CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 520

_id 2483
authors Gero, J.S. and Kazakov, V.
year 1997
title Learning and reusing information in space layout problems using genetic engineering
source Artificial Intelligence in Engineering 11(3):329-334
summary The paper describes the application of a genetic engineering based extension to genetic algorithms to the layout planning problem. We study the gene evolution which takes place when an algorithm of this type is running and demonstrate that in many cases it effectively leads to the partial decomposition of the layout problem by grouping some activit ies together and optimally placing these groups during the first stage of the computation. At a second stage it optimally places activities within these groups. We show that the algorithm finnds the solution faster than standard evolutionary methods and that evolved genes represent design features that can be re-used later in a range of similar problems.
keywords Genetic Engineering, Learning
series other
email
last changed 2001/09/08 12:04

_id a5a3
authors Jagielski, Romuald and Gero, John S.
year 1997
title A Genetic Programming Approach to the Space Layout Planning Problem
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 875-884
summary The space layout planning problem belongs to the class of NP-hard problems with a wide range of practical applications. Many algorithms have been developed in the past, however recently evolutionary techniques have emerged as an alternative approach to their solution. In this paper, a genetic programming approach, one variation of evolutionary computation, is discussed. A representation of the space layout planning problem suitable for genetic programming is presented along with some implementation details and results.
series CAAD Futures
email
last changed 2003/02/23 11:00

_id 4925
authors Poon, J. and Maher, M.L.
year 1997
title Co-evolution in Design
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 439-448
doi https://doi.org/10.52842/conf.caadria.1997.439
summary A design process is traditionally viewed as a sequential process model from the formulation of the problem to the synthesis of solutions. Simon (1981) regards design as a state-space search where a problem leads to the solution. To be more practical, there are many versions of solution generated during design, where each current one is an improvement over the previous one. This kind of synthesis of solutions can be viewed as an evolutionary system over time. We propose to apply the metaphor of "exploration” to design, and further argue that evolution occurs in the problem space as well as in the solution space. Co-evolutionary design is introduced to remove the assumption of having a fixed goal (problem). The problem is allowed to change over time. Two algorithms for co-evolution are presented. Their characteristics and differences are highlighted. The paper moves on to review the design history of the Sydney Opera House and to show how observations from this real life example confirm our co-evolutionary model.
series CAADRIA
email
last changed 2022/06/07 08:00

_id cc51
authors Schnier, T. and Gero, J.S
year 1997
title Dominant and recessive genes in evolutionary systems applied to spatial reasoning
source A. Sattar (Ed.), Advanced Topics in Artificial Intelligence: 10th Australian Joint Conference on Artificial Intelligence AI97 Proceedings, Springer, Heidelberg, pp. 127-136
summary Learning genetic representation has been shown to be a useful tool in evolutionary computation. It can reduce the time required to find solutions and it allows the search process to be biased towards more desirable solutions. Learn-ing genetic representation involves the bottom-up creation of evolved genes from either original (basic) genes or from other evolved genes and the introduction of those into the population. The evolved genes effectively protect combinations of genes that have been found useful from being disturbed by the genetic operations (cross-over, mutation). However, this protection can rapidly lead to situations where evolved genes in-terlock in such a way that few or no genetic operations are possible on some genotypes. To prevent the interlocking previous implementations only allow the creation of evolved genes from genes that are direct neighbours on the genotype and therefore form continuous blocks. In this paper it is shown that the notion of dominant and recessive genes can be used to remove this limitation. Using more than one gene at a single location makes it possible to construct genetic operations that can separate interlocking evolved genes. This allows the use of non-continuous evolved genes with only minimal violations of the protection of evolved genes from those operations. As an example, this paper shows how evolved genes with dominant and re-cessive genes can be used to learn features from a set of Mondrian paintings. The representation can then be used to create new designs that contain features of the examples. The Mondrian paintings can be coded as a tree, where every node represents a rectangle division, with values for direction, position, line-width and colour. The modified evolutionary operations allow the system to cre-ate non-continuous evolved genes, for example associate two divisions with thin lines, without specifying other values. Analysis of the behaviour of the system shows that about one in ten genes is a dominant/recessive gene pair. This shows that while dominant and recessive genes are important to allow the use of non-continuous evolved genes, they do not occur often enough to seriously violate the protection of evolved genes from genetic operations.
keywords Evolutionary Systems, Genetic Representations
series other
email
last changed 2003/04/06 07:24

_id e336
authors Achten, H., Roelen, W., Boekholt, J.-Th., Turksma, A. and Jessurun, J.
year 1999
title Virtual Reality in the Design Studio: The Eindhoven Perspective
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 169-177
doi https://doi.org/10.52842/conf.ecaade.1999.169
summary Since 1991 Virtual Reality has been used in student projects in the Building Information Technology group. It started as an experimental tool to assess the impact of VR technology in design, using the environment of the associated Calibre Institute. The technology was further developed in Calibre to become an important presentation tool for assessing design variants and final design solutions. However, it was only sporadically used in student projects. A major shift occurred in 1997 with a number of student projects in which various computer technologies including VR were used in the whole of the design process. In 1998, the new Design Systems group started a design studio with the explicit aim to integrate VR in the whole design process. The teaching effort was combined with the research program that investigates VR as a design support environment. This has lead to increasing number of innovative student projects. The paper describes the context and history of VR in Eindhoven and presents the current set-UP of the studio. It discusses the impact of the technology on the design process and outlines pedagogical issues in the studio work.
keywords Virtual Reality, Design Studio, Student Projects
series eCAADe
email
last changed 2022/06/07 07:54

_id 0c91
authors Asanowicz, Aleksander
year 1997
title Computer - Tool vs. Medium
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.b2e
summary We have arrived an important juncture in the history of computing in our profession: This history is long enough to reveal clear trends in the use of computing, but not long to institutionalize them. As computers peremate every area of architecture - from design and construction documents to project administration and site supervision - can “virtual practice” be far behind? In the old days, there were basically two ways of architects working. Under stress. Or under lots more stress. Over time, someone forwarded the radical motion that the job could be easier, you could actually get more work done. Architects still have been looking for ways to produce more work in less time. They need a more productive work environment. The ideal environment would integrate man and machine (computer) in total harmony. As more and more architects and firms invest more and more time, money, and effort into particular ways of using computers, these practices will become resistant to change. Now is the time to decide if computing is developing the way we think it should. Enabled and vastly accelerated by technology, and driven by imperatives for cost efficiency, flexibility, and responsiveness, work in the design sector is changing in every respect. It is stands to reason that architects must change too - on every level - not only by expanding the scope of their design concerns, but by altering design process. Very often we can read, that the recent new technologies, the availability of computers and software, imply that use of CAAD software in design office is growing enormously and computers really have changed the production of contract documents in architectural offices.
keywords Computers, CAAD, Cyberreal, Design, Interactive, Medium, Sketches, Tools, Virtual Reality
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/asan/asanowic.htm
last changed 2022/06/07 07:50

_id 411c
authors Ataman, Osman and Bermúdez (Ed.)
year 1999
title Media and Design Process [Conference Proceedings]
source ACADIA ‘99 Proceedings / ISBN 1-880250-08-X / Salt Lake City 29-31 October 1999, 353 p.
doi https://doi.org/10.52842/conf.acadia.1999
summary Throughout known architectural history, representation, media and design have been recognized to have a close relationship. This relationship is inseparable; representation being a means for engaging in design thinking and making and this activity requiring media. Interpretations as to what exactly this relationship is or means have been subject to debate, disagreement and change along the ages. Whereas much has been said about the interactions between representation and design, little has been elaborated on the relationship between media and design. Perhaps, it is not until now, surrounded by all kinds of media at the turn of the millennium, as Johnson argues (1997), that we have enough context to be able to see and address the relationship between media and human activities with some degree of perspective.
series ACADIA
email
more http://www.acadia.org
last changed 2022/06/07 07:49

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email
last changed 2016/03/10 09:47

_id 58f4
authors Barequet, G. and Kumar, S.
year 1997
title Repairing CAD models
source Proceedings of IEEE Visualizationí97, pp. 363-370
summary We describe an algorithm for repairing polyhedral CAD models that have errors in their B-REP. Errors like cracks, degeneracies, duplication, holes and overlaps are usually introduced in solid models due to imprecise arithmetic, model transformations, designer's fault, programming bugs, etc. Such errors often hamper further processing like finite element analysis, radiosity computation and rapid prototyping. Our fault-repair algorithm converts an unordered collection of polygons to a shared-vertex representation to help eliminate errors. This is done by choosing, for each polygon edge, the most appropriate edge to unify it with. The two edges are then geometrically merged into one, by moving vertices. At the end of this process, each polygon edge is either coincident with another or is a boundary edge for a polygonal hole or a dangling wall and may be appropriately repaired. Finally, in order to allow user- inspection of the automatic corrections, we produce a visualization of the repair and let the user mark the corrections that conflict with the original design intent. A second iteration of the correction algorithm then produces a repair that is commensurate with the intent. Thus, by involving the users in a feedback loop, we are able to refine the correction to their satisfaction.
series other
email
last changed 2003/04/23 15:14

_id 34b8
authors Batie, D.L.
year 1997
title The incorporation of construction history in architectural history: the HISTCON interactive computer program
source Automation in Construction 6 (4) (1997) pp. 275-285
summary Current teaching methods for architectural history seldom embrace building technology as an essential component of study. Accepting the premise that architectural history is a fundamental component to the overall architectural learning environment, it is argued that the study of construction history will further enhance student knowledge. This hypothesis created an opportunity to investigate how the study of construction history could be incorporated to strengthen present teaching methods. Strategies for teaching architectural history were analyzed with the determination that an incorporation of educational instructional design applications using object-oriented programming and hypermedia provided the optimal solution. This evaluation led to the development of the HISTCON interactive, multimedia educational computer program. Used initially to teach 19th Century iron and steel construction history, the composition of the program provides the mechanism to test the significance of construction history in the study of architectural history. Future development of the program will provide a method to illustrate construction history throughout the history of architecture. The study of architectural history, using a construction oriented methodology, is shown to be positively correlated to increased understanding of architectural components relevant to architectural history and building construction.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 536e
authors Bouman, Ole
year 1997
title RealSpace in QuickTimes: architecture and digitization
source Rotterdam: Nai Publishers
summary Time and space, drastically compressed by the computer, have become interchangeable. Time is compressed in that once everything has been reduced to 'bits' of information, it becomes simultaneously accessible. Space is compressed in that once everything has been reduced to 'bits' of information, it can be conveyed from A to B with the speed of light. As a result of digitization, everything is in the here and now. Before very long, the whole world will be on disk. Salvation is but a modem away. The digitization process is often seen in terms of (information) technology. That is to say, one hears a lot of talk about the digital media, about computer hardware, about the modem, mobile phone, dictaphone, remote control, buzzer, data glove and the cable or satellite links in between. Besides, our heads are spinning from the progress made in the field of software, in which multimedia applications, with their integration of text, image and sound, especially attract our attention. But digitization is not just a question of technology, it also involves a cultural reorganization. The question is not just what the cultural implications of digitization will be, but also why our culture should give rise to digitization in the first place. Culture is not simply a function of technology; the reverse is surely also true. Anyone who thinks about cultural implications, is interested in the effects of the computer. And indeed, those effects are overwhelming, providing enough material for endless speculation. The digital paradigm will entail a new image of humankind and a further dilution of the notion of social perfectibility; it will create new notions of time and space, a new concept of cause and effect and of hierarchy, a different sort of public sphere, a new view of matter, and so on. In the process it will indubitably alter our environment. Offices, shopping centres, dockyards, schools, hospitals, prisons, cultural institutions, even the private domain of the home: all the familiar design types will be up for review. Fascinated, we watch how the new wave accelerates the process of social change. The most popular sport nowadays is 'surfing' - because everyone is keen to display their grasp of dirty realism. But there is another way of looking at it: under what sort of circumstances is the process of digitization actually taking place? What conditions do we provide that enable technology to exert the influence it does? This is a perspective that leaves room for individual and collective responsibility. Technology is not some inevitable process sweeping history along in a dynamics of its own. Rather, it is the result of choices we ourselves make and these choices can be debated in a way that is rarely done at present: digitization thanks to or in spite of human culture, that is the question. In addition to the distinction between culture as the cause or the effect of digitization, there are a number of other distinctions that are accentuated by the computer. The best known and most widely reported is the generation gap. It is certainly stretching things a bit to write off everybody over the age of 35, as sometimes happens, but there is no getting around the fact that for a large group of people digitization simply does not exist. Anyone who has been in the bit business for a few years can't help noticing that mum and dad are living in a different place altogether. (But they, at least, still have a sense of place!) In addition to this, it is gradually becoming clear that the age-old distinction between market and individual interests are still relevant in the digital era. On the one hand, the advance of cybernetics is determined by the laws of the marketplace which this capital-intensive industry must satisfy. Increased efficiency, labour productivity and cost-effectiveness play a leading role. The consumer market is chiefly interested in what is 'marketable': info- and edutainment. On the other hand, an increasing number of people are not prepared to wait for what the market has to offer them. They set to work on their own, appropriate networks and software programs, create their own domains in cyberspace, domains that are free from the principle whereby the computer simply reproduces the old world, only faster and better. Here it is possible to create a different world, one that has never existed before. One, in which the Other finds a place. The computer works out a new paradigm for these creative spirits. In all these distinctions, architecture plays a key role. Owing to its many-sidedness, it excludes nothing and no one in advance. It is faced with the prospect of historic changes yet it has also created the preconditions for a digital culture. It is geared to the future, but has had plenty of experience with eternity. Owing to its status as the most expensive of arts, it is bound hand and foot to the laws of the marketplace. Yet it retains its capacity to provide scope for creativity and innovation, a margin of action that is free from standardization and regulation. The aim of RealSpace in QuickTimes is to show that the discipline of designing buildings, cities and landscapes is not only a exemplary illustration of the digital era but that it also provides scope for both collective and individual activity. It is not just architecture's charter that has been changed by the computer, but also its mandate. RealSpace in QuickTimes consists of an exhibition and an essay.
series other
email
last changed 2003/04/23 15:14

_id cabb
authors Broughton, T., Tan, A. and Coates, P.S.
year 1997
title The Use of Genetic Programming In Exploring 3D Design Worlds - A Report of Two Projects by Msc Students at CECA UEL
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 885-915
summary Genetic algorithms are used to evolve rule systems for a generative process, in one case a shape grammar,which uses the "Dawkins Biomorph" paradigm of user driven choices to perform artificial selection, in the other a CA/Lindenmeyer system using the Hausdorff dimension of the resultant configuration to drive natural selection. (1) Using Genetic Programming in an interactive 3D shape grammar. A report of a generative system combining genetic programming (GP) and 3D shape grammars. The reasoning that backs up the basis for this work depends on the interpretation of design as search In this system, a 3D form is a computer program made up of functions (transformations) & terminals (building blocks). Each program evaluates into a structure. Hence, in this instance a program is synonymous with form. Building blocks of form are platonic solids (box, cylinder, etc.). A Variety of combinations of the simple affine transformations of translation, scaling, rotation together with Boolean operations of union, subtraction and intersection performed on the building blocks generate different configurations of 3D forms. Using to the methodology of genetic programming, an initial population of such programs are randomly generated,subjected to a test for fitness (the eyeball test). Individual programs that have passed the test are selected to be parents for reproducing the next generation of programs via the process of recombination. (2) Using a GA to evolve rule sets to achieve a goal configuration. The aim of these experiments was to build a framework in which a structure's form could be defined by a set of instructions encoded into its genetic make-up. This was achieved by combining a generative rule system commonly used to model biological growth with a genetic algorithm simulating the evolutionary process of selection to evolve an adaptive rule system capable of replicating any preselected 3D shape. The generative modelling technique used is a string rewriting Lindenmayer system the genes of the emergent structures are the production rules of the L-system, and the spatial representation of the structures uses the geometry of iso-spatial dense-packed spheres
series CAAD Futures
email
last changed 2003/11/21 15:16

_id 40d7
authors Dalyrmple, Michael and Gerzso, Michael
year 1998
title Executable Drawings: The Computation of Digital Architecture
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 172-187
doi https://doi.org/10.52842/conf.acadia.1998.172
summary Architectural designs are principally represented by drawings. Usually, each drawing corresponds to one design or aspects of one design. On the other hand, one executable drawing corresponds to a set of designs. These drawings are the same as conventional drawings except that they have computer code or programs embedded in them. A specific design is the result of the computer executing the code in a drawing for a particular set of parameter values. If the parameters are changed, a new design or design variation is produced. With executable drawings, a CAD system is also a program editor. A designer not only designs by drawing but also programming. It fuses two activities: the first, drawing, is basic in architectural practice; and the second, progamming, or specifying the relation of outputs from inputs, is basic in computer system development. A consequence of executable drawings is that architectural form is represented by graphical entities (lines or shapes) as well as computer code or programs. This type of architecture we call digital architecture. Two simple examples are presented: first, the design of a building in terms of an executable drawing of the architects, Sangallo the Younger and Michelangelo, and second, a description of an object oriented implementation of a preliminary prototype of an executable drawing system written in 1997 which computes a simple office layout.
series ACADIA
email
last changed 2022/06/07 07:55

_id 2ad9
authors Damski, José C. and Gero, John S.
year 1997
title An Evolutionary Approach to Generating Constraint-Based Space Layout Topologies
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 855-864
summary This paper describes a system to produce space layout topologies for architectural plans using an evolutionary approach. The layout specification is defined as a set of topological and directional constraints, which are used as a fitness function in the evolutionary system. The halfplane representation is used to represent the genotypes in the evolutionary system, for both arrangements of halfplanes and the figures generated from those arrangements. As the halfplane representation proposed here does not distinguish between straight and non-straight boundaries, at the symbolic level the spaces and the layouts produced can also be bounded by straight or non-straight lines. The well known rectangular (polyomino) arrangements become a particular case only.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id 6112
authors Daru, Roel and Snijder, H.P.S.
year 1997
title GACAAD or AVOCAAD? CAAD and Genetic Algorithms for an Evolutionary Design Paradigm
source AVOCAAD First International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-01-09] Brussels (Belgium) 10-12 April 1997, pp. 145-161
summary One of the dominant paradigms in architecture is about its creation: it is done by human designers supported by tools like sketching, drawing or modelling and evaluation tools. The Darwinistic paradigm demands a paradigmatic switch from drawing, modelling and evaluation to the breeding of forms with a much more integrated generation and selecting process embedded in the computer machinery. This means a paradigm switch from a designer as the performer of (sketch, draw or modelling) work to a machine driven creation and selection process of forms with the designer as the supervisor, fully entitled to steer the process in some preferred directions. The designer creates by establishing the evolutionary rules and making choices among the architectural creatures emerging in rapid fire modethrough the synthesis performed by the machine. Natural selection is a Metaphor: in fact the designer plays Nature (or God). The creatures allowed to flourish are not adequate according to laws of Nature, but to the judgement of the designer (or to the designing team).
series AVOCAAD
last changed 2005/09/09 10:48

_id 20ff
id 20ff
authors Derix, Christian
year 2004
title Building a Synthetic Cognizer
source Design Computation Cognition conference 2004, MIT
summary Understanding ‘space’ as a structured and dynamic system can provide us with insight into the central concept in the architectural discourse that so far has proven to withstand theoretical framing (McLuhan 1964). The basis for this theoretical assumption is that space is not a void left by solid matter but instead an emergent quality of action and interaction between individuals and groups with a physical environment (Hillier 1996). In this way it can be described as a parallel distributed system, a self-organising entity. Extrapolating from Luhmann’s theory of social systems (Luhmann 1984), a spatial system is autonomous from its progenitors, people, but remains intangible to a human observer due to its abstract nature and therefore has to be analysed by computed entities, synthetic cognisers, with the capacity to perceive. This poster shows an attempt to use another complex system, a distributed connected algorithm based on Kohonen’s self-organising feature maps – SOM (Kohonen 1997), as a “perceptual aid” for creating geometric mappings of these spatial systems that will shed light on our understanding of space by not representing space through our usual mechanics but by constructing artificial spatial cognisers with abilities to make spatial representations of their own. This allows us to be shown novel representations that can help us to see new differences and similarities in spatial configurations.
keywords architectural design, neural networks, cognition, representation
series other
type poster
email
more http://www.springer.com/computer/ai/book/978-1-4020-2392-7
last changed 2012/09/17 21:13

