CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 7 of 7

_id d6d5
authors Mahdavi, A., Mathew, P., Kumar, S. and Wong, N.
year 1997
title Bi-directional computational design support in the SEMPER environment
source Automation in Construction 6 (4) (1997) pp. 353-373
summary We present a computational environment for bi-directional multi-domain building design support. We first describe the overall structure and the salient features of this computational environment (SEMPER). We then discuss in detail its bi-directional inference capability. We conclude with illustrative case studies.
series journal paper
email
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id e82c
authors Mahdavi, A., Mathew, P. and Wong, N.H.
year 1997
title A Homology-Based Mapping Approach to Concurrent Multi-Domain Performance Evaluation
doi https://doi.org/10.52842/conf.caadria.1997.237
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 237-246
summary Over the past several years there have been a number of research efforts to develop integrated computational tools which seek to effectively support concurrent design and performance evaluation. In prior research, we have argued that elegant and effective solutions for concurrent, integrated design and simulation support systems can be found if the potentially existing structural homologies in general (configurational) and domain-specific (technical) building representations are creatively exploited. We present the use of such structural homologies to facilitate seamless and dynamic communication between a general building representation and multiple performance simulation modules – specifically, a thermal analysis and an air-flow simulation module. As a proof of concept, we demonstrate a computational design environment (SEMPER) that dynamically (and autonomously) links an object-oriented space-based design model, with structurally homologous object models of various simulation routines.
series CAADRIA
email
last changed 2022/06/07 07:59

_id e821
authors Hartkopf, V., Loftness, V., Mahdavi, A., Lee, S. and Shankavaram, J.
year 1997
title An integrated approach to design and engineering of intelligent buildings--The Intelligent Workplace at Carnegie Mellon University
source Automation in Construction 6 (5-6) (1997) pp. 401-415
summary In the past few years, there have been significant advances made in the design and engineering of "intelligent" workplaces, buildings that not only accommodate major advances in office technology but provide better physical and environmental settings for the occupants. This paper will briefly present recent approaches to the creation of innovative environments for the advanced workplace. The architectural and engineering advances demonstrated in Japan, Germany, North America, the United Kingdom, and France can be summarized in four major system categories: (1) enclosure innovations including approaches to load balancing, natural ventilation, and daylighting; (2) heating, ventilation and air-conditioning (HVAC) system innovations including approaches to local control and improved environmental contact; (3) data/voice/power "connectivity" innovations; and (4) interior system innovations, including approaches to workstation and workgroup design for improved spatial, thermal, acoustic, visual, and air quality. In-depth international field studies of over 20 intelligent office buildings have been carried out by a multidisciplinary expert team of the Advanced Building Systems Integration Consortium (ABSIC) based at Carnegie Mellon University. ABSIC is a university-industry-government partnership focused on the definition and development of the advanced workplace. The ABSIC field team evaluated the component and integrated system innovations for their multidimensional performance qualities, through expert analysis, occupancy assessments, and field diagnostics. Based on the results of the case studies and building on the most recent technological advances, the ABSIC team developed the concepts for the Intelligent Workplace, a 7000 square foot living laboratory of office environments and innovations. This project is now under construction at Carnegie Mellon University and its features are discussed in the second section of this paper.
series journal paper
email
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 6577
authors Lam, K.P., Mahdavi A. and Pal, V.
year 1997
title Algorithm and Context: A Case Study of Reliability in Computational Daylight Modeling
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 331-344
summary The systematic use of reliable modeling data is believed to improve the building design quality. The key term here is "reliability". There is general agreement that reliability in the context of modeling- assisted CAAD depends on the accurate description of both contextual parameters (climate, site, etc.) and ~building features (geometric and non-geometric properties) as well as the validity of the underlying simulation algorithms. In this paper, we specifically address the importance of detailed contextual information and computational algorithms for the reliability of the daylight modeling results.
series CAAD Futures
email
last changed 2003/02/26 17:26

_id 246c
authors Mahdavi, A. and Pal, V.
year 1997
title On the Problem of Operative Information in CAAD
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 231-244
summary Computational building performance modeling typically generates large amounts of data. For this data to become operative information, i.e., provide effective feedback to the design process, it must adequately interface with the informational requirements and procedural characteristics of the building delivery process. Toward this end, this paper specifically addresses the potential of aggregate space-time performance indicators.
series CAAD Futures
email
last changed 2003/02/26 17:26

_id 6f73
authors Mahdavi, Ardeshir
year 1997
title Modeling-Assisted Building Control
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 219-229
summary The architectural research on provision of computational support for the building delivery process in general and computer aided performance modeling in particular has traditionally concentrated on the building design phase. This paper argues that computational modeling can also successfully apply to the building operation phase. To demonstrate this potential the paper explores a simulation- assisted building control strategy. Specifically, the use of generate-and-test as well as bi-directional inference methods is proposed to derive preferable control schemes and required attributes for control variables based on parametric and iterative simulation runs. The feasibility of the approach is demonstrated via illustrative computational examples from the thermal control domain.
series CAAD Futures
email
last changed 2003/02/26 17:26

_id 498a
authors Mahdavi, Ardeshir
year 1997
title A Negentropic View of Computational Modeling
doi https://doi.org/10.52842/conf.caadria.1997.107
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 107-121
summary I propose a systemic view of computational modeling in architecture that is inspired by concepts in human ecology, information theory and thermodynamics.
series CAADRIA
email
last changed 2022/06/07 07:59

No more hits.

HOMELOGIN (you are user _anon_884346 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002