CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 518

_id 6d59
authors Papamichael, K., LaPorta, J. and Chauvet, H.
year 1997
title Building Design Advisor: automated integration of multiple simulation tools
source Automation in Construction 6 (4) (1997) pp. 341-352
summary The Building Design Advisor (BDA) is a software environment that supports the integrated use of multiple analysis and visualization tools throughout the building design process, from the initial, conceptual and schematic phases to the detailed specification of building components and systems. Based on a comprehensive design theory, the BDA uses an object-oriented representation of the building and its context, and acts as a data manager and process controller to allow building designers to benefit from the capabilities of multiple tools. The BDA provides a graphical user interface that consists of two main elements: the Building Browser and the Decision Desktop. The Browser allows building designers to quickly navigate through the multitude of descriptive and performance parameters addressed by the analysis and visualization tools linked to the BDA. Through the Browser the user can edit the values of input parameters and select any number of input and/or output parameters for display in the Decision Desktop. The Desktop allows building designers to compare multiple design alternatives with respect to multiple descriptive and performance parameters addressed by the tools linked to the BDA. The BDA is implemented as a Windows®-based application for personal computers. Its initial version is linked to a Schematic Graphic Editor (SGE), which allows designers to quickly and easily specify the geometric characteristics of building components and systems. For every object created in the SGE, the BDA activates a Default Value Selector (DVS) mechanism that selects `smart' default values from a Prototypes Database for all non-geometric parameters required as input to the analysis and visualization tools linked to the BDA. In addition to the SGE that is an integral part of its user interface, the initial version of the BDA is linked to a daylight analysis tool, an energy analysis tool, and a multimedia, Web-based Case Studies Database (CSD). The next version of the BDA will be linked to additional analysis tools, such as the DOE-2 (thermal, energy and energy cost) and RADIANCE (day/lighting and rendering) computer programs. Plans for the future include the development of links to cost estimating and environmental impact modules, building rating systems, CAD software and electronic product catalogs.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id f5ee
authors Erhorn, H., De Boer, J. and Dirksmueller, M.
year 1997
title ADELINE, an Integrated Approach to Lighting Simulation
source Proceedings of Right Light 4, 4th European Conference on Energy-Efficient Lighting, pp.99-103
summary The use of daylighting and artificial lighting simulation programs to calculate complex systems and models in the design practice often is impeded by the fact that the operation of these programs, especially the model input, is extremely complicated and time-consuming. Programs that are easier to use generally do not show the calculation capabilities required in practice. A second obstacle arises as the lighting calculations often do not allow any statements regarding the interactions with the energetic and thermal building performance. Both problems are mainly due to a lacking integration of the design tools of other building design practitioners as well as due to insufficient user interfaces. The program package ADELINE (Advanced Daylight and Electric Lighting Integrated New Environment) being available since May 1996 as completely revised version 2.0 presents a promising approach to solve these problems. This contribution describes the approaches and methods used within the international project IEA Task 21 for a further development of the ADELINE system. Aim of this work is a further improvement of user interfaces based on the inclusion of new dialogs and on a portation of the program system from MS-DOS to the Windows NT platform. Additional focus is laid on the use of recent developments in the field of information technology and experiences gained in other projects on integrated building design systems, like for example EU-COMBINE, in a pragmatical way. An integrated building design system with open standardized interfaces is to be achieved inter alia by using ISOSTEP formats, database technologies and a consequent, object-oriented design.
series other
last changed 2003/04/23 15:50

_id e82c
authors Mahdavi, A., Mathew, P. and Wong, N.H.
year 1997
title A Homology-Based Mapping Approach to Concurrent Multi-Domain Performance Evaluation
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 237-246
doi https://doi.org/10.52842/conf.caadria.1997.237
summary Over the past several years there have been a number of research efforts to develop integrated computational tools which seek to effectively support concurrent design and performance evaluation. In prior research, we have argued that elegant and effective solutions for concurrent, integrated design and simulation support systems can be found if the potentially existing structural homologies in general (configurational) and domain-specific (technical) building representations are creatively exploited. We present the use of such structural homologies to facilitate seamless and dynamic communication between a general building representation and multiple performance simulation modules – specifically, a thermal analysis and an air-flow simulation module. As a proof of concept, we demonstrate a computational design environment (SEMPER) that dynamically (and autonomously) links an object-oriented space-based design model, with structurally homologous object models of various simulation routines.
series CAADRIA
email
last changed 2022/06/07 07:59

_id aa2f
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 1997
title An Intelligent Assistant for the Architectural Design Studio
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.a3a
summary It seems by now fairly accepted by many researchers in the field of the Computer Aided Design that the way to realise support tools for the architectural design is by means of the realisation of Intelligent Assistants. This kind of computer program, based on the Knowledge Engineering and machine learning, finds his power and effectiveness by the Knowledge Base on which it is based. Moreover, it appears evident that the modalities of dialogue among architects and operators in the field of building industry, are inadequate to support the exchange of information that the use of these tools requires.

In fact, many efforts at international level are in progress to define tools in order to make easier the multiple exchange of information in different fields of building design. Concerning this point, protocol and ontology of structured information interchanges constitute the first steps in this sense, e.g. those under standardisation by ISO (STEP), PDT models and Esprit project ToCEE. To model these problems it has brought forth a new research field: the collaborative design one, an evolution of distributed work and concurrent design.

The CAAD Laboratory of Dipartimento di Architettura and Urbanistica per l'Ingegneria has carried out a software prototype, KAAD, based on Knowledge Engineering in the fields of hospital building and of building for aged people. This software is composed by an Interface, a Knowledge Base, a Database and Constraints. The Knowledge Base has been codified by using the formal structure of frames, and has been implemented by the Lisp language. All the elements of KB are objects

keywords Design Studio
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/carrara/carrara.htm
last changed 2022/06/07 07:50

_id b4c4
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2000
title A framework for an Architectural Collaborative Design
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 57-60
doi https://doi.org/10.52842/conf.ecaade.2000.057
summary The building industry involves a larger number of disciplines, operators and professionals than other industrial processes. Its peculiarity is that the products (building objects) have a number of parts (building elements) that does not differ much from the number of classes into which building objects can be conceptually subdivided. Another important characteristic is that the building industry produces unique products (de Vries and van Zutphen, 1992). This is not an isolated situation but indeed one that is spreading also in other industrial fields. For example, production niches have proved successful in the automotive and computer industries (Carrara, Fioravanti, & Novembri, 1989). Building design is a complex multi-disciplinary process, which demands a high degree of co-ordination and co-operation among separate teams, each having its own specific knowledge and its own set of specific design tools. Establishing an environment for design tool integration is a prerequisite for network-based distributed work. It was attempted to solve the problem of efficient, user-friendly, and fast information exchange among operators by treating it simply as an exchange of data. But the failure of IGES, CGM, PHIGS confirms that data have different meanings and importance in different contexts. The STandard for Exchange of Product data, ISO 10303 Part 106 BCCM, relating to AEC field (Wix, 1997), seems to be too complex to be applied to professional studios. Moreover its structure is too deep and the conceptual classifications based on it do not allow multi-inheritance (Ekholm, 1996). From now on we shall adopt the BCCM semantic that defines the actor as "a functional participant in building construction"; and we shall define designer as "every member of the class formed by designers" (architects, engineers, town-planners, construction managers, etc.).
keywords Architectural Design Process, Collaborative Design, Knowledge Engineering, Dynamic Object Oriented Programming
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id 2354
authors Clayden, A. and Szalapaj, P.
year 1997
title Architecture in Landscape: Integrated CAD Environments for Contextually Situated Design
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.q6p
summary This paper explores the future role of a more holistic and integrated approach to the design of architecture in landscape. Many of the design exploration and presentation techniques presently used by particular design professions do not lend themselves to an inherently collaborative design strategy.

