CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures
Hits 1 to 20 of 223
Reformat results as: short short into frame detailed detailed into frame
With the recent introduction of computer graphics, much attention has been given to the representation of architecture. Floor plans and elevations have remained relatively unchanged, while digital animation and photorealistic renderings have become exciting new means of representation. A problem with the majority of this work and especially photorealistic rendering is that it represents the building as a image and concentrates on how a building looks as opposed to how it works. Often times this "look" is artificial, expressing the incapacity of programs (or their users) to represent the complexities of materials, lighting, and perspective. By using digital representation in a descriptive, less realistic way, one can explore the rich complexities and interrelationships of architecture. Instead of representing architecture as a finished product, it is possible to represent the ideas and concepts of the project.
1.Import design from other CAD tools.
2.Assemble an architecture structure from a library of pre-built blocks and geometry primitives dynamically created by user.
3.Export the design interactively in VRML format back to the library for Internet browsing.
The geometry primitives include polygon, sphere, cone, cylinder and cube. The pre-built blocks consist of fundamental architecture models which have been categorized with architectural related style, physical properties and environmental attributes. Upon a user’s request, the tool or the composer, has the ability to communicate with the library which indeed is a back-end distributed client-server database engine. The user may specify any combination of properties and attributes in the composer which will instantly bring up all matching 3-dimensional objects through the database engine. The database is designed in relational model and comes from the work of another research group.
Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.
Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.
Within contemporary digital environments, there are increasing opportunities to explore and evaluate design proposals which integrate both architectural and landscape aspects. The production of integrated design solutions exploring buildings and their surrounding context is now possible through the design development of shared 3-D and 4-D virtual environments, in which buildings no longer float in space.
The scope of landscape design has expanded through the application of techniques such as GIS allowing interpretations that include social, economic and environmental dimensions. In architecture, for example, object-oriented CAD environments now make it feasible to integrate conventional modelling techniques with analytical evaluations such as energy calculations and lighting simulations. These were all ambitions of architects and landscape designers in the 70s when computer power restricted the successful implementation of these ideas. Instead, the commercial trend at that time moved towards isolated specialist design tools in particular areas. Prior to recent innovations in computing, the closely related disciplines of architecture and landscape have been separated through the unnecessary development, in our view, of their own symbolic representations, and the subsequent computer applications. This has led to an unnatural separation between what were once closely related disciplines.
Significant increases in the performance of computers are now making it possible to move on from symbolic representations towards more contextual and meaningful representations. For example, the application of realistic materials textures to CAD-generated building models can then be linked to energy calculations using the chosen materials. It is now possible for a tree to look like a tree, to have leaves and even to be botanicaly identifiable. The building and landscape can be rendered from a common database of digital samples taken from the real world. The complete model may be viewed in a more meaningful way either through stills or animation, or better still, through a total simulation of the lifecycle of the design proposal. The model may also be used to explore environmental/energy considerations and changes in the balance between the building and its context most immediately through the growth simulation of vegetation but also as part of a larger planning model.
The Internet has a key role to play in facilitating this emerging collaborative design process. Design professionals are now able via the net to work on a shared model and to explore and test designs through the development of VRML, JAVA, whiteboarding and video conferencing. The end product may potentially be something that can be more easily viewed by the client/user. The ideas presented in this paper form the basis for the development of a dual course in landscape and architecture. This will create new teaching opportunities for exploring the design of buildings and sites through the shared development of a common computer model.
Architectural design is perhaps most commonly described by the architect as consisting of the ability to see the whole picture, to organize, to collect, to juggle, to manage, and to maintain multiple conflicting goals and values. Architecture by the preceding definition is hierarchical and top-down in nature. The agent based experiment in this paper presents an alternative design process, involving multiple autonomous agents acting distributively. The agents (objects) move through the design landscape, simultaneously collaborating, building, degenerating, and transforming their world.
For more results click below: