CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 440

_id 060b
authors Af Klercker, J.
year 1997
title A National Strategy for CAAD and IT-Implementation in the Construction Industry the Construction Industry
doi https://doi.org/10.52842/conf.ecaade.1997.x.o8u
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
summary The objective of this paper is to present a strategy for implementation of CAD and IT in the construction and building management#1 industry in Sweden. The interest is in how to make the best use of the limited resources in a small country or region, cooperating internationally and at the same time avoiding to be totally dominated by the great international actors in the market of information technology.

In Sweden representatives from the construction and building management industry have put forward a research and development program called: "IT-Bygg#2 2002 - Implementation". It aims at making IT the vehicle for decreasing the building costs and at the same time getting better quality and efficiency out of the industry.

The presented strategy is based on a seminar with some of the most experienced researchers, developers and practitioners of CAD in Sweden. The activities were recorded and annotated, analyzed and put together afterwards.

The proposal in brief is that object oriented distributed CAD is to be used in the long perspective. It will need to be based on international standards such as STEP and it will take at least another 5 years to get established.

Meanwhile something temporary has to be used. Pragmatically a "de facto standard" on formats has to be accepted and implemented. To support new users of IT all software in use in the country will be analyzed, described and published for a national platform for IT-communication within the construction industry.

Finally the question is discussed "How can architect schools then contribute to IT being implemented within the housing sector at a regional or national level?" Some ideas are presented: Creating the good example, better support for the customer, sharing the holistic concept of the project with all actors, taking part in an integrated education process and international collaboration like AVOCAAD and ECAADE.

 

keywords CAAD, IT, Implementation, Education, Collaboration
series eCAADe
type normal paper
email
more http://info.tuwien.ac.at/ecaade/proc/afklerck/afklerck.htm
last changed 2022/06/07 07:50

_id c5a0
authors Bradford, J., Wong, W.S., Tang, A.H.F. and Yeung, C.S.K.
year 1997
title A Virtual Reality Building Block Composer for Architecture
doi https://doi.org/10.52842/conf.caadria.1997.051
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 51-59
summary Design is a complex and time consuming process. One way to simplify the design process is to use pre-build blocks for commonly known parts instead of creating them again with CAD. To give the designer an immediate 3D view of the design, designing in virtual reality is a good choice. This paper presents a virtual reality interface tool which allows a user to assemble an architecture structure from a library of pre-built blocks. The library is a distributed client-server database.
series CAADRIA
email
last changed 2022/06/07 07:54

_id aa2f
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 1997
title An Intelligent Assistant for the Architectural Design Studio
doi https://doi.org/10.52842/conf.ecaade.1997.x.a3a
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
summary It seems by now fairly accepted by many researchers in the field of the Computer Aided Design that the way to realise support tools for the architectural design is by means of the realisation of Intelligent Assistants. This kind of computer program, based on the Knowledge Engineering and machine learning, finds his power and effectiveness by the Knowledge Base on which it is based. Moreover, it appears evident that the modalities of dialogue among architects and operators in the field of building industry, are inadequate to support the exchange of information that the use of these tools requires.

In fact, many efforts at international level are in progress to define tools in order to make easier the multiple exchange of information in different fields of building design. Concerning this point, protocol and ontology of structured information interchanges constitute the first steps in this sense, e.g. those under standardisation by ISO (STEP), PDT models and Esprit project ToCEE. To model these problems it has brought forth a new research field: the collaborative design one, an evolution of distributed work and concurrent design.

The CAAD Laboratory of Dipartimento di Architettura and Urbanistica per l'Ingegneria has carried out a software prototype, KAAD, based on Knowledge Engineering in the fields of hospital building and of building for aged people. This software is composed by an Interface, a Knowledge Base, a Database and Constraints. The Knowledge Base has been codified by using the formal structure of frames, and has been implemented by the Lisp language. All the elements of KB are objects

keywords Design Studio
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/carrara/carrara.htm
last changed 2022/06/07 07:50

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 47fc
authors Costanzo, E., De Vecchi, A., Di Miceli, C. and Giacchino, V.
year 1997
title A Software for Automatically Verifying Compatibility in Complicated Building Assemblies
doi https://doi.org/10.52842/conf.ecaade.1997.x.q4q
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
summary The research we are carrying on is intended to develop a tool aiding to design building mechanical assembly systems, which are often characterised by high complexity levels. In fact, when designing complicated building assemblies by making use of common graphical representations, it might be impossible for the operator to choose the proper shape and installation sequence of components so that they do not interfere during the assembly, and to check, in the meantime, the most favorable setting up modalities according to execution problems. Our software, running within CAD, by starting from the definition of the node features, will allow the operator to automatically get three types of representation that can simulate the assembly according to the assigned installation sequence: - instant images of the phases for setting up each component into the node; - 3D views showing the position of each component disassembled from the node and indicating the movements required for connection; - the components moving while the node is being constructed. All the representations can be updated step by step each time modifications to the node are made. Through this digital iterative design process - that takes advantage of various simultaneous and realistic prefigurations - the shape and function compatibility between the elements during the assembling can be verified. Furthermore, the software can quickly check whether any change and integration to the node is efficacious, rising the approximation levels in the design phase. At the moment we have developed the part of the tool that simulates the assembly by moving the components into the nodes according to the installation sequence.
series eCAADe
more http://info.tuwien.ac.at/ecaade/proc/costanzo/costanzo.htm
last changed 2022/06/07 07:50

_id 8569
authors Kurmann, D., Elte, N. and Engeli, M.
year 1997
title Real-Time Modeling with Architectural Space
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 809-819
summary Space as an architectural theme has been explored in many ways over many centuries; designing the architectural space is a major issue in both architectural education and in the design process. Based on these observations, it follows that computer tools should be available that help architects manipulate and explore space and spatial configurations directly and interactively. Therefore, we have created and extended the computer tool Sculptor. This tool enables the architect to design interactively with the computer, directly in real-time and in three dimensions. We developed the concept of 'space as an element' and integrated it into Sculptor. These combinations of solid and void elements - positive and negative volumes - enable the architect to use the computer already in an early design stage for conceptual design and spatial studies. Similar to solids modeling but much simpler, more intuitive and in real-time this allows the creation of complex spatial compositions in 3D space. Additionally, several concepts, operations and functions are defined inherently. Windows and doors for example are negative volumes that connect other voids inside positive ones. Based on buildings composed with these spaces we developed agents to calculate sound atmosphere and estimate cost, and creatures to test building for fire escape reasons etc. The paper will look at the way to design with space from both an architect's point of view and a computer scientist's. Techniques, possibilities and consequences of this direct void modeling will be explained. It will elaborate on the principle of human machine interaction brought up by our research and used in Sculptor. It will present the possibility to create VRML models directly for the web and show some of the designs done by students using the tool in our CAAD courses.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id cf2011_p093
id cf2011_p093
authors Nguyen, Thi Lan Truc; Tan Beng Kiang
year 2011
title Understanding Shared Space for Informal Interaction among Geographically Distributed Teams
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 41-54.
summary In a design project, much creative work is done in teams, thus requires spaces for collaborative works such as conference rooms, project rooms and chill-out areas. These spaces are designed to provide an atmosphere conducive to discussion and communication ranging from formal meetings to informal communication. According to Kraut et al (E.Kraut et al., 1990), informal communication is an important factor for the success of collaboration and is defined as “conversations take place at the time, with the participants, and about the topics at hand. It often occurs spontaneously by chance and in face-to-face manner. As shown in many research, much of good and creative ideas originate from impromptu meeting rather than in a formal meeting (Grajewski, 1993, A.Isaacs et al., 1997). Therefore, the places for informal communication are taken into account in workplace design and scattered throughout the building in order to stimulate face-to-face interaction, especially serendipitous communication among different groups across disciplines such as engineering, technology, design and so forth. Nowadays, team members of a project are not confined to people working in one location but are spread widely with geographically distributed collaborations. Being separated by long physical distance, informal interaction by chance is impossible since people are not co-located. In order to maintain the benefit of informal interaction in collaborative works, research endeavor has developed a variety ways to shorten the physical distance and bring people together in one shared space. Technologies to support informal interaction at a distance include video-based technologies, virtual reality technologies, location-based technologies and ubiquitous technologies. These technologies facilitate people to stay aware of other’s availability in distributed environment and to socialize and interact in a multi-users virtual environment. Each type of applications supports informal interaction through the employed technology characteristics. One of the conditions for promoting frequent and impromptu face-to-face communication is being co-located in one space in which the spatial settings play as catalyst to increase the likelihood for frequent encounter. Therefore, this paper analyses the degree to which sense of shared space is supported by these technical approaches. This analysis helps to identify the trade-off features of each shared space technology and its current problems. A taxonomy of shared space is introduced based on three types of shared space technologies for supporting informal interaction. These types are named as shared physical environments, collaborative virtual environments and mixed reality environments and are ordered increasingly towards the reality of sense of shared space. Based on the problem learnt from other technical approaches and the nature of informal interaction, this paper proposes physical-virtual shared space for supporting intended and opportunistic informal interaction. The shared space will be created by augmenting a 3D collaborative virtual environment (CVE) with real world scene at the virtual world side; and blending the CVE scene to the physical settings at the real world side. Given this, the two spaces are merged into one global structure. With augmented view of the real world, geographically distributed co-workers who populate the 3D CVE are facilitated to encounter and interact with their real world counterparts in a meaningful and natural manner.
keywords shared space, collaborative virtual environment, informal interaction, intended interaction, opportunistic interaction
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 2d60
authors Schwenck, M. and Sariyildiz, S.
year 1997
title An Integrated Software Environment for the Architectural Design Process
source Proceedings of the International Conference on Applications of Computer Science and Mathematics in Architecture and Building Science (IKM 1997), Weimar, Germany
summary Many software systems are in common use in the field of architectural design. On the other hand, we consider a complete automation of architectural design as an unlikely proposition and undesirable for the architect. Therefore, the general objective is to support the designer during the whole process of architectural design in order to increase the efficiency and to improve the quality of the results. So far there are different tools providing such functionality. Nevertheless, there are no appropriate tools for many of the sub-processes. Furthermore, the current state of available design software is characterised by a lack of integration of different tools. In this paper we will provide a survey on a project dealing with the solution of both problems. First we will give a general description of the support that software can provide to architects during the design process. We conclude that many different tools are needed which have to be integrated in an open, modular, distributed, user friendly and efficient environment. We will explain the necessity of integration and cover integration technologies. Besides the aspect of integration we also deal with the development of tools which can operate in the integrated design environment. We suggest a strategy where the tool functions are specified on the basis of a transformation from hierarchical process descriptions of architectural design into a hierarchy of tool descriptions.
series other
last changed 2003/04/23 15:50

_id 1f62
authors Kiliccote, Han
year 1997
title A standards processing framework
source Carnegie Mellon University, Pittsburgh
summary Civil engineers create and employ a very large number of design standards, especially in the United States. Designing using such a large number of design standards is a tedious, laborious, and difficult task. One major research task in Computer-Aided Engineering (CAE) is the development of software tools that assist in the usage of design standards during the design process. This dissertation, a standards processing framework is presented. It is an agent-based approach to providing computer-aided support for using design standards. In this framework, modules, such as standards processing servers, are treated as agents communicating using a defined communication language. One immediate advantage of this architecture is that it allows the incorporation of a broad, powerful set of representation for use in modeling design standards.
series thesis:PhD
email
more http://han.ices.cmu.edu
last changed 2003/02/12 22:37

_id f071
authors Maher, M.L., Cicognani, A. and Simoff, S.J.
year 1997
title An Experimental Study of Computer Mediated Collaborative Design
source International Journal of Design Computing, Key Centre of Design Computing, University of Sydney, Sydney
summary The use of computer technology in design practice is moving towards a distributed resource available to a team of designers. The development of software to support designers has traditionally been based on the assumption that there will be a single person using the software at a time. Recent developments have enabled the feasibility of software for two or more simultaneous users, leading to the possibility of computer mediated collaborative design (CMCD), where the computer plays the role of mediator and design information handler. There is the potential for the computer to play a more active role in collaborative design through enhanced visibility of 3D models and assistance in generating alternative designs and design critiques. With this potential the computer not only mediates the collaborative design process but actively supports the designers. Research in integrated CAD, multimedia and design database systems, virtual design studios, and design protocol studies provide the basis for a formal study of CMCD. We have developed an experimental methodology to study the difference in design semantics documented using computer applications when designing alone as compared to designing collaboratively. This methodology can be applied to study other aspects of CMCD.
series journal paper
email
last changed 2003/04/23 15:50

_id 9afb
authors Maher, M.L., Simoff, S. and Cicognani, A.
year 1997
title Observations from an experimental study of computer-mediated collaborative design
source M.L. Maher, J.S. Gero, and F Sudweeks eds. Preprints Formal Aspects of Collaborative CAD, Key Centre of Design Computing, University of Sydney, Sydney, pp.165-185
summary The use of computer technology in design practice is moving towards a distributed resource available to a team of designers. The development of software to support designers has been based largely on the assumption that there will be a single person using the software at a time. Recent developments have enabled the feasibility of software for two or more simultaneous users, leading to the possibility of computer-mediated collaborative design. Research in integrated CAD, virtual design studios, and design protocol studies provide the basis for a formal study of computer-mediated design. We develop an experimental study of computer-mediated collaborative design with the aim of collecting data on the amount and content of design semantics documented using computer applications when designing alone as compared to designing collaboratively. The experiment includes the definition of an hypothesis, aim, methodology, data collection and coding schemes. The experiment and some preliminary observations are presented, followed by directions for further research.
series other
email
last changed 2003/04/23 15:14

_id 730e
authors Af Klercker, Jonas
year 1997
title Implementation of IT and CAD - what can Architect schools do?
source AVOCAAD First International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-01-09] Brussels (Belgium) 10-12 April 1997, pp. 83-92
summary In Sweden representatives from the Construction industry have put forward a research and development program called: "IT-Bygg 2002 -Implementation". It aims at making IT the vehicle for decreasing the building costs and at the same time getting better quality and efficiency out of the industry. A seminar was held with some of the most experienced researchers, developers and practitioners of CAD in construction in Sweden. The activities were recorded and annotated, analysed and put together afterwards; then presented to the participants to agree on. Co-operation is the key to get to the goals - IT and CAD are just the means to improve it. Co-operation in a phase of implementation is enough problematic without the technical difficulties in using computer programs created by the computer industry primarily for commercial reasons. The suggestion is that cooperation between software companies within Sweden will make a greater market to share than the sum of all individual efforts. In the short term, 2 - 5 years, implementation of CAD and IT will demand a large amount of educational efforts from all actors in the construction process. In the process of today the architect is looked upon as a natural coordinator of the design phase. In the integrated process the architect's methods and knowledge are central and must be spread to other categories of actors - what a challenge! At least in Sweden the number of researchers and educators in CAAD is easily counted. How do we make the most of it?
series AVOCAAD
last changed 2005/09/09 10:48

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email
last changed 2016/03/10 09:47

_id b4c4
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2000
title A framework for an Architectural Collaborative Design
doi https://doi.org/10.52842/conf.ecaade.2000.057
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 57-60
summary The building industry involves a larger number of disciplines, operators and professionals than other industrial processes. Its peculiarity is that the products (building objects) have a number of parts (building elements) that does not differ much from the number of classes into which building objects can be conceptually subdivided. Another important characteristic is that the building industry produces unique products (de Vries and van Zutphen, 1992). This is not an isolated situation but indeed one that is spreading also in other industrial fields. For example, production niches have proved successful in the automotive and computer industries (Carrara, Fioravanti, & Novembri, 1989). Building design is a complex multi-disciplinary process, which demands a high degree of co-ordination and co-operation among separate teams, each having its own specific knowledge and its own set of specific design tools. Establishing an environment for design tool integration is a prerequisite for network-based distributed work. It was attempted to solve the problem of efficient, user-friendly, and fast information exchange among operators by treating it simply as an exchange of data. But the failure of IGES, CGM, PHIGS confirms that data have different meanings and importance in different contexts. The STandard for Exchange of Product data, ISO 10303 Part 106 BCCM, relating to AEC field (Wix, 1997), seems to be too complex to be applied to professional studios. Moreover its structure is too deep and the conceptual classifications based on it do not allow multi-inheritance (Ekholm, 1996). From now on we shall adopt the BCCM semantic that defines the actor as "a functional participant in building construction"; and we shall define designer as "every member of the class formed by designers" (architects, engineers, town-planners, construction managers, etc.).
keywords Architectural Design Process, Collaborative Design, Knowledge Engineering, Dynamic Object Oriented Programming
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id 80f7
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2001
title Knowledge-based System to Support Architectural Design - Intelligent objects, project net-constraints, collaborative work
doi https://doi.org/10.52842/conf.ecaade.2001.080
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 80-85
summary The architectural design business is marked by a progressive increase in operators all cooperating towards the realization of building structures and complex infrastructures (Jenckes, 1997). This type of design implies the simultaneous activity of specialists in different fields, often working a considerable distance apart, on increasingly distributed design studies. Collaborative Architectural Design comprises a vast field of studies that embraces also these sectors and problems. To mention but a few: communication among operators in the building and design sector; design process system logic architecture; conceptual structure of the building organism; building component representation; conflict identification and management; sharing of knowledge; and also, user interface; global evaluation of solutions adopted; IT definition of objects; inter-object communication (in the IT sense). The point of view of the research is that of the designers of the architectural artefact (Simon, 1996); its focus consists of the relations among the various design operators and among the latter and the information exchanged: the Building Objects. Its primary research goal is thus the conceptual structure of the building organism for the purpose of managing conflicts and developing possible methods of resolving them.
keywords Keywords. Collaborative Design, Architectural And Building Knowledge, Distributed Knowledge Bases, Information Management, Multidisciplinarity
series eCAADe
email
last changed 2022/06/07 07:55

