments" and "post occupancy evaluations" to facilitate communication between users and experts. To compare the efficiency of building descriptions, building walkthroughs, regular plans, simulation, and direct, long-time exposition, evaluation has to be evaluated.
Computer visualizations and virtual realities grow more important, but studies on the effects of simulation techniques upon experts and users are rare. As a contribution to the field of architectural simulation, an expert - user comparison of CAD versus endoscopy/model simulations of a Vienna city project was realized in 1995. The Department for Spatial Simulation at the Vienna University of Technology provided diaslides of the planned city development at Aspern showing a) CAD and b) endoscopy photos of small-scale polystyrol models. In an experimental design, they were presented uncommented as images of "PROJECT A" versus "PROJECT B" to student groups of architects and non-architects at Vienna and Salzburg (n= 95) and assessed by semantic differentials. Two contradictory hypotheses were tested: 1. The "selective framing hypothesis" (SFH) as the subjective theory of planners, postulating different judgement effects (measured by item means of the semantic differential) through selective attention of the planners versus material- and context-bound perception of the untrained users. 2. The "general framing hypothesis" (GFH) postulates typical framing and distraction effects of all simulation techniques affecting experts as well as non-experts.
The experiment showed that -counter-intuitive to expert opinions- framing and distraction were prominent both for experts and lay people (= GFH). A position effect (assessment interaction of CAD and endoscopy) was present with experts and non-experts, too. With empirical evidence for "the medium is the message", a more cautious attitude has to be adopted towards simulation products as powerful framing (i.e. perception- and opinion-shaping) devices.
For more results click below: