CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 517

_id 389b
authors Do, Ellen Yi-Luen
year 2000
title Sketch that Scene for Me: Creating Virtual Worlds by Freehand Drawing
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 265-268
doi https://doi.org/10.52842/conf.ecaade.2000.265
summary With the Web people can now view virtual threedimensional worlds and explore virtual space. Increasingly, novice users are interested in creating 3D Web sites. Virtual Reality Modeling Language gained ISO status in 1997, although it is being supplanted by the compatible Java3D API and alternative 3D Web technologies compete. Viewing VRML scenes is relatively straightforward on most hardware platforms and browsers, but currently there are only two ways to create 3D virtual scenes: One is to code the scene directly using VRML. The other is to use existing CAD and modeling software, and save the world in VRML format or convert to VRML from some other format. Both methods are time consuming, cumbersome, and have steep learning curves. Pen-based user interfaces, on the other hand, are for many an easy and intuitive method for graphics input. Not only are people familiar with the look and feel of paper and pencil, novice users also find it less intimidating to draw what they want, where they want it instead of using a complicated tool palette and pull-down menus. Architects and designers use sketches as a primary tool to generate design ideas and to explore alternatives, and numerous computer-based interfaces have played on the concept of "sketch". However, we restrict the notion of sketch to freehand drawing, which we believe helps people to think, to envision, and to recognize properties of the objects with which they are working. SKETCH employs a pen interface to create three-dimensional models, but it uses a simple language of gestures to control a three-dimensional modeler; it does not attempt to interpret freehand drawings. In contrast, our support of 3D world creation using freehand drawing depend on users’ traditional understanding of a floor plan representation. Igarashi et al. used a pen interface to drive browsing in a 3D world, by projecting the user’s marks on the ground plane in the virtual world. Our Sketch-3D project extends this approach, investigating an interface that allows direct interpretation of the drawing marks (what you draw is what you get) and serves as a rapid prototyping tool for creating 3D virtual scenes.
keywords Freehand Sketching, Pen-Based User Interface, Interaction, VRML, Navigation
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id 823f
authors Bignon, J.C., Halin, G. and Humbert, P.
year 1997
title Hypermedia Structuring of the Technical Documentation for the Architectural Aided Design
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 843-848
summary The definition of an universal structuring model of the technical documentation is arduous, indeed utopian considering the great number of products and the diversity of relative information. To answer this situation we are trying to develop a general approach of the documentation. The document is the base entity of documentation structuring and it represents a coherent informative unit. We propose a model of document hypermedia structuring. This model allows the definition, the presentation, the navigation and the retrieval of general information on building products by a document manipulation. It is associated with a hypermedia design method adapted to document management. This method proposes, after the identification of the user, three phases of hypermedia definition : data definition, navigation definition and user interface definition. The model of a hypermedia structuring of the technical documentation proposed in this article is at once independent of available information on products, open, and makes easier the addition of new navigational functions.
series CAAD Futures
email
last changed 2003/11/21 15:16

_id c5a0
authors Bradford, J., Wong, W.S., Tang, A.H.F. and Yeung, C.S.K.
year 1997
title A Virtual Reality Building Block Composer for Architecture
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 51-59
doi https://doi.org/10.52842/conf.caadria.1997.051
summary Design is a complex and time consuming process. One way to simplify the design process is to use pre-build blocks for commonly known parts instead of creating them again with CAD. To give the designer an immediate 3D view of the design, designing in virtual reality is a good choice. This paper presents a virtual reality interface tool which allows a user to assemble an architecture structure from a library of pre-built blocks. The library is a distributed client-server database.
series CAADRIA
email
last changed 2022/06/07 07:54