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2012/12/04 07:53

_id 4983
authors Cutting-Decelle, A.-F., Dubois, A.-M. and Fernandez, I.
year 1997
title Management and Integration of Product Information in Construction: Reality and Future Trends
source The Int. Journal of Construction IT 5(2), pp. 19-46
summary For many years numerous efforts have been spent on the development of standardized approaches for modelling industrial information. During this period stand-alone software tools have been developed in most industries including the Building and Construction sector : Computer Aided Design (CAD) tools, technical software such as software development for energy analysis, project management systems, product databases etc. As this set of computer tools became more and more heterogeneous, the need for communication tools has emerged to enable data to be exchanged between them. Standardising data exchange then becomes a logical step in the improvement of the information management during the whole construction process. The aim of this paper is to put forward the state-of-the art in the domain of product model approaches and standards developments : ISO 10303 STEP, ISO 13584 P-LIB and ISO 15531 MANDATE. We will give a global overview of the existing applications in the construction sector, both in terms of product, or process models, most of them provided by either national or European projects.
series journal paper
last changed 2003/05/15 21:45

_id 20ff
id 20ff
authors Derix, Christian
year 2004
title Building a Synthetic Cognizer
source Design Computation Cognition conference 2004, MIT
summary Understanding ‘space’ as a structured and dynamic system can provide us with insight into the central concept in the architectural discourse that so far has proven to withstand theoretical framing (McLuhan 1964). The basis for this theoretical assumption is that space is not a void left by solid matter but instead an emergent quality of action and interaction between individuals and groups with a physical environment (Hillier 1996). In this way it can be described as a parallel distributed system, a self-organising entity. Extrapolating from Luhmann’s theory of social systems (Luhmann 1984), a spatial system is autonomous from its progenitors, people, but remains intangible to a human observer due to its abstract nature and therefore has to be analysed by computed entities, synthetic cognisers, with the capacity to perceive. This poster shows an attempt to use another complex system, a distributed connected algorithm based on Kohonen’s self-organising feature maps – SOM (Kohonen 1997), as a “perceptual aid” for creating geometric mappings of these spatial systems that will shed light on our understanding of space by not representing space through our usual mechanics but by constructing artificial spatial cognisers with abilities to make spatial representations of their own. This allows us to be shown novel representations that can help us to see new differences and similarities in spatial configurations.
keywords architectural design, neural networks, cognition, representation
series other
type poster
email
more http://www.springer.com/computer/ai/book/978-1-4020-2392-7
last changed 2012/09/17 21:13

_id cebb
authors Do, Ellen Yi-Luen and Gross, Mark D.
year 1997
title Tools for Visual and Spatial Analysis of CAD Models - Implementing Computer Tools as a Means to Thinking about Architecture
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 189-202
summary The paper describes a suite of spatial analysis programs to support architectural design. Building these computational tools not only supports the task of spatial analysis for designers but it also helps us think about the spatial perception. We argue that building design software is an important vehicle for understanding architecture, using our efforts to build various visual and spatial analysis tools as examples.
series CAAD Futures
email
last changed 2004/10/04 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 21HOMELOGIN (you are user _anon_256805 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002