_id f7e8
authors Frazer, J.H. and Stephenson, P.
year 1997
title The Groningen Experiment
source Architectural Association Publications, publ. pend.
summary In its first five years, the Architectural Association's Diploma unit II developed the theoretical framework of an alternative generative process, using computer models to compress evolutionary space and time. This led to a prototype that could be demonstrated interactively and the launch on the Internet of an experimental evolutionary environment which attracted global participation, established a dematerialised model. The new phase of the programme has begun to externalise this conceptual model into constructed form, focusing on urban-scale evolution and other historical and natural examples of co-operative and ecologically i integrated development. The approach has been to consider metabolic processes as a way of understanding both the formal development of urban symbiosis and the specific problem of materialization. The city planning department of Groningen commissioned a small working prototype demonstration of a predictive urban computer model. The unit produced an evolving model which explains the transition from the past to the present, and projects future trajectories a "what if" model for generating, exploring and evaluating alternatives. The model mediates in scale, space and time: ; in scale between the urban context and the fine grain of the housing typologies ; in space between the existing fabric of Groningen and specific dwelling units ; in time between the lifestyle within the medieval core and the desires of the citizens of tile next century
series other
last changed 2003/04/23 15:14

_id c0da
authors Gero, J.S., Kazakov, V. and Schnier, T.
year 1997
title Genetic engineering and design problems
source D. Dasgupta and Z. Michalewicz (Eds.), Evolutionary Algorithms in Engineering Applications, Springer Verlag, Berlin, pp.47-68
summary This chapter reviews developments in genetic algorithms based on genetic engineering extensions. It presents the development a computational model of genetic engineering and demonstrates its applicability and utility.
keywords Genetic Engineering, Learning
series other
email
last changed 2003/04/06 07:18

_id b5f4
authors Gero, John S. and Ding, Lan
year 1997
title Exploring Style Emergence in Architectural Designs
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 287-296
summary This paper presents an evolutionary approach to style emergence in architectural designs. Emergence is the process of making features explicit which were previously only implicit. Style is considered as a set of common characteristics of a group of designs. It is interpreted using a language model as an analogy and is represented at the genetic level. An evolutionary system based on genetic engineering is developed. It emerges style by locating the genetic structures which produce that style. Preliminary results are presented.
series other
email
last changed 2003/04/06 09:26

_id acadia18_226
id acadia18_226
authors Glynn, Ruairi; Abramovic, Vasilija; Overvelde, Johannes T. B.
year 2018
title Edge of Chaos. Towards intelligent architecture through distributed control systems based on Cellular Automata.
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 226-231
doi https://doi.org/10.52842/conf.acadia.2018.226
summary From the “Edge of Chaos”, a mathematical space discovered by computer scientist Christopher Langton (1997), compelling behaviors originate that exhibit both degrees of organization and instability creating a continuous dance between order and chaos. This paper presents a project intended to make this complex theory tangible through an interactive installation based on metamaterial research which demonstrates emergent behavior using Cellular Automata (CA) techniques, illustrated through sound, light and motion. We present a multi-sensory narrative approach that encourages playful exploration and contemplation on perhaps the biggest questions of how life could emerge from the disorder of the universe.

We argue a way of creating intelligent architecture, not through classical Artificial Intelligence (AI), but rather through Artificial Life (ALife), embracing the aesthetic emergent possibilities that can spontaneously arise from this approach. In order to make these ideas of emergent life more tangible we present this paper in four integrated parts, namely: narrative, material, hardware and computation. The Edge of Chaos installation is an explicit realization of creating emergent systems and translating them into an architectural design. Our results demonstrate the effectiveness of a custom CA for maximizing aesthetic impact while minimizing the live time of architectural kinetic elements.

keywords work in progress, complexity, responsive architecture, distributed computing, emergence, installation, interactive architecture, cellular automata
series ACADIA
type paper
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_618913 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002