CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 513

_id cabb
authors Broughton, T., Tan, A. and Coates, P.S.
year 1997
title The Use of Genetic Programming In Exploring 3D Design Worlds - A Report of Two Projects by Msc Students at CECA UEL
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 885-915
summary Genetic algorithms are used to evolve rule systems for a generative process, in one case a shape grammar,which uses the "Dawkins Biomorph" paradigm of user driven choices to perform artificial selection, in the other a CA/Lindenmeyer system using the Hausdorff dimension of the resultant configuration to drive natural selection. (1) Using Genetic Programming in an interactive 3D shape grammar. A report of a generative system combining genetic programming (GP) and 3D shape grammars. The reasoning that backs up the basis for this work depends on the interpretation of design as search In this system, a 3D form is a computer program made up of functions (transformations) & terminals (building blocks). Each program evaluates into a structure. Hence, in this instance a program is synonymous with form. Building blocks of form are platonic solids (box, cylinder, etc.). A Variety of combinations of the simple affine transformations of translation, scaling, rotation together with Boolean operations of union, subtraction and intersection performed on the building blocks generate different configurations of 3D forms. Using to the methodology of genetic programming, an initial population of such programs are randomly generated,subjected to a test for fitness (the eyeball test). Individual programs that have passed the test are selected to be parents for reproducing the next generation of programs via the process of recombination. (2) Using a GA to evolve rule sets to achieve a goal configuration. The aim of these experiments was to build a framework in which a structure's form could be defined by a set of instructions encoded into its genetic make-up. This was achieved by combining a generative rule system commonly used to model biological growth with a genetic algorithm simulating the evolutionary process of selection to evolve an adaptive rule system capable of replicating any preselected 3D shape. The generative modelling technique used is a string rewriting Lindenmayer system the genes of the emergent structures are the production rules of the L-system, and the spatial representation of the structures uses the geometry of iso-spatial dense-packed spheres
series CAAD Futures
email
last changed 2003/11/21 15:16

_id 6f61
authors Turkiyyah, G.M., Storti, D.W., Ganter, M., Hao, C. and Vimawala, M.
year 1997
title An accelerated triangulation method for computing the skeletons of free-form solid models
source Computer-Aided Design, Vol. 29 (1) (1997) pp. 5-19
summary Shape skeletons are powerful geometric abstractions that provide useful intermediate representations for a number of geometric operations on solid models includingfeature recognition, shape decomposition, finite element mesh generation, and shape design. As a result there has been significant interest in the development of effectivemethods for skeleton generation of general free-form solids. In this paper we describe a method that combines Delaunay triangulation with local numerical optimizationschemes for the generation of accurate skeletons of 3D implicit solid models. The proposed method accelerates the slow convergence of Voronoi diagrams to theskeleton, which, without optimization, would require impractically large sample point sets and resulting messhes to attain acceptable accuracy. The Delaunaytriangulation forms the basis for generating the topological structure of the skeleton. The optimization step of the process generates the geometry of the skeleton patchesby moving the vertices of Delaunay tetrahedra and relocating their centres to form maximally inscribed spheres. The computational advantage of the optimization schemeis that it involves the solution of one small optimization problem per tetrahedron and its complexity is therefore only linear (O(n)) in the number of points used for theskeleton approximation. We demonstrate the effectiveness of the method on a number of representative solid models.
keywords Skeleton Generation, Medial Axis, Delaunay Triangulation, Surface Curvature, Implicit Solid Models
series journal paper
last changed 2003/05/15 21:33

_id ce11
authors Bradford, J., Wong, W.S. and Tang, H.F.
year 1997
title Bridging Virtual Reality to Internet for Architecture
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.m9r
summary This paper presents a virtual reality interface tool which allows a user to perform the following action :

1.Import design from other CAD tools.

2.Assemble an architecture structure from a library of pre-built blocks and geometry primitives dynamically created by user.

3.Export the design interactively in VRML format back to the library for Internet browsing.

The geometry primitives include polygon, sphere, cone, cylinder and cube. The pre-built blocks consist of fundamental architecture models which have been categorized with architectural related style, physical properties and environmental attributes. Upon a user’s request, the tool or the composer, has the ability to communicate with the library which indeed is a back-end distributed client-server database engine. The user may specify any combination of properties and attributes in the composer which will instantly bring up all matching 3-dimensional objects through the database engine. The database is designed in relational model and comes from the work of another research group.

keywords Virtual Reality, Architecture Models, Relational Database, Client-Server
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/bradford/bradford.htm
last changed 2022/06/07 07:50

_id ga9921
id ga9921
authors Coates, P.S. and Hazarika, L.
year 1999
title The use of genetic programming for applications in the field of spatial composition
source International Conference on Generative Art
summary Architectural design teaching using computers has been a preoccupation of CECA since 1991. All design tutors provide their students with a set of models and ways to form, and we have explored a set of approaches including cellular automata, genetic programming ,agent based modelling and shape grammars as additional tools with which to explore architectural ( and architectonic) ideas.This paper discusses the use of genetic programming (G.P.) for applications in the field of spatial composition. CECA has been developing the use of Genetic Programming for some time ( see references ) and has covered the evolution of L-Systems production rules( coates 1997, 1999b), and the evolution of generative grammars of form (Coates 1998 1999a). The G.P. was used to generate three-dimensional spatial forms from a set of geometrical structures .The approach uses genetic programming with a Genetic Library (G.Lib) .G.P. provides a way to genetically breed a computer program to solve a problem.G. Lib. enables genetic programming to define potentially useful subroutines dynamically during a run .* Exploring a shape grammar consisting of simple solid primitives and transformations. * Applying a simple fitness function to the solid breeding G.P.* Exploring a shape grammar of composite surface objects. * Developing grammarsfor existing buildings, and creating hybrids. * Exploring the shape grammar of abuilding within a G.P.We will report on new work using a range of different morphologies ( boolean operations, surface operations and grammars of style ) and describe the use of objective functions ( natural selection) and the "eyeball test" ( artificial selection) as ways of controlling and exploring the design spaces thus defined.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 07d8
authors Garza, J.M. de la and Howitt, I.
year 1998
title Wireless communication and computing at the construction jobsite
source Automation in Construction 7 (4) (1998) pp. 327-347
summary For many years, the walkie-talkie has been synonymous with the construction industry. During jobsite project execution, there are three variables which can either hinder or facilitate successful results, namely, quality, quantity, and timing of information. Wireless data communications technology is capable of delivering just-in-time information within the `last mile' between the trailer and a desired location on the jobsite. This paper reports on a study which surveyed information needs at the jobsite, emerging wireless data communications technology, and assessed the extent to which wireless data technology can fulfill the information needs of the jobsite [J.M. de la Garza, I. Howitt, Wireless communication and computing at the jobsite, Research Report 136-11, Construction Industry Institute, Austin, TX, 1997]. We have organized jobsite information needs into the following ten categories: (a) requests for information, (b) materials management, (c) equipment management, (d) cost management, (e) schedule and means and methods, (f) jobsite record keeping, (g) submittals, (h) safety, (i) QC/QA, and (k) future trends. Each category was analyzed in terms of its appropriateness to take advantage of wireless technology. The four formats considered to transmit information wirelessly were: (a) live voice, (b) live video, (c) batched data, and (d) live data. Current wireless communication technology has been classified into the following five classes: (a) circuit-switched wireless data systems, (b) packet-switched wireless data systems––this class was further subdivided into specialized mobile radio systems and cellular digital packet data systems, (c) wireless local area networks, (d) paging systems, and (e) satellite-based data communications. A primer for wireless communications covering both fundamental and advanced communications concepts has also been included to enable a better understanding of the issues involved in making trade-offs while configuring a wireless jobsite communication system. The example presented in this paper shows how a contractor can define a subset of information needs by choosing from those already articulated herein and determine if a given wireless technology should even be considered as a viable way of meeting the information needs that such company has.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id acadia18_226
id acadia18_226
authors Glynn, Ruairi; Abramovic, Vasilija; Overvelde, Johannes T. B.
year 2018
title Edge of Chaos. Towards intelligent architecture through distributed control systems based on Cellular Automata.
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 226-231
doi https://doi.org/10.52842/conf.acadia.2018.226
summary From the “Edge of Chaos”, a mathematical space discovered by computer scientist Christopher Langton (1997), compelling behaviors originate that exhibit both degrees of organization and instability creating a continuous dance between order and chaos. This paper presents a project intended to make this complex theory tangible through an interactive installation based on metamaterial research which demonstrates emergent behavior using Cellular Automata (CA) techniques, illustrated through sound, light and motion. We present a multi-sensory narrative approach that encourages playful exploration and contemplation on perhaps the biggest questions of how life could emerge from the disorder of the universe.

We argue a way of creating intelligent architecture, not through classical Artificial Intelligence (AI), but rather through Artificial Life (ALife), embracing the aesthetic emergent possibilities that can spontaneously arise from this approach. In order to make these ideas of emergent life more tangible we present this paper in four integrated parts, namely: narrative, material, hardware and computation. The Edge of Chaos installation is an explicit realization of creating emergent systems and translating them into an architectural design. Our results demonstrate the effectiveness of a custom CA for maximizing aesthetic impact while minimizing the live time of architectural kinetic elements.

keywords work in progress, complexity, responsive architecture, distributed computing, emergence, installation, interactive architecture, cellular automata
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id 9195
authors Southwood, B.
year 1997
title Communications - Summary
source Automation in Construction 6 (1) (1997) pp. 33-37
summary The liberalisation of telecoms in the UK has had great benefits but BT is prevented from connecting optical fibre to each house. Digital cellular radio can deliver 1000 bits/s. Information Communications Systems include data, cabling and equipment to process voice, text, data and graphics. By the year 2005 optical fibre will be affordable in the workplace removing the current limitations on bandwidth. The BRICC project recommended more cooperative working. Business, ICS and manufacturing are likely to converge in the future.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id 841a
authors Bartnicka, Malgorzata
year 1997
title The Animal, Full Blood maybe, but Untamed
source AVOCAAD First International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-01-09] Brussels (Belgium) 10-12 April 1997, pp. 103-108
summary So far yet, even the most advanced technology has not been able to substitute a human, his thoughts, feelings, dreams, longings, visions. It can though, removing need for all kind of effort from our everyday life, surrounding a human with unprecedented comfort, create feeling of peace and security. Task of a computer is to provide assistance, helping in calculations, forming of refined solids, It contains a compendium of knowledge and memory - but not creative skills. So far it's only a machine, with help of which a possibility of creative expression is expanded. It only can solve problems for a human faster and more efficient way, does not have the ability to describe (formulate) problems. Even while providing a support, does it do that honestly? It means, does it support us in those of our doings where we truly need it? Computers have enormous possibilities of use that are not exploited sufficiently and all the time new generations of yet quicker machines with unbelievable power are being created. Every new type of computer appears to be obsolete and insufficient within a few months. Insufficient for what?
series AVOCAAD
last changed 2005/09/09 10:48

_id ed09
authors Chang, Teng Wen and Woodbury, Robert F.
year 1997
title Efficient Design Spaces of Non-Manifold Solids
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 335-344
doi https://doi.org/10.52842/conf.caadria.1997.335
summary One widely accepted metaphor in design research is search or, equivalently, exploration which likens design to intelligent movement through a possibly infinite space of alternatives. In this metaphor, designers search design spaces, explore possibilities, discover new designs, and recall and adapt existing designs. We give the name design space explorers to computer programs that support exploration. This paper describes an efficient representation of states comprising three-dimensional non-manifold solid models and of design spaces made from such states.
series CAADRIA
email
last changed 2022/06/07 07:56

_id 8569
authors Kurmann, D., Elte, N. and Engeli, M.
year 1997
title Real-Time Modeling with Architectural Space
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 809-819
summary Space as an architectural theme has been explored in many ways over many centuries; designing the architectural space is a major issue in both architectural education and in the design process. Based on these observations, it follows that computer tools should be available that help architects manipulate and explore space and spatial configurations directly and interactively. Therefore, we have created and extended the computer tool Sculptor. This tool enables the architect to design interactively with the computer, directly in real-time and in three dimensions. We developed the concept of 'space as an element' and integrated it into Sculptor. These combinations of solid and void elements - positive and negative volumes - enable the architect to use the computer already in an early design stage for conceptual design and spatial studies. Similar to solids modeling but much simpler, more intuitive and in real-time this allows the creation of complex spatial compositions in 3D space. Additionally, several concepts, operations and functions are defined inherently. Windows and doors for example are negative volumes that connect other voids inside positive ones. Based on buildings composed with these spaces we developed agents to calculate sound atmosphere and estimate cost, and creatures to test building for fire escape reasons etc. The paper will look at the way to design with space from both an architect's point of view and a computer scientist's. Techniques, possibilities and consequences of this direct void modeling will be explained. It will elaborate on the principle of human machine interaction brought up by our research and used in Sculptor. It will present the possibility to create VRML models directly for the web and show some of the designs done by students using the tool in our CAAD courses.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id 3e1c
authors Mortenson, M.E.
year 1997
title Geometric Modeling
source New York: Wiley Computer Publishing
summary A comprehensive, up-to-date presentation of all the indispensable core concepts of geometric modeling. Now completely updated to reflect the most recent developments in the field, Geometric Modeling clearly presents and compares all the important mathematical approaches to modeling curves, surfaces, and solids, and shows how to shape and assemble these elements into more complex models. Its thorough coverage also includes the concomitant geometric processing necessary, e.g., the computation of intersections, offsets, and fillets. Written in a style that is virtually free of the jargon of special applications, this unique book focuses on the essence of geometric modeling and treats it as a discipline in its own right. This integrated approach allows the reader to focus on the principles and logic of geometric modeling without requiring background knowledge of CAD/CAM, computer graphics, or computer programming. Supported by more than 300 illustrations, Geometric Modeling appeals to the reader's visual and intuitive skills in a way that makes understanding the more abstract concepts much easier. This new edition features a host of new application areas, including topology, special effects in cinematography, the design and control of type fonts, and virtual reality, as well as numerous application examples. For computer graphics specialists, application designers and developers, scientific programmers, and advanced students, Geometric Modeling, Second Edition will serve as a complete and invaluable guide to the entire field.
series other
last changed 2003/04/23 15:14

_id 75a8
authors Achten, Henri H.
year 1997
title Generic representations : an approach for modelling procedural and declarative knowledge of building types in architectural design
source Eindhoven University of Technology
summary The building type is a knowledge structure that is recognised as an important element in the architectural design process. For an architect, the type provides information about norms, layout, appearance, etc. of the kind of building that is being designed. Questions that seem unresolved about (computational) approaches to building types are the relationship between the many kinds of instances that are generally recognised as belonging to a particular building type, the way a type can deal with varying briefs (or with mixed use), and how a type can accommodate different sites. Approaches that aim to model building types as data structures of interrelated variables (so-called ‘prototypes’) face problems clarifying these questions. The research work at hand proposes to investigate the role of knowledge associated with building types in the design process. Knowledge of the building type must be represented during the design process. Therefore, it is necessary to find a representation which supports design decisions, supports the changes and transformations of the design during the design process, encompasses knowledge of the design task, and which relates to the way architects design. It is proposed in the research work that graphic representations can be used as a medium to encode knowledge of the building type. This is possible if they consistently encode the things they represent; if their knowledge content can be derived, and if they are versatile enough to support a design process of a building belonging to a type. A graphic representation consists of graphic entities such as vertices, lines, planes, shapes, symbols, etc. Establishing a graphic representation implies making design decisions with respect to these entities. Therefore it is necessary to identify the elements of the graphic representation that play a role in decision making. An approach based on the concept of ‘graphic units’ is developed. A graphic unit is a particular set of graphic entities that has some constant meaning. Examples are: zone, circulation scheme, axial system, and contour. Each graphic unit implies a particular kind of design decision (e.g. functional areas, system of circulation, spatial organisation, and layout of the building). By differentiating between appearance and meaning, it is possible to define the graphic unit relatively shape-independent. If a number of graphic representations have the same graphic units, they deal with the same kind of design decisions. Graphic representations that have such a specifically defined knowledge content are called ‘generic representations.’ An analysis of over 220 graphic representations in the literature on architecture results in 24 graphic units and 50 generic representations. For each generic representation the design decisions are identified. These decisions are informed by the nature of the design task at hand. If the design task is a building belonging to a building type, then knowledge of the building type is required. In a single generic representation knowledge of norms, rules, and principles associated with the building type are used. Therefore, a single generic representation encodes declarative knowledge of the building type. A sequence of generic representations encodes a series of design decisions which are informed by the design task. If the design task is a building type, then procedural knowledge of the building type is used. By means of the graphic unit and generic representation, it is possible to identify a number of relations that determine sequences of generic representations. These relations are: additional graphic units, themes of generic representations, and successive graphic units. Additional graphic units defines subsequent generic representations by adding a new graphic unit. Themes of generic representations defines groups of generic representations that deal with the same kind of design decisions. Successive graphic units defines preconditions for subsequent or previous generic representations. On the basis of themes it is possible to define six general sequences of generic representations. On the basis of additional and successive graphic units it is possible to define sequences of generic representations in themes. On the basis of these sequences, one particular sequence of 23 generic representations is defined. The particular sequence of generic representations structures the decision process of a building type. In order to test this assertion, the particular sequence is applied to the office building type. For each generic representation, it is possible to establish a graphic representation that follows the definition of the graphic units and to apply the required statements from the office building knowledge base. The application results in a sequence of graphic representations that particularises an office building design. Implementation of seven generic representations in a computer aided design system demonstrates the use of generic representations for design support. The set is large enough to provide additional weight to the conclusion that generic representations map declarative and procedural knowledge of the building type.
series thesis:PhD
email
more http://alexandria.tue.nl/extra2/9703788.pdf
last changed 2003/11/21 15:15

_id eea1
authors Achten, Henri
year 1997
title Generic Representations - Typical Design without the Use of Types
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 117-133
summary The building type is a (knowledge) structure that is both recognised as a constitutive cognitive element of human thought and as a constitutive computational element in CAAD systems. Questions that seem unresolved up to now about computational approaches to building types are the relationship between the various instances that are generally recognised as belonging to a particular building type, the way a type can deal with varying briefs (or with mixed functional use), and how a type can accommodate different sites. Approaches that aim to model building types as data structures of interrelated variables (so-called 'prototypes') face problems clarifying these questions. It is proposed in this research not to focus on a definition of 'type,' but rather to investigate the role of knowledge connected to building types in the design process. The basic proposition is that the graphic representations used to represent the state of the design object throughout the design process can be used as a medium to encode knowledge of the building type. This proposition claims that graphic representations consistently encode the things they represent, that it is possible to derive the knowledge content of graphic representations, and that there is enough diversity within graphic representations to support a design process of a building belonging to a type. In order to substantiate these claims, it is necessary to analyse graphic representations. In the research work, an approach based on the notion of 'graphic units' is developed. The graphic unit is defined and the analysis of graphic representations on the basis of the graphic unit is demonstrated. This analysis brings forward the knowledge content of single graphic representations. Such knowledge content is declarative knowledge. The graphic unit also provides the means to articulate the transition from one graphic representation to another graphic representation. Such transitions encode procedural knowledge. The principles of a sequence of generic representations are discussed and it is demonstrated how a particular type - the office building type - is implemented in the theoretical work. Computational work on implementation part of a sequence of generic representations of the office building type is discussed. The paper ends with a summary and future work.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id 2dc0
authors Arkin, H. and Paciuk, M.
year 1997
title Evaluating intelligent buildings according to level of service systems integration
source Automation in Construction 6 (5-6) (1997) pp. 471-479
summary The intelligent building is supposed to provide the environment and means for an optimal utilization of the building, according to its designation. This extended function of a building can be achieved only by means of an extensive use of building service systems, such as HVAC; electric power; communication; safety and security; transportation; sanitation, etc. Building intelligence is not related to the sophistication of service systems in a building, but rather to the integration among the various service systems, and between the systems and the building structure. Systems' integration can be accomplished through teamwork planning of the building, starting at the initial design stages of the building. This paper examines some existing buildings claimed to be "intelligent", according to their level of systems' integration.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id eb53
authors Asanowicz, K. and Bartnicka, M.
year 1997
title Computer analysis of visual perception - endoscopy without endoscope
source Architectural and Urban Simulation Techniques in Research and Education [Proceedings of the 3rd European Architectural Endoscopy Association Conference / ISBN 90-407-1669-2]
summary This paper presents a method of using computer animation techniques in order to solve problems of visual pollution of city environment. It is our observation that human-inducted degradation of city environmental results from well - intentioned but inappropriate preservation actions by uninformed designers and local administration. Very often, a local municipality administration permits to build bad-fitting surroundings houses. It is usually connected with lack of visual information's about housing areas of a city, its features and characteristics. The CAMUS system (Computer Aided Management of Urban Structure) is being created at the Faculty of Architecture of Bialystok Technical University. One of its integral parts is VIA - Visual Impact of Architecture. The basic element of this system is a geometrical model of the housing areas of Bialystok. This model can be enhanced using rendering packages as they create the basis to check our perception of a given area. An inspiration of this approach was the digital endoscopy presented by J. Breen and M. Stellingwerff at the 2nd EAEA Conferences in Vienna. We are presenting the possibilities of using simple computer programs for analysis of spatial model. This contribution presents those factors of computer presentation which can demonstrate that computers achieve such effects as endoscope and often their use be much more efficient and effective.
keywords Architectural Endoscopy, Endoscopy, Simulation, Visualisation, Visualization, Real Environments
series EAEA
email
more http://www.bk.tudelft.nl/media/eaea/eaea97.html
last changed 2005/09/09 10:43

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email
last changed 2016/03/10 09:47

_id c5a0
authors Bradford, J., Wong, W.S., Tang, A.H.F. and Yeung, C.S.K.
year 1997
title A Virtual Reality Building Block Composer for Architecture
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 51-59
doi https://doi.org/10.52842/conf.caadria.1997.051
summary Design is a complex and time consuming process. One way to simplify the design process is to use pre-build blocks for commonly known parts instead of creating them again with CAD. To give the designer an immediate 3D view of the design, designing in virtual reality is a good choice. This paper presents a virtual reality interface tool which allows a user to assemble an architecture structure from a library of pre-built blocks. The library is a distributed client-server database.
series CAADRIA
email
last changed 2022/06/07 07:54

_id a1cc
authors Bridges, Alan H.
year 1997
title Building Systems Integration and the Implications for CAD Education
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.g6p
summary The author has been a member of two important U.K. reviews of construction computing (references [1] and [2]). The paper draws on these reports, other U.K. Government Reports and theoretical work on collaborative design undertaken at the University of Strathclyde to present an evaluation of Information Technology use in practice and its implications for education.
keywords Use of computers in British architectural practice, The implications of information technology on the structure and working methods of the UK building industry, Implications for CAD education
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/bridges/bridges.htm
last changed 2022/06/07 07:50

_id a96b
authors Cao, Quinsan and Protzen, Jean-Pierre
year 1997
title Managing Information with Fuzzy Reasoning System in Design Reasoning and Issue-Based Argumentation
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 771-786
summary Design by argumentation is a natural character of design process with social participation. Issue-Based Information System (IBIS) is an information representation system based on a structured database. It provides a hierarchically linked database structure to manage design information and facilitate design by argumentation. In this paper, we explore the enhancement of IBIS with FRS (Fuzzy Reasoning System) technology. The FRS adds computationally implemented dynamic links to the database of IBIS. Such dynamic links can represent logic relations and reasoning operations among related issues which allows further clarification of relations among issues in IBS. The enhanced system provides a general framework to manage design information and to assist design reasoning, which in turn will contribute to machine assisted design. The final goal is to formulate a system that can represent design knowledge and assist reasoning in design analysis. The system can help designers in clarifying and understanding design related issues, requirements and evaluating potential design alternatives. To demonstrate the system and its potential use, we reexamine a design experiment presented by Schon and represent the design knowledge and reasoning rules of the architects with our system, FRS-IBIS.
series CAAD Futures
last changed 1999/04/06 09:19

_id aa2f
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 1997
title An Intelligent Assistant for the Architectural Design Studio
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.a3a
summary It seems by now fairly accepted by many researchers in the field of the Computer Aided Design that the way to realise support tools for the architectural design is by means of the realisation of Intelligent Assistants. This kind of computer program, based on the Knowledge Engineering and machine learning, finds his power and effectiveness by the Knowledge Base on which it is based. Moreover, it appears evident that the modalities of dialogue among architects and operators in the field of building industry, are inadequate to support the exchange of information that the use of these tools requires.

In fact, many efforts at international level are in progress to define tools in order to make easier the multiple exchange of information in different fields of building design. Concerning this point, protocol and ontology of structured information interchanges constitute the first steps in this sense, e.g. those under standardisation by ISO (STEP), PDT models and Esprit project ToCEE. To model these problems it has brought forth a new research field: the collaborative design one, an evolution of distributed work and concurrent design.

The CAAD Laboratory of Dipartimento di Architettura and Urbanistica per l'Ingegneria has carried out a software prototype, KAAD, based on Knowledge Engineering in the fields of hospital building and of building for aged people. This software is composed by an Interface, a Knowledge Base, a Database and Constraints. The Knowledge Base has been codified by using the formal structure of frames, and has been implemented by the Lisp language. All the elements of KB are objects

keywords Design Studio
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/carrara/carrara.htm
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_11739 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002