_id b8a4
authors Dani, Tushar H and Gadh, Rajit
year 1997
title Creation of concept shape designs via a virtual reality interface
source Computer-Aided Design, Vol. 29 (8) (1997) pp. 555-563
summary This paper describes an approach for creating concept shape designs in a virtual reality environment--COVIRDS (COnceptual VIRtual Design System. Conceptdesign refers to the ab initio design of a product or part. In concept design, the product details such as shape features and exact dimensions are not rigidly definedand the designer has some freedom in determining the shape and dimensions of the product. Current CAD require the designer to specify shape and dimensions tocreate CAD models of products even though these are probably not necessary at the concept development stage. COVIRDS overcomes these drawbacks by providing abi-modal voice and hand-tracking based user interface to the VR-based CAD modeling environment. This interface allows rapid concept design creation withoutrequiring time consuming shape description and the tedious specifications of exact dimensions.
keywords Concept Shape Design, Virtual Reality Interfaces, Geometric Modeling
series journal paper
last changed 2003/05/15 21:33

_id 2a09
authors Donath, Judith Stefania
year 1997
title Inhabiting the virtual city : the design of social environments for electronic communities
source Massachusetts Institute of Technology, Program in Media Arts & Sciences
summary The goal of this work is to develop an approach to the design of on-line social environments. My thesis is that, in order to foster the development of vibrant and viable online communities, the environment - i.e. the technical infrastructure and user interface - must provide the means to communicate social cues and information: the participants must be able to perceive the social patterns of activity and affiliation and the community must be able to evolve a fluid and subtle cultural vocabulary. The theoretical foundation for the research is drawn from traditional studies of society and culture and from observations of contemporary on-line systems. Starting with an analysis of the fundamental differences between real and virtual societies - most notably, the presence and absence of the body - the first section examines the ways social cues are communicated in the real world, discusses the limits imposed on on-line communities due to their mediated and bodiless nature, and explores directions that virtual societies can take that are impossible for physical ones. These ideas form the basis for the main part of the thesis, a design platform for creating sociable virtual environments. The focus of the discussion is on the analysis of a set of implemented design experiments that explore three areas of the platform: the visual representations of social phenomena, the role of information spaces as contexts for communication, and the presentation of self in the virtual world.
series thesis:PhD
email
more http://smg.media.mit.edu/people/Judith/Thesis/
last changed 2003/02/12 22:37

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id d549
authors Shih, N.
year 1997
title Modelling wall finishes
source Automation in Construction 6 (2) (1997) pp. 139-146
summary The purpose of this paper is to present a method to apply finishes to walls to meet the different modelling requirements in a computer-aided environment for architectural design. The method is applicable to wall finishes which are directly applied. The method considers wall and finish as two architectural components, instead of one. Advantages and disadvantages of integrated and differentiated approaches are compared based on the definition of building components, the number of the combinative variety of walls and finishes, the possibility of design inspection, the availability of applications, the stages involved in design, the management of the database, the process regarding drawing production, and the working process of creating and joining new types of walls at the same location. Although both components are usually applied in an integrated manner in most applications, this paper concludes that the number of combinations may become so large that finish and wall have to be defined separately in order to provide flexibility in assigning different depths and applying various materials. An application method is illustrated.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id 9748
authors Trikac, S.N., Banerjeea, P. and Kashyapb, R.L.
year 1997
title Virtual reality interfaces for feature-based computer-aided design systems
source Computer-Aided Design, Vol. 29 (8) (1997) pp. 565-574
summary A computer-aided design (CAD) system with a virtual reality (VR) interface simplifies the design of complex mechanical parts. To add a design feature (e.g., a hole,slot, or protrusion), the designer can navigate in the part to the appropriate face of the part where he/she wishes to attach the feature, and sketch directly on that face.Besides convenience, this method of feature specification implicitly enforces feature accessibility constraints, and also provides hints to the process-planner regardingthe order in which the features may be manufactured. We detail the design of a VR-based prototype CAD system. The system maintains the knowledge of part cavitiesand their adjacencies, and a triangulated boundary-representation of an approximating polyhedron. We present incremental provably correct algorithms for updatingthis representation as the user edits the part. We also show how this representation supports real-time displays, navigation, and collision detection. The user-interfaceof the CAD system relies on these capabilities to provide the above-mentioned advantages.
keywords User Interfaces, Virtual Reality, Feature-Based Design, Geometric Reasoning, Feature Extraction
series journal paper
last changed 2003/05/15 21:33

_id ce11
authors Bradford, J., Wong, W.S. and Tang, H.F.
year 1997
title Bridging Virtual Reality to Internet for Architecture
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.m9r
summary This paper presents a virtual reality interface tool which allows a user to perform the following action :

1.Import design from other CAD tools.