Within contemporary digital environments, there are increasing opportunities to explore and evaluate design proposals which integrate both architectural and landscape aspects. The production of integrated design solutions exploring buildings and their surrounding context is now possible through the design development of shared 3-D and 4-D virtual environments, in which buildings no longer float in space.

The scope of landscape design has expanded through the application of techniques such as GIS allowing interpretations that include social, economic and environmental dimensions. In architecture, for example, object-oriented CAD environments now make it feasible to integrate conventional modelling techniques with analytical evaluations such as energy calculations and lighting simulations. These were all ambitions of architects and landscape designers in the 70s when computer power restricted the successful implementation of these ideas. Instead, the commercial trend at that time moved towards isolated specialist design tools in particular areas. Prior to recent innovations in computing, the closely related disciplines of architecture and landscape have been separated through the unnecessary development, in our view, of their own symbolic representations, and the subsequent computer applications. This has led to an unnatural separation between what were once closely related disciplines.

Significant increases in the performance of computers are now making it possible to move on from symbolic representations towards more contextual and meaningful representations. For example, the application of realistic materials textures to CAD-generated building models can then be linked to energy calculations using the chosen materials. It is now possible for a tree to look like a tree, to have leaves and even to be botanicaly identifiable. The building and landscape can be rendered from a common database of digital samples taken from the real world. The complete model may be viewed in a more meaningful way either through stills or animation, or better still, through a total simulation of the lifecycle of the design proposal. The model may also be used to explore environmental/energy considerations and changes in the balance between the building and its context most immediately through the growth simulation of vegetation but also as part of a larger planning model.

The Internet has a key role to play in facilitating this emerging collaborative design process. Design professionals are now able via the net to work on a shared model and to explore and test designs through the development of VRML, JAVA, whiteboarding and video conferencing. The end product may potentially be something that can be more easily viewed by the client/user. The ideas presented in this paper form the basis for the development of a dual course in landscape and architecture. This will create new teaching opportunities for exploring the design of buildings and sites through the shared development of a common computer model.

keywords Integrated Design Process, Landscape and Architecture, Shared Environmentsenvironments
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/szalapaj/szalapaj.htm
last changed 2022/06/07 07:50

_id 4983
authors Cutting-Decelle, A.-F., Dubois, A.-M. and Fernandez, I.
year 1997
title Management and Integration of Product Information in Construction: Reality and Future Trends
source The Int. Journal of Construction IT 5(2), pp. 19-46
summary For many years numerous efforts have been spent on the development of standardized approaches for modelling industrial information. During this period stand-alone software tools have been developed in most industries including the Building and Construction sector : Computer Aided Design (CAD) tools, technical software such as software development for energy analysis, project management systems, product databases etc. As this set of computer tools became more and more heterogeneous, the need for communication tools has emerged to enable data to be exchanged between them. Standardising data exchange then becomes a logical step in the improvement of the information management during the whole construction process. The aim of this paper is to put forward the state-of-the art in the domain of product model approaches and standards developments : ISO 10303 STEP, ISO 13584 P-LIB and ISO 15531 MANDATE. We will give a global overview of the existing applications in the construction sector, both in terms of product, or process models, most of them provided by either national or European projects.
series journal paper
last changed 2003/05/15 21:45

_id 2070
authors Forgber, U., Kohler, N., Koch, N., Schmidt, F. and Haller. R.
year 1997
title Integration of Sustainable Approaches in the Building Design Process
source Firenze International Conference for Teachers of Architecture, 16.-18. October 1997, Firenze, Italy
summary Sustainable approaches in the choice of building components require attentive control of the building design and complex analyses of the behavior of chosen components and their ecological balance. One strategy to support sustainable approaches is the technique of integrated planing. Integrated planing comprises both, horizontal (interdisciplinary teams) and vertical (building life cycle oriented) integration. Its realization requires the ability to view a building under different aspects (e.g. views of domain experts) and at different stages over time (preliminary design, design, construction, operation, demolition). These different views can only be considered at once, if different approaches in various areas such as computer aided design (CAD), modeling (PDM), and cooperation (CORBA) are integrated into one working environment. Over the last decade, the Institut für Industrielle Bauproduktion (ifib), University of Karlsruhe, Germany and the Institut für Kernenergetik und Energiesysteme (IKE), University of Stuttgart (Germany), have investigated various tools and techniques, supporting the implementation of these approaches. Several research projects were subject to experiments in this context.
series other
email
last changed 2003/02/26 18:58

_id diss_marsh
id diss_marsh
authors Marsh, A.J.
year 1997
title Performance Analysis and Conceptual Design
source School of Architecture and Fine Arts, University of Western Australia
summary A significant amount of the research referred to by Manning has been directed into the development of computer software for building simulation and performance analysis. A wide range of computational tools are now available and see relatively widespread use in both research and commercial applications. The focus of development in this area has long been on the accurate simulation of fundamental physical processes, such as the mechanisms of heat flow though materials, turbulent air movement and the inter-reflection of light. The adequate description of boundary conditions for such calculations usually requires a very detailed mathematical model. This has tended to produce tools with a very engineering-oriented and solution-based approach. Whilst becoming increasingly popular amongst building services engineers, there has been a relatively slow response to this technology amongst architects. There are some areas of the world, particularly the UK and Germany, where the use of such tools on larger projects is routine. However, this is almost exclusively during the latter stages of a project and usually for purposes of plant sizing or final design validation. The original conceptual work, building form and the selection of materials being the result of an aesthetic and intuitive process, sometimes based solely on precedent. There is no argument that an experienced designer is capable of producing an excellent design in this way. However, not all building designers are experienced, and even fewer have a complete understanding of the fundamental physical processes involved in building performance. These processes can be complex and often highly inter-related, often even counter-intuitive. It is the central argument of this thesis that the needs of the building designer are quite different from the needs of the building services engineer, and that existing building design and performance analysis tools poorly serve these needs. It will be argued that the extensive quantitative input requirement in such tools acts to produce a psychological separation between the act of design and the act of analysis. At the conceptual stage, building geometry is fluid and subject to constant change, with solid quantitative information relatively scarce. Having to measure off surface areas or search out the emissivity of a particular material forces the designer to think mathematically at a time when they are thinking intuitively. It is, however, at this intuitive stage that the greatest potential exists for performance efficiencies and environmental economies. The right orientation and fenestration choice can halve the airconditioning requirement. Incorporating passive solar elements and natural ventilation pathways can eliminate it altogether. The building form can even be designed to provide shading using its own fabric, without any need for additional structure or applied shading. It is significantly more difficult and costly to retrofit these features at a later stage in a project’s development. If the role of the design tool is to serve the design process, then a new approach is required to accommodate the conceptual phase. This thesis presents a number of ideas on what that approach may be, accompanied by some example software that demonstrates their implementation.
series thesis:PhD
more http://www.squ1.com/site.html
last changed 2003/11/28 07:33

_id 5f80
authors Ming, S. and Lockley, S.R.
year 1997
title Data exchange system for an integrated building design system
source Automation in Construction 6 (2) (1997) pp. 147-155
summary The main feature of an integrated building design system is data integration or data sharing by all design tools in the system. It is achieved by developing an integrated data model that combines different views of the building so that, through it, information can be exchanged in electronic form. This paper describes a Data Exchange System which provides the underlying support for data exchange and data maintenance in an integrated building design system utilising object-oriented database and ISO-STEP technologies.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 1054
authors Sacks, R. and Warszawski, A.
year 1997
title Issues in the Development and Implementation of a Building Project Model for an Automated Building System
source The Int. Journal of Construction IT 5(2), pp. 75-101
summary While other generalised building project models have been designed to support computer-based integration between various construction applications, we propose that the project model of an Automated System must be specifically designed for the purpose. The aim of an Automated, Computer Integrated Building Realization System is to automatically generate all of the information required for the design, planning and execution of a building project. The project model forms the foundation of the system, and must therefore include all of the relevant information about the facility and the resources required through the various realisation stages. This paper describes a project model designed and implemented specifically for this purpose and details some of the considerations in its development. The model has been tested for life-cycle applicability in a prototype interface of an Automated System. Its completeness at the final stage has also been validated through description of an existing 10 storey building.
series journal paper
last changed 2003/05/15 21:45

_id 2d60
authors Schwenck, M. and Sariyildiz, S.
year 1997
title An Integrated Software Environment for the Architectural Design Process
source Proceedings of the International Conference on Applications of Computer Science and Mathematics in Architecture and Building Science (IKM 1997), Weimar, Germany
summary Many software systems are in common use in the field of architectural design. On the other hand, we consider a complete automation of architectural design as an unlikely proposition and undesirable for the architect. Therefore, the general objective is to support the designer during the whole process of architectural design in order to increase the efficiency and to improve the quality of the results. So far there are different tools providing such functionality. Nevertheless, there are no appropriate tools for many of the sub-processes. Furthermore, the current state of available design software is characterised by a lack of integration of different tools. In this paper we will provide a survey on a project dealing with the solution of both problems. First we will give a general description of the support that software can provide to architects during the design process. We conclude that many different tools are needed which have to be integrated in an open, modular, distributed, user friendly and efficient environment. We will explain the necessity of integration and cover integration technologies. Besides the aspect of integration we also deal with the development of tools which can operate in the integrated design environment. We suggest a strategy where the tool functions are specified on the basis of a transformation from hierarchical process descriptions of architectural design into a hierarchy of tool descriptions.
series other
last changed 2003/04/23 15:50

_id c6e1
authors Smulevich, Gerard
year 1997
title Berlin-Crane City: Cardboard, Bits, and the Post-industrial Design Process
source Design and Representation [ACADIA ‘97 Conference Proceedings / ISBN 1-880250-06-3] Cincinatti, Ohio (USA) 3-5 October 1997, pp. 139-153
doi https://doi.org/10.52842/conf.acadia.1997.139
summary This paper explores the impact of information technology on the architectural design process as seen through different design studios from three schools of architecture in Southern California over a two year period.

All three studios tested notions of representation, simulation and the design process in relation to a post-industrial world and its impact on how we design for it. The sites for two of these studios were in the city of Berlin, where the spearhead of the information age and a leftover of the industrial revolution overlap in an urban condition that is representative of our world after the cold war. The three studios describe a progressive shift in the use of information technology in the design process, from nearly pure image-driven simulation to a more low-tech, highly creative uses of everyday computing tools. Combined, all three cases describe an array of scenarios for content-supportive uses of digital media in a design studio. The first studio described here, from USC, utilized computer modeling and visualization to design a building for a site located within the former no-mans' land of the Berlin Wall. The second studio, from SCI-Arc, produced an urban design proposal for an area along the former Berlin Wall and included a pan-geographic design collaboration via Internet between SCI-Arc/Los Angeles and SCI-Arc/Switzerland. The third and last studio from Woodbury University participated in the 1997 ACSA/Dupont Laminated Glass Competition designing a consulate general for Germany and one for Hong Kong. They employed a hybrid digital/non-digital process extracting experiential representations from simple chipboard study models and then using that information to explore an "enhanced model" through digital imaging processes.

The end of the cold war was coincidental with the explosive popularization of information technology as a consumer product and is poised to have huge impact on how and what we design for our cities. Few places in world express this potential as does the city of Berlin. These three undergraduate design studios employed consumer-grade technology in an attempt to make a difference in how we design, incorporating discussions of historical change, ideological premise and what it means to be an architect in a world where image and content can become easily disconnected from one another.

series ACADIA
email
last changed 2022/06/07 07:56

_id maver_107
id maver_107
authors Chen, Yan and Maver, Tom W.
year 1997
title Integrating Design Tools within a Human Collaborative Working Context
source International Journal of Construction IT, Vol5, No 2, pp 35-53
summary Integrating design tools has been an important research subject. The work to be reported in this paper differs from many previous efforts in that it not only tackles tool-tool interoperation, but also does so within a human collaborative working context We suggest that design integration support should include not only tool interoperability, but also mechanisms for co-ordinate and control the tool use. We also argue that the higher-level management support should include not only formalised and automated mechanisms, but also semi-automated and even informal mechanisms for human designers to directly interact with each other. Within a collaborative working framework, we'll present a hybrid architecture for tool integration, in which the human designers and the design tools are assumed to be distributed while the management is centralised. In this approach, each design tool is wrapped as an autonomous service provider with its own data store; thus the project design data is physically distributed with the design tools. A meta-data augmented product model, which populates a central meta-data repository serving as a "map" for locating the distributed design objects, is devised to provide a common vocabulary for communications and to assist the management of the distributed resources and activities. A design object broker is used to mediate among the distributed tools, and the central meta-data repository. The reported work has been part of a collaborative design system called virtual studio environment We'll illustrate how the integrated design tools might be used in human design work within the virtual studio environment.
series other
email
last changed 2003/09/03 15:36

_id 0e8f
authors Alavalkama, I. and Siitonen, P.
year 1997
title Developing a new endoscopy laboratory with digital tools.
source Architectural and Urban Simulation Techniques in Research and Education [Proceedings of the 3rd European Architectural Endoscopy Association Conference / ISBN 90-407-1669-2]
summary Tampere School of Architecture had to leave its old down-town building and move to the TU Tampere university campus in Hervanta, 10 km away. In this process, the 20 years old endoscopic system "The Urban Simulator" was one of the victims. Old mechanical parts and especially the original home-built microcomputer system were too old to compete with modern computer-aided methods. A new endoscopical system is now under construction, using all of the 20-year experience, new technical components and computers for camera control and picture processing. Real-material modelling is used together with computer-aided planning and visualization methods taking the best from both sides.
keywords Architectural Endoscopy, Endoscopy, Simulation, Visualisation, Visualization, Real Environments
series EAEA
email
more http://www.bk.tudelft.nl/media/eaea/eaea97.html
last changed 2005/09/09 10:43

_id 2dc0
authors Arkin, H. and Paciuk, M.
year 1997
title Evaluating intelligent buildings according to level of service systems integration
source Automation in Construction 6 (5-6) (1997) pp. 471-479
summary The intelligent building is supposed to provide the environment and means for an optimal utilization of the building, according to its designation. This extended function of a building can be achieved only by means of an extensive use of building service systems, such as HVAC; electric power; communication; safety and security; transportation; sanitation, etc. Building intelligence is not related to the sophistication of service systems in a building, but rather to the integration among the various service systems, and between the systems and the building structure. Systems' integration can be accomplished through teamwork planning of the building, starting at the initial design stages of the building. This paper examines some existing buildings claimed to be "intelligent", according to their level of systems' integration.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id a1cc
authors Bridges, Alan H.
year 1997
title Building Systems Integration and the Implications for CAD Education
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.g6p
summary The author has been a member of two important U.K. reviews of construction computing (references [1] and [2]). The paper draws on these reports, other U.K. Government Reports and theoretical work on collaborative design undertaken at the University of Strathclyde to present an evaluation of Information Technology use in practice and its implications for education.
keywords Use of computers in British architectural practice, The implications of information technology on the structure and working methods of the UK building industry, Implications for CAD education
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/bridges/bridges.htm
last changed 2022/06/07 07:50

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2012/12/04 07:53

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_37200 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002