2.Assemble an architecture structure from a library of pre-built blocks and geometry primitives dynamically created by user.

3.Export the design interactively in VRML format back to the library for Internet browsing.

The geometry primitives include polygon, sphere, cone, cylinder and cube. The pre-built blocks consist of fundamental architecture models which have been categorized with architectural related style, physical properties and environmental attributes. Upon a user’s request, the tool or the composer, has the ability to communicate with the library which indeed is a back-end distributed client-server database engine. The user may specify any combination of properties and attributes in the composer which will instantly bring up all matching 3-dimensional objects through the database engine. The database is designed in relational model and comes from the work of another research group.

keywords Virtual Reality, Architecture Models, Relational Database, Client-Server
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/bradford/bradford.htm
last changed 2022/06/07 07:50

_id 2b38
authors Bradford, J., Wong, R. and Yeung, C.S.K.
year 1997
title Hierarchical Decomposition of Architectural Computer Models
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 197-203
doi https://doi.org/10.52842/conf.caadria.1997.197
summary Architectural models can be represented in a hierarchy of complexity. Higher level or more complex architecture structures are then designed by repetitively instantiating libraries of building blocks. The advantages are that the object can be achieved in modular fashion and any modification to the definition of a building block can be easily propagated to all higher level objects using the block. Unfortunately, many existing representations of architectural models are monolithic instead of hierarchical and modular, thus, making the reuse of models very difficult and inefficient. This paper describes a research project on developing a tool to decompose a monolithic architectural model into elementary building blocks and then create a hierarchy in the model representation. The tool provides a graphical interface for the visualization of a model and a cutting plane. An associated algorithm will then automatically detach parts of the model into building blocks depending on where the user is applying the cutting plane. Studies will also be made on dividing more complex models employing spherical and NURBS surfaces.
series CAADRIA
email
last changed 2022/06/07 07:54

_id cabb
authors Broughton, T., Tan, A. and Coates, P.S.
year 1997
title The Use of Genetic Programming In Exploring 3D Design Worlds - A Report of Two Projects by Msc Students at CECA UEL
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 885-915
summary Genetic algorithms are used to evolve rule systems for a generative process, in one case a shape grammar,which uses the "Dawkins Biomorph" paradigm of user driven choices to perform artificial selection, in the other a CA/Lindenmeyer system using the Hausdorff dimension of the resultant configuration to drive natural selection. (1) Using Genetic Programming in an interactive 3D shape grammar. A report of a generative system combining genetic programming (GP) and 3D shape grammars. The reasoning that backs up the basis for this work depends on the interpretation of design as search In this system, a 3D form is a computer program made up of functions (transformations) & terminals (building blocks). Each program evaluates into a structure. Hence, in this instance a program is synonymous with form. Building blocks of form are platonic solids (box, cylinder, etc.). A Variety of combinations of the simple affine transformations of translation, scaling, rotation together with Boolean operations of union, subtraction and intersection performed on the building blocks generate different configurations of 3D forms. Using to the methodology of genetic programming, an initial population of such programs are randomly generated,subjected to a test for fitness (the eyeball test). Individual programs that have passed the test are selected to be parents for reproducing the next generation of programs via the process of recombination. (2) Using a GA to evolve rule sets to achieve a goal configuration. The aim of these experiments was to build a framework in which a structure's form could be defined by a set of instructions encoded into its genetic make-up. This was achieved by combining a generative rule system commonly used to model biological growth with a genetic algorithm simulating the evolutionary process of selection to evolve an adaptive rule system capable of replicating any preselected 3D shape. The generative modelling technique used is a string rewriting Lindenmayer system the genes of the emergent structures are the production rules of the L-system, and the spatial representation of the structures uses the geometry of iso-spatial dense-packed spheres
series CAAD Futures
email
last changed 2003/11/21 15:16

_id 80f7
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2001
title Knowledge-based System to Support Architectural Design - Intelligent objects, project net-constraints, collaborative work
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 80-85
doi https://doi.org/10.52842/conf.ecaade.2001.080
summary The architectural design business is marked by a progressive increase in operators all cooperating towards the realization of building structures and complex infrastructures (Jenckes, 1997). This type of design implies the simultaneous activity of specialists in different fields, often working a considerable distance apart, on increasingly distributed design studies. Collaborative Architectural Design comprises a vast field of studies that embraces also these sectors and problems. To mention but a few: communication among operators in the building and design sector; design process system logic architecture; conceptual structure of the building organism; building component representation; conflict identification and management; sharing of knowledge; and also, user interface; global evaluation of solutions adopted; IT definition of objects; inter-object communication (in the IT sense). The point of view of the research is that of the designers of the architectural artefact (Simon, 1996); its focus consists of the relations among the various design operators and among the latter and the information exchanged: the Building Objects. Its primary research goal is thus the conceptual structure of the building organism for the purpose of managing conflicts and developing possible methods of resolving them.
keywords Keywords. Collaborative Design, Architectural And Building Knowledge, Distributed Knowledge Bases, Information Management, Multidisciplinarity
series eCAADe
email
last changed 2022/06/07 07:55

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id d869
authors Chu, C.-C., Dani, T.H. and Gadh, R.
year 1997
title Multi-sensory user interface for a virtual-reality-based computer-aided design system
source Computer-Aided Design, Vol. 29 (10) (1997) pp. 709-725
summary The generation of geometric shapes called `geometric concept designs' via the multi-sensory user interface of a virtual reality (VR) based system motivates the currentresearch. In this new VR-based system, geometric designs can be more effectively inputted into the computer in a physically intuitive way. The interaction mechanism issimilar to the way in which industrial designers sit and discuss concept design shapes across a table from each other, prior to making a final decision about the productdetails. By using different sensory modalities, such as voice, hand motions and gestures, product designers can convey design ideas through the VR-basedcomputer-aided design (CAD) system. In this scenario, the multi-sensory interface between human and computer plays a central role with respect to usability, usefulnessand accuracy. The current paper focuses on determining the requirements for the multi-sensory user interface and assessing the applications of different input and outputmechanisms in the virtual environment (VE). In order to evaluate this multi-sensory user interface, this paper formulates the typical activities in product shape design intoa set of requirements for the VR-CAD system. On the basis of these requirements, we interviewed typical CAD users about the effectiveness of using different sensoryinput and output interaction mechanisms such as visual, auditory and tactile. According to the results of these investigations, a nodal network of design activity thatdefines the multi-sensory user interface of the VR-CAD system is determined in the current research. The VR-CAD system is still being developed. However, voicecommand input, hand motion input, three-dimensional visual output and auditory output have been successfully integrated into the current system. Moreover, severalmechanical parts have been successfully created through the VR interface. Once designers use the VR-CAD system that we are currently developing, the interfacerequirements determined in the current paper may be verified or refined. The objectives of the current research are to expand the frontiers of product design and establisha new paradigm for the VR-based conceptual shape design system.
keywords Virtual Reality, Multi-Sensory User Interface, Conceptual Shape Design, Sensory Interaction Mechanism
series journal paper
last changed 2003/05/15 21:33

_id 2354
authors Clayden, A. and Szalapaj, P.
year 1997
title Architecture in Landscape: Integrated CAD Environments for Contextually Situated Design
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.q6p
summary This paper explores the future role of a more holistic and integrated approach to the design of architecture in landscape. Many of the design exploration and presentation techniques presently used by particular design professions do not lend themselves to an inherently collaborative design strategy.

Within contemporary digital environments, there are increasing opportunities to explore and evaluate design proposals which integrate both architectural and landscape aspects. The production of integrated design solutions exploring buildings and their surrounding context is now possible through the design development of shared 3-D and 4-D virtual environments, in which buildings no longer float in space.

The scope of landscape design has expanded through the application of techniques such as GIS allowing interpretations that include social, economic and environmental dimensions. In architecture, for example, object-oriented CAD environments now make it feasible to integrate conventional modelling techniques with analytical evaluations such as energy calculations and lighting simulations. These were all ambitions of architects and landscape designers in the 70s when computer power restricted the successful implementation of these ideas. Instead, the commercial trend at that time moved towards isolated specialist design tools in particular areas. Prior to recent innovations in computing, the closely related disciplines of architecture and landscape have been separated through the unnecessary development, in our view, of their own symbolic representations, and the subsequent computer applications. This has led to an unnatural separation between what were once closely related disciplines.

Significant increases in the performance of computers are now making it possible to move on from symbolic representations towards more contextual and meaningful representations. For example, the application of realistic materials textures to CAD-generated building models can then be linked to energy calculations using the chosen materials. It is now possible for a tree to look like a tree, to have leaves and even to be botanicaly identifiable. The building and landscape can be rendered from a common database of digital samples taken from the real world. The complete model may be viewed in a more meaningful way either through stills or animation, or better still, through a total simulation of the lifecycle of the design proposal. The model may also be used to explore environmental/energy considerations and changes in the balance between the building and its context most immediately through the growth simulation of vegetation but also as part of a larger planning model.

The Internet has a key role to play in facilitating this emerging collaborative design process. Design professionals are now able via the net to work on a shared model and to explore and test designs through the development of VRML, JAVA, whiteboarding and video conferencing. The end product may potentially be something that can be more easily viewed by the client/user. The ideas presented in this paper form the basis for the development of a dual course in landscape and architecture. This will create new teaching opportunities for exploring the design of buildings and sites through the shared development of a common computer model.

keywords Integrated Design Process, Landscape and Architecture, Shared Environmentsenvironments
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/szalapaj/szalapaj.htm
last changed 2022/06/07 07:50

_id ga9921
id ga9921
authors Coates, P.S. and Hazarika, L.
year 1999
title The use of genetic programming for applications in the field of spatial composition
source International Conference on Generative Art
summary Architectural design teaching using computers has been a preoccupation of CECA since 1991. All design tutors provide their students with a set of models and ways to form, and we have explored a set of approaches including cellular automata, genetic programming ,agent based modelling and shape grammars as additional tools with which to explore architectural ( and architectonic) ideas.This paper discusses the use of genetic programming (G.P.) for applications in the field of spatial composition. CECA has been developing the use of Genetic Programming for some time ( see references ) and has covered the evolution of L-Systems production rules( coates 1997, 1999b), and the evolution of generative grammars of form (Coates 1998 1999a). The G.P. was used to generate three-dimensional spatial forms from a set of geometrical structures .The approach uses genetic programming with a Genetic Library (G.Lib) .G.P. provides a way to genetically breed a computer program to solve a problem.G. Lib. enables genetic programming to define potentially useful subroutines dynamically during a run .* Exploring a shape grammar consisting of simple solid primitives and transformations. * Applying a simple fitness function to the solid breeding G.P.* Exploring a shape grammar of composite surface objects. * Developing grammarsfor existing buildings, and creating hybrids. * Exploring the shape grammar of abuilding within a G.P.We will report on new work using a range of different morphologies ( boolean operations, surface operations and grammars of style ) and describe the use of objective functions ( natural selection) and the "eyeball test" ( artificial selection) as ways of controlling and exploring the design spaces thus defined.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 123c
authors Coomans, M.K.D. and Timmermans, H.J.P.
year 1997
title Towards a Taxonomy of Virtual Reality User Interfaces
source Proceedings of the International Conference on Information Visualisation (IV97), pp. 17-29
summary Virtual reality based user interfaces (VRUIs) are expected to bring about a revolution in computing. VR can potentially communicate large amounts of data in an easily understandable format. VR looks very promising, but it is still a very new interface technology for which very little application oriented knowledge is available. As a basis for such a future VRUI design theory, a taxonomy of VRUIs is required. A general model of human computer communication is formulated. This model constitutes a frame for the integration of partial taxonomies of human computer interaction that are found in the literature. The whole model constitutes a general user interface taxonomy. The field of VRUIs is described and delimited with respect to this taxonomy.
series other
last changed 2003/04/23 15:50

_id 460e
authors Dannettel, Mark E
year 1997
title Interactive Multimedia Design: Operational Structures and Intuitive Environments for CD-ROM
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 415-427
doi https://doi.org/10.52842/conf.caadria.1997.415
summary This paper presents practical design concepts for the production of CD-ROMs or on-line media projects which are intended for scholastic and professional use. It is based on the experience and knowledge which has been gained while developing a multimedia package here at the Department of Architecture at CUHK. The package deals exclusively with the technical issue of vertical transportation in buildings, and is intended to be used as a design tool in professional offices, as well as in classroom settings. The required research and production for the development of the structures, formats, and interfaces of this project, along with the consequential evaluation and revision of this work, has led to a greater understanding of appropriate applications for interactive interactive multimedia designs. Specially, the paper addresses the fundamental issues of ‘user-format’, and a distinction is made between applications which operate as ‘tools’ and those which operate as ‘resources’. Descriptions are provided for both types of operational formats, and suggestions are made as to how one might decided which format would be appropriate for a specific project. Briefly, resource produces imply that a user actively pursues information in a relatively static environment, while tool procedures imply that a user works jointly with the software to process information and arrive at a unique output. This distinction between the two formats is mostly grounded in the design of the structure and user-interface, and thus the point is made that the material content of the application does not necessarily imply a mandatory use of either format. In light of this observation that an application’s format relies on the appropriateness of operational procedures, rather than on its material content, further discussions of the implications of such procedures (using a ‘resource’ vs. using a ‘tool’) are provided.
series CAADRIA
email
last changed 2022/06/07 07:55

_id ddss9829
id ddss9829
authors De Hoog, J., Hendriks, N.A. and Rutten, P.G.S.
year 1998
title Evaluating Office Buildings with MOLCA(Model for Office Life Cycle Assessment)
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary MOLCA (Model for Office Life Cycle Assessment) is a project that aims to develop a tool that enables designers and builders to evaluate the environmental impact of their designs (of office buildings) from a environmental point of view. The model used is based on guidelinesgiven by ISO 14000, using the so-called Life Cycle Assessment (LCA) method. The MOLCA project started in 1997 and will be finished in 2001 resulting in the aforementioned tool. MOLCA is a module within broader research conducted at the Eindhoven University of Technology aiming to reduce design risks to a minimum in the early design stages.Since the MOLCA project started two major case-studies have been carried out. One into the difference in environmental load caused by using concrete and steel roof systems respectively and the role of recycling. The second study focused on biases in LCA data and how to handle them. For the simulations a computer-model named SimaPro was used, using the world-wide accepted method developed by CML (Centre for the Environment, Leiden, the Netherlands). With this model different life-cycle scenarios were studied and evaluated. Based on those two case studies and a third one into an office area, a first model has been developed.Bottle-neck in this field of study is estimating average recycling and re-use percentages of the total flow of material waste in the building sector and collecting reliable process data. Another problem within LCA studies is estimating the reliability of the input data and modelling uncertainties. All these topics will be subject of further analysis.
keywords Life-Cycle Assessment, Office Buildings, Uncertainties in LCA
series DDSS
last changed 2003/08/07 16:36

_id c906
authors Ekholm, Anders and Fridqvist, Sverker
year 1997
title Design and Modelling in a Computer Integrated Construction Process - The BAS-CAAD Project
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 501-518
summary A new approach to product modelling in a design context is proposed. CAD-software must not only enable product modelling, but must also support product design. This is not fully achieved in the traditional 'enumerative' approach to product modelling. We discuss how product design and modelling can be based on a facetted' approach to information modelling, and how a data model that supports the design process can be based on a framework for system information. The background for our research is the current development in the construction industry towards a computer integrated construction process. A first prerequisite for this is the use of computer based models. Another prerequisite is that CAD-software can support the design of the results of the construction process, including construction works, user organisations, and the production and facility management processes. A third prerequisite is that computer based models are built with standardised concepts and terminology to enable exchange of information between different actors and computer systems during different stages of the construction process. Principles for organising frameworks for user organisation and construction works information are presented in an appendix.
series CAAD Futures
email
last changed 1999/04/06 09:19

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_336712